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Querying Volatile and Dynamic
Networks
Synonyms

Network Dynamics, Structural Roles, Clustering, Event Detection

Glossary

Dynamic (or volatile) network: a network whose structure changes over time, some

nodes and edges may appear and disappear.

Local property: a metric that describes a topological aspect on the local neighborhood

of a node.

Structural role: the structural position of a node in the network, characterized by its

local properties.

Transition pattern: a typical role change, characterized by its time interval and by

the origin and destination role.

Definition

Many networks are intrinsically dynamic and change over time. These networks can be

very volatile, with a significant number of edges and nodes appearing and disappearing.

The majority of the existing network mining methodologies are however geared towards

a more static scenario, with a single graph describing the topology of the system being

analyzed. There is still a need for measurements and tools that allow the temporal

dimension on network analysis to be fully and naturally incorporated.

In this paper we deal precisely with volatile and dynamic networks, and how

to extract information from them. We take a general approach in which we track the

structural role of nodes over time. By using a set of local properties, such as degree and

clustering coefficients, we group similar nodes and we monitor the behavior of these

groups over time, looking for significant changes. We are able to describe the evolution

of the network in the form of transition patterns that explain how position of nodes

change and how groups of nodes grow and shrink.
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Introduction

Networks are a powerful and flexible model to represent a multitude of systems. Re-

search on network analysis in general, and social networks in particular, has been very

prolific. There is a large number of measurements available for a practitioner wanting

to understand a particular network. For a good overview see Costa et al [5].

The methodologies used have a broad scope and span many different conceptual

metrics. Methods such as community detection [7] tackle potentially large groups of

nodes. Others concentrate on smaller groups of nodes, such as network motif discov-

ery [20] or frequent subgraph mining [12]. Finally, there are methodologies that try to

analyze at the individual level, for instance by classifying nodes [19].

Here we focus on this last angle of approach and analyze the network from the

point of view of individual nodes by measuring local properties of nodes such as clus-

tering coefficient [21] or the degree distribution [6]. Our main focus is on the temporal

dimension of networks to discover how structural characteristics of nodes change over

time. We use a set of local properties that fully characterize the topology of single

nodes to define structural positions of nodes, and we track how these positions evolve

in networks lifespan. In order to better understand the global network dynamics, we

group the nodes based on structural properties and we observe the temporal behavior

of nodes. In this paper we are trying to answer questions such as: What structural

positions or roles do exist in a network? How are they appearing and disappearing?

Are specific roles growing or shrinking? Which periods of time show significant changes

and which groups of nodes exemplify such changes? Moreover, we are also interested

in understanding the transitions between roles of nodes. Which role is losing nodes

to another? What is the typical path taken by the structural role of nodes? Can we

pinpoint in time and identify major role transitions?

Key Points

Our proposed methodology is geared towards a dynamic network that keeps a relatively

static set of nodes (so that we can track them over time), but has a volatile set of edges,

that keep changing and evolving. We are able to characterize single nodes using local

properties, to group them by structural function using clustering over the properties,

and to discover significant events, positioning them in time by discovering the relevant

time intervals, and identifying the relevant transition patterns by creating sets of rules

that describe the change of nodes from one role to another.

Historical Background

Only recently, more attention is being given to the dynamic aspects of networks. From

a global perspective, research has been devoted to the study of general growth patterns

of networks [16; 15; 25], and, on a less global scale, to aspects such as the formation
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and evolution of communities [9; 18; 26], or subgraph dynamics [1; 14]. On a more local

level, link prediction has also been used to guess appearence of edges over time [17].

Modeling the temporal behavior of nodes is a relatively emergent point of view.

In this line of research the main focus is on the single nodes and their properties in the

network. In our previous works [2; 3] a two-phase general methodology was designed

to characterize time evolving networks. In the first step of this methodology nodes are

grouped by k-means clustering and classified based on their role in the network. In the

second step a method is proposed to study the evolution of the network by a supervised

approach. In this method a set of events happening in the network is defined for the

roles in the network. We then find the predefined events happening in the network and

the rules that describe them by using association rule mining. On a related approach,

Rossi et al [22] used the methodology proposed by [11] for static role extraction. They

measure a set of features for nodes at each time snapshot then by stacking all the node-

by-feature matrices, they derive the matrix of feature-roles by factorizing the stacked

node-by-feature matrix and iteratively generate the matrix of node-role for each time.

Proposed Methodology

In this section we formulate the problem of dynamic network study from a single node

point of view. Our goal is to model the temporal characteristics of nodes regarding

the different structural positions they hold, which we call roles in this paper. For

a given sequence of network snapshots, we examine the dynamics by tracking roles

of nodes over time. For a given node, the role is defined regarding properties in its

close neighborhood. The proposed method for this problem consists of three steps: (1)

measuring local properties of nodes at each time step; (2) extracting structural roles

of nodes; (3) finding patterns of role transition.

Measuring Local Properties

The role of a node is automatically determined based on its properties in the network.

