
Products go Green: Worst-Case Energy Consumption in
So�ware Product Lines

Marco Couto
HASLab/INESC TEC

Universidade do Minho, Portugal
marco.l.couto@inesctec.pt

Paulo Borba
CIn

Univ. Federal de Pernambuco, Brazil
phmb@cin.ufpe.br

Jácome Cunha
NOVA LINCS, DI, FCT

Univ. Nova de Lisboa, Portugal
jacome@fct.unl.pt

João Paulo Fernandes
Release/LISP, CISUC

Universidade de Coimbra, Portugal
jpf@dei.uc.pt

Rui Pereira
HASLab/INESC TEC

Universidade do Minho, Portugal
ruipereira@di.uminho.pt

João Saraiva
HASLab/INESC TEC

Universidade do Minho, Portugal
saraiva@di.uminho.pt

ABSTRACT
The optimization of software to be (more) energy e�cient is becom-
ing a major concern for the software industry. Although several
techniques have been presented to measure energy consumption
for software, none has addressed software product lines (SPLs).
Thus, to measure energy consumption of a SPL, the products must
be generated and measured individually, which is too costly.

In this paper, we present a technique and a prototype tool to
statically estimate the worst case energy consumption for SPL. The
goal is to provide developers with techniques and tools to reason
about the energy consumption of all products in a SPL, without
having to produce, run and measure the energy in all of them.

Our technique combines static program analysis techniques and
worst case execution time prediction with energy consumption
analysis. This technique analyzes all products in a feature-sensitive
manner, that is, a feature used in several products is analyzed only
once, while the energy consumption is estimated once per product.

We implemented our technique in a tool called Serapis. We did a
preliminary evaluation using a product line for image processing
implemented in C. Our experiments considered 7 products from
such line and our initial results show that the tool was able to
estimate the worst-case energy consumption with a mean error
percentage of 9.4% and standard deviation of 6.2% when compared
with the energy measured when running the products.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
Software performance; Software product lines;

ACM Reference format:
Marco Couto, Paulo Borba, Jácome Cunha, João Paulo Fernandes, Rui Pereira,
and João Saraiva. 2017. Products go Green: Worst-Case Energy Consump-
tion in Software Product Lines. In Proceedings of SPLC ’17, Sevilla, Spain,
September 25-29, 2017, 10 pages.
DOI: 10.1145/3106195.3106214

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’17, Sevilla, Spain
© 2017 ACM. 978-1-4503-5221-5/17/09. . . $15.00
DOI: 10.1145/3106195.3106214

1 INTRODUCTION
The widespread use of non-wired devices and the advent of the
internet-of-things, where most consumer electronics are (power-
ful) computing devices, is changing the way software engineers
develop their software. Software has to run in a variety of devices
and energy consumption is becoming the bottleneck in terms of
software performance. Software Product Lines (SPL) have emerged
as an important software engineering discipline allowing the de-
velopment of software that shares a common set of features. Thus,
SPLs are particularly suitable to develop software where individ-
ual products target speci�c computing architectures/devices, while
sharing common software features.

Although several techniques have been proposed to measure
energy in di�erent scopes [8, 11, 16], there is no proposed technique
to address this problem in SPLs. A brute-force approach would be to
generate all products within a SPL and use common techniques to
measure each product energy consumption. This would, however,
be too costly, since, for each product, it would be necessary to
instrument it and run measurement tools on it. This can easily
become unfeasible depending on the size of the SPL.

In this paper we present techniques to reason about energy
consumption in the context of software product lines based on con-
ditional compilation. Our goal is to providetechniques and tools to
software developers, allowing them to identify (non) green products
and/or features in a SPL. Moreover, we wish to avoid a brute-force
approach where all products are �rst generated, so that their en-
ergy consumption is monitored and analyzed at runtime. As a
consequence, common features shared by several products would
be forced to be repeatedly analyzed.

We aim to analyze the SPL in a feature-sensitive manner, i.e., a
feature that is used in several products is analyzed only once. In
order to do so, we use SPL static analysis techniques [2] that work
on a control-�ow graph representing a set of programs (the SPL),
and not just one. This analysis is used to compute 2 things from
the source code: i) energy related properties, such as hardware
components usage information, and ii) data�ow information, such
as loop upper bounds.