Nodes are assigned to the same role if they are similar. We assess the similarity of

two nodes by using their properties rather than number of edges between them. Two

nodes are close if they have a similar feature vector. Initially, we need to select a set of

local measurements that best characterize nodes in the network structure. We chose to

employ the same set of metrics used by [4] as the feature vector for finding groups of

nodes. These features measure the connectivity of a node in the neighborhood structure.

In particular, we use the following five properties:

• the normalized average degree (r);

• the coefficient variation of the degrees of the immediate neighbors of a node

(cv);

• the clustering coefficient (cc);
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• the locality index (loc), which is an extension of the matching index and takes

into account all the immediate neighbors of each node, instead of individual

edges, and

• the normalized node degree (K).

Extracting Structural Roles

To extract the set of roles describing the existing positions in the networks, we use

the well known k-means clustering algorithm [10] to find groups of nodes with similar

feature vectors. Each cluster contains nodes with a similar position in the network

regarding their feature vectors, hence the same role or label can be assigned to them.

Given a sequence of graphs {G1, G2, ..., Gt}, we build the feature matrix Mt by

calculating the local properties of nodes at time t. We discover groups of nodes by

applying k-means algorithm on the stacked matrix of all node-feature matrices up to

time t. In the stacked matrix, one node may appear multiple times with different feature

vectors, if it is active (i.e., if it exists) at multiple time steps. We derive a membership

matrix (node by time) for all nodes of the network regarding the clustering result that

shows the role of nodes at each time step.

The number of potential groups of nodes in the network is equal to the number

of clusters in the dataset. Determining the actual number of groups in a dataset is a

fundamental and largely unsolved problem in cluster analysis. We employ the method

by [24], since it does not require parametric assumptions, is independent of the method

of clustering, and was shown to achieve excellent results. This method uses a theoretic

information approach that considers the transformed distortion curve d : K−p/2, where

p is the number of dimensions in the dataset.

Role transition modeling

We explore the dynamic of a network at node level by finding role transition patterns.

The temporal behavior is modeled to see if nodes hold similar roles over their life time

or consistently oscillate over time. For example, in a social network, a center of a star

was a bridge node before or is it likely to turn to an isolated node in its life span? We

generate a set of transition rules to describe these events in a network.

Five basic types of temporal patterns are defined for a role regarding the number

of nodes having that role: (1) growth; (2) shrink; (3) emergence; (4) dissolution; (5)

constant. We learn these patterns by discovering transition intervals where the number

of nodes of a certain role is shrinking, growing or showing other defined temporal

patterns. After this, a set of rules describing the pattern is generated.

Transition intervals

A transition interval is a time interval where a considerable number of nodes leave or

join a role. For a given role Ci, its size over time constitutes a time series denoted as

Fi(t), t ∈ [1, T ]. A transition interval is the subsequence of Fi which holds a constant
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increasing or decreasing trend. Hence, we extract transition intervals of Fi by segmen-

tation of the time series. Starting from t = 1, Fi(t) is approximated by linear regression

to find the transition intervals. If the error of the fitted line for a subsequence Fi[a : b]

exceeds the threshold, the interval [a, b] breaks to point j where it gives the best ap-

proximation for Fi[a, j− 1], j < b. The error is measured in terms of the sum square of

residuals. The threshold is controlled by the maximum number of arbitrary transition

intervals. The maximum error is increased while the number of intervals is below the

defined maximum number of intervals. For this method we can either define the maxi-

mum error for the linear regression, or the maximum number of desired intervals. The

slope of the fitted line for each segment shows whether the interval is increasing or de-

creasing, which respectively determines the growth (emergence) or shrink (dissolution)

events.

Transition rules

We extract a set of rules to describe the specific pattern at transition intervals. A

transition rule is in the form of Ci → Cj, which shows that nodes from group i moved

to j. The order of transitions is important, since it shows the trend of changes in the

network properties. For example, for a sequence of {1, 1, 1, 2, 2, 3}, the transition rules

are 1→ 2 and 2→ 3. We extract these one-step transition rules for a time interval by

building a transition matrix in each time interval. The support count of a rule Ci → Cj

is defined as the number of nodes that go from cluster Ci to Cj in that interval.

Exploratory analysis

We now apply our proposed methodology to real data in order to show its applicability.

For our experiments, we used three different real complex networks: world countries

global trade [8] (two countries A and B are connected at time t if the trade between

them is more than 10% of either country’s total trade in that year), connections between

USA airports [23] and a co-authorship network obtained from DBLP data [1]. We use

the undirected forms of these networks. Table 1 gives some more details on the topology

of three used networks.