The computed properties are then used as input by the next step
of our technique. This step is based on the Worst-Case Execution
Time (WCET) prediction technique, where instead of execution time
we compute the energy consumption per product. This is the only
step where the analysis is product-oriented. We use a constraint

84



SPLC ’17, September 25-29, 2017, Sevilla, Spain M. Couto, P. Borba, J. Cunha, J. P. Fernandes, R. Pereira and J. Saraiva

solver to estimate the consumption, where, for each product, we
generate a set of constraints. Note that for each shared feature only
one set of constraints is generated. However, due to the nature of a
constraint solver, the constraints of a feature are calculated for every
product including it. In fact, this is the only part of our approach
where we recalculate information for shared features. We call this
new technique the Worst-Case Energy Consumption (WCEC).

Our WCEC analysis technique for products in a SPL implies the
existence of an energy consumption model. This model abstractly
describes the hardware where the products will run, and the amount
of energy needed by di�erent types of instructions to execute. Using
such model along with the previously computed properties, our
technique computes the energy consumption pro�le for each prod-
uct and feature. Thus, it allows the generation of the most energy
e�cient product that includes/excludes a set of given features.

Moreover, we have implemented WCEC in a prototype tool,
which given the SPL source code statically estimates the energy
consumption of its products. This tool extends a C Intermediate Lan-
guage (CIL) front-end with SPL primitives, and the WCEC analysis.
To assess the precision of our technique we considered a C-based
SPL included in the San Diego Vision Benchmark Suite [24]. Our
preliminary results show that the energy predicted by our tool for
each product is always, as expected, an overestimation of the real
consumption, diverging on average by 9.4%.

The remaining of this paper is structured as follows: Section 2
provides a brief introduction to static analysis in the context of
SPL. Section 3 presents in detail our contribution: the worst-case
energy consumption analysis. Section 4 describes the architecture
of the WCEC prototype tool we developed. In Section 5 we show
the results of using the tool in a real SPL. Finally, Section 6 describes
related work and we include the conclusion of our work in Section 7.

2 STATIC ANALYSIS IN SPL’S
The goal of our work is to develop a methodology for statically
predicting the energy consumption of products in a SPL. In order
to better explain our approach, we �rst need to explain some intro-
ductory concepts that we based our approach on.

In this section, we will explain how static analysis can be achieved
in SPLs. We start by explaining SPLs concepts in Section 2.1. Then,
we will explain the static program analysis concepts in Section 2.2,
and �nally we will present and explain the chosen technique for
integrating all the previously stated concepts in order to achieve
static analysis in SPLs Section 2.3. The concepts included in this
section are mostly inspired from the contents of [2].

2.1 Basic Concepts of Software Product Lines
Research on Software Product Lines has been focused on software
engineering methods and techniques designed to manage variability
in a software system, in a normalized manner [1, 2]. Using SPLs
allows us to create a collection of di�erent software solutions from
reusable assets in the same software system (i.e., code fragments,
visual assets, etc.), using the same means of production.

In order to illustrate the essential aspects of SPLs, let us consider
the purchase of a car. In such a situation, once the particular car
model is choosen, it is often required to con�gure it according to

preferences and budget. Con�guration options are diverse, and
often involve choosing the engine type, entertainment system, etc..

Imagine that the following (simpli�ed) con�gurations are possi-
ble for a given car:

• turbo engines are not available with the basic version;
• turbo engine is mandatory when choosing air-conditioning.

In the context of SPLs, theBasic version,Turbo or air-conditioning
(Air ) are often referred to as features.

Thus, a product (e.g., a concrete car that respects the con�gu-
rations which are possible) is characterized by the set of features
which it includes/implements (e.g., {Car ,Basic,Air ,Turbo}). This
set of features is called the product con�guration, and can be used
to generate several products of the same kind.

The number of possible product con�gurations may sometimes be
restricted by a so-called feature model. This model is a propositional
logic formula, which deals with situations such as exclusive features,
and features that may imply the inclusion of other features.

For instance, considering our running example and the feature
model Ψ = Car∧ (Basic ⇔ ¬Turbo)∧ (Air ⇒ Turbo), the complete
set of product con�gurations is:
{{Car, Basic}, {Car, Turbo}, {Car, Air, Turbo}}

One way to de�ne if a code block belongs to a speci�c feature
is by using conditional compilation. This technique is based on
associating to the code block a pre-processor instruction, an #ifdef
Φ, where Φ is a propositional logic formula over feature names:

Φ ::= f ∈ F|¬Φ|Φ ∧ Φ|Φ ∨ Φ

Where f is a feature name, drawn from a �nite alphabet of feature
names F. This allows to indicates which features include that code
block, or which one must exclude it.