Dataset Time |V | |E| Node growth Edge growth

snapshots rate rate

Global Trade 53 186 8839 2.47 7.93

USA Airports 244 1919 14391 1.64 1.21

DBLP 11 31592 49599 3.4 4.57

Table 1: Datasets statistics: number of time-snapshots, number of nodes and edges at

the final snapshot and node and edge growth rate (ratio between the final and initial

time-snapshots).
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This methodology gives a profile for each network, including information about

the existing roles and the temporal patterns, describing the existing dynamics. Figure 1

shows the profile of the roles found in each network. The profile depicts the values of

the feature vector of each role in the network. This figure clearly depicts that each role

in the network has a different feature vector and that nodes are distinguished according

to their structural position.

(a) Global Trade network. (b) USA Airports network.

(c) DBLP network.

Fig. 1: Illustration of the feature vector of the roles in the selected networks. The

normalized average degree (r) is plotted on the second axes on the right side of the

plot.

For example, in the global trade network of countries, our method found four

distinguishable roles for nodes. Nodes with role number 1 are countries with very high

degree and many low degree nodes connected to them. Neighbors of these nodes have

low degree since the normalized average degree of the immediate neighbors of a node for

this group is very low. This means that nodes in role 1 behave as hubs in the network,

i.e., as hub countries in global trade, with commercial transactions with many other

countries that have a high variation of degree in neighborhood (cv). According to the

value of (loc) and (cc), respectively, the locality index and the clustering coefficient,

nodes are highly connected in their neighborhood. United States of America, Canada

and France are members of this group.
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Dataset Event Time Transition Support Z score

interval rules

Global Trade Emerge (2) [26,32] 3→ 2 80 6.3

Shrink (4) [23,40] 4→ 3 100 14.70

Emerge (3) [12,22] 4→ 3 126 8.3

Shrink (1) [9,29] 1→ 4 25 12.1

USA Growth ( 3) [142,175] 1→ 3 1062 3.75

airports Growth (6) [1,79] 2→ 6 437 7.27

Shrink (2) [57,132] 2→ 3 551 4.79

DBLP Growth (4) [1,11] 0→ 4 6710 1.2

Growth (7) [6,11] 0→ 7 196 0.2

Shrink (3) [1,7] 3→ 0 726 1.3

Table 2: Description of some extracted events in the networks. Numbers in the paren-

thesis denotes the cluster number, holding the events

Table 2 shows some of the extracted patterns. Besides the frequency count of

every pattern in each dataset, and in order to assert their significance, we compared

the result with randomized sequences. We built these random sequences by shuffling

the order of role membership of each node in the network. In this way, the random

dataset has the same number of nodes and role types. Since we have a dataset of role

sequences for each network, we built 10 datasets of random sequences with the size as

the number of nodes. We calculated the average and standard deviation of frequencies

for each rule of events in the 10 datasets. Finally, we computed the z-score for the

significance of each rule as compared to the randomized form. The table shows the

rules with the highest z-score.

Figure 2 graphically illustrates some of the role transition patterns happening.

Each graph includes all roles transitions in a specified time interval. The label of nodes

specifies the role and the color of nodes shows the type of temporal pattern.

For example, the first event (a) in the global trade network describes the emer-

gence of cluster 3 in the [12,22] time interval. This graph says that nodes that constitute

cluster 3 either come from cluster 4 or are the new nodes (cluster 0), just joining the

network. By observing Table 2, we can see that the main reason for this event is the

transition from cluster 4. The same type of interpretation could be applied for the two

other networks.

Regarding the scalability of our approach, out methodology gives results in a

reasonable time for small scale networks like Global Trade or a relatively large network

like DBLP. The size of the network essentially affects the first step of the proposed

methodology where the local properties of nodes are calculated. In this paper, this set

of properties can be computed efficiently since they are based on one 1st degree ego

network of nodes. The other steps of the method utilize standard machine learning

techniques. The clustering step uses K-means, which is an NP-hard problem, but there

are efficient approximate solutions [13]. The role transition modeling step is more af-
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Fig. 2: Some of the events happening in the networks.

fected by the number of time snapshots rather than the size of network since transition

rules are derived by matrix operations in every time step.

Key Applications

This method provides a general picture of a network and its dynamics over time, and as

such has broad applicability. The results of our methodology are helpful for comparing

networks regarding their role distribution. For example, we can examine if there is the

same role distribution in social and biological networks. Finding outliers in a network

is another possible application. Nodes that exhibit a temporal behavior different from

the other nodes in their discovered role set can be considered as outliers.

Future Directions

In the near future we indent to study the usage of other types of measurements. For

instance, can subgraph metrics, such as participation of nodes in network motifs, be

used for role discovery? We also intend to study the applicability of our methodology

to very large scale networks, by scaling up our used algorithms. In addition, we plan

to apply the proposed method for network studies such as network comparison, node

classification and anomaly detection.
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Cross-References

• Analysis and Visualization of Dynamic Networks

• Community Identification in Dynamic and Complex Networks

• Future Directions in Predicting the Dynamic Evolution of a Network

• Social Networks: Dynamics and Evolution Models for

• Temporal Analysis on Static and Dynamic Social Networks Topologies

• Role Discovery

• Role Identification of Social Networkers

• Path-Based and Whole Network Measures
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