2.2 Static Data�ow Analysis concepts
In order to brie�y review classic static program analysis concepts,
we will provide illustrations based on the following code example:

void m() {
int i = 0; int x = 0;
x = input(); // 1..100
#ifdef (A) x*=2;
#ifdef (B) x--;
while(i < x){ i++; }
}

Listing 1: Example of a SPL method

In this example, conditional compilation primitives are used to
de�ne a SPL where two features, A and B, are available. If A is present
in a particular product, the value of x doubles after obtaining the
input; if B is present, the value of x is decremented.

Every classic static data�ow analysis consists of three compo-
nents: a) a control-�ow graph, representing the connection between
instructions (and on which the analysis is performed); b) a lattice,
representing the values of interest for the analysis; and c) transfer
functions, responsible for simulating the execution of the program
represented by the control-�ow graph.

These components, are the input to the �xed-point computation
function. This function is responsible for calculating a lattice value
for each node of the control-�ow graph, which is the �xed point of
the transfer functions at that point.

85



Products go Green: Worst-Case Energy Consumption in So�ware Product Lines SPLC ’17, September 25-29, 2017, Sevilla, Spain

Control Flow Graph (CFG): This component is an abstraction
of the program given as input. A CFG is a directed graph, with
the statements of the program to be analyzed as nodes, and the
edges representing the �ow of control. An edge can be assigned a
boolean expression, which is the condition to be veri�ed in order
for the program to follow that �ow. Figure 1 represents the CFG for
the product derived from the example in the Listing 1, when only
feature A is included.

x = 0;x = 0;

x*=2;x*=2;

i = 0;i = 0;

x = input();x = input();

(i<x)?(i<x)? i++;i++;T

F

Figure 1: Control-Flow Graph for the example in Listing 1

La�ice: When performing static data�ow analysis, the calcu-
lated information is arranged in a lattice, L = (D,v), where D is a
set of elements and v is a partial-order on the elements.

Each element represents information relevant for the analysis to
be performed. For example, if the goal of the analysis is to check the
signal of a variable (called a sign analysis) the element “+” indicates
that a value is always positive, while the element “0/+” represents
zero or positive. Figure 2 represents a lattice for the sign analysis.

­/0 ­/+ 0/+­/0

0 +­

⊤

⊥

Figure 2: Lattice for Sign Analysis

There are two special elements in the lattice: ⊥, at the bottom of
the lattice, usually meaning the node was not yet analyzed, and>, at
the top of the lattice, usually meaning it is impossible to determine
the lattice element for that node.

The partial order induces a least upper bound operator, repre-
sented by t. This operator allows information to be combined
during the analysis, when a node has more than one entry point
(for example when there is a loop or an if ). For instance, in sign
analysis we have: ⊥ t 0 = 0, 0 t + = 0/+, and − t 0/+ = >.

Transfer/Update Functions: A transfer function is a monotone
function which simulates the execution of a statement (with respect
to what is being analyzed). Each statement has an associated trans-
fer function which receives one or more lattice elements and uses
it to compute a new element associated to the statement. The input
elements for the function are the lattice elements associated to the
predecessors or successors relevant for the analysis. For example,
if we want to perform the sign analysis for the example in Figure 1
the transfer function for the statement x-- would be:

fx−− (l ) =




> : l ∈ {−/+, 0/+,>}
− : l ∈ {−,−/0, 0}
0/+ : l = +
⊥ : l = ⊥

In this case, l is the lattice element of the only predecessor of x--.
If that element is for example 0/-, it means that before entering

the statement x-- the value of x was either zero or a negative
value. Given those possibilities, decrementing x will only result in
a negative value, as the function shows. In order to assure that the
analysis is well-de�ned, all the transfer functions must obey the
monotony property.

Once every transfer function is de�ned, the �rst step of the
analysis will be to transform the CFG into a whole-program transfer
function, T , which contains the transfer functions for all points of
the program to be analyzed. Figure 3a shows the whole-program
transfer function for sign analysis of the example in Figure 1.

The last step of static analysis will then be to calculate the �xed
point of the whole-program transfer function. Figure 3b shows the
result of such computation for the example in Figure 1, using func-
tionT . This analysis enables us to determine the sign of the variable
x in every statement of the program.

2.3 Static Analysis in Software Product Lines
Static analysis, as explained in Section 2.2, can only be used in
programs with no included variability. In a SPL, there is a need to
make the analysis feature aware, so it can compute the results for
all products at once.

As explained in [2], there are di�erent ways to achieve feature-
aware static analysis. For both e�ciency and ease of implementa-
tion, in our context we have chosen to adopt Simultaneous Feature-
Sensitive Analysis. In the following paragraphs, we will explain
what this technique consists of and how it combines static data�ow
analysis with feature awareness.

Simultaneous Feature-Sensitive Analysis: A SPL can be ana-
lyzed by building all possible products and analyzing them individu-
ally. However, this is not desirable as a SPL with a substantial num-
ber of features will give rise to a considerable number of products.
It is possible to avoid building all produts by making the data�ow
analysis feature sensitive. In order for this, there are a few changes
that need to be made to the static data�ow analysis components.

The CFG needs to be changed in a way that it is possible to know
if a statement is feature dependent or not. In order to do this, each
node of the CFG has assigned the set of features which implement
the corresponding statement. Each node will now have a pair (S,F ),
where S (e.g., x*=2) is the statement and F (e.g., JAK) is the list of
features where S is implemented. Unconditional statements will
have the list of all con�gurations, represented as JTRUEK.

The lattice will also change, since it is now necessary to know
which products are a�ected by the execution of every instruction.
This can be achieved using a so-called lifted-lattice, which will
basically maintain for every node one lattice element per valid
product con�guration. This way it is possible to know the result of
the analysis on all products. Similarly, the transfer functions will also
be lifted, i.e., they will only be applied to the product con�gurations
which include the statement being analyzed.

Figure 4 shows the �nal iteration of the �xed point computation,
using the Simultaneous Feature-Sensitive approach to perform the
sign analysis in the example of Listing 1. The result here is expressed
as an annotated CFG. At the exit of each node there is a lifted lattice
with an element associated to each possible product of the SPL,
where each element is the result of the transfer function associated
to the node.

86



SPLC ’17, September 25-29, 2017, Sevilla, Spain M. Couto, P. Borba, J. Cunha, J. P. Fernandes, R. Pereira and J. Saraiva

T

*.........
,

a
b
c
d
e
f

+/////////
-

=

*.........
,

fi=0 (⊥)
fx=0 (a)

fx=input (b)
fx∗=2 (c )
(d t f )
fi−− (e )

+/////////
-

(a) Whole-program Transfer Function

a ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

b ⊥ 0 0 0 0 0
c ⊥ > > > > >

d ⊥ ⊥ > > > >

e ⊥ ⊥ ⊥ > > >

f ⊥ ⊥ ⊥ ⊥ > >

T 0 T 1 T 2 T 3 T 4 = T 5

(b) Fixed-point Computation

Figure 3: Whole-program transfer function and sign analysis (as �xed point computation) for the example in Figure 1

⟦TRUE⟧ : x=input();

⟦A⟧ : x*=2;

⟦B⟧ : x­­;

∀c  {{A}, {B}, {A, B}}:∈

({A} → 0, {B} → 0, {A, B} → 0)

({A} → , {B} → , {A, B} → )⊤ ⊤ ⊤

({A} → , {B} → , {A, B} → )⊤ ⊤ ⊤

({A} → , {B} → , {A, B} → )⊤ ⊤ ⊤

({A} → , {B} → , {A, B}→ )⊥ ⊥ ⊥

...

...

Figure 4: Result of sign analysis performed for the example in Fig-
ure 1 using the Simultaneous Feature-Sensitive approach

3 STATIC ENERGY ANALYSIS IN SPLS
In Section 2 we explained how static analysis in SPLs can be per-
formed by combining typical state-of-the-art static analysis tech-
niques with the components that characterize a SPL, such as fea-
tures and feature models.

However, all the presented concepts and techniques were for
the purpose of static analysis: predicting whether a property is
true or maintained after a certain instruction. In other words, static
analysis, as presented until now, enables the possibility of predicting
the behavior of all products in a SPL by analyzing their code.

In order to achieve static energy consumption analysis in a SPL
it is necessary not only to determine such behavior, but also to
understand how it can a�ect energy consumption. A more thorough
analysis, similar to worst case execution time (WCET) analysis, is
needed. In such an analysis, the goal is to give an upper bound for
each instruction, determine how they all are related, and calculate
an estimate for the worst case scenario.

We present, in this section, our strategy for determining an
energy consumption worst case scenario based on the classic WCET
analysis [25]. This strategy is composed of 4 phases:

A. �rst, use �xed-point computation to gather information
about how instructions’ execution in�uences the hardware
energy consumption behavior;

B. use a data-�ow analysis to determine loop upper bounds;
C. at each program point, an energy model calculates an

energy-bound for every product of the SPL;
D. �nally, use all the information from previous steps, a con-

straint solver computes a global energy-bound for all the
products of the SPL.

3.1 Static Prediction of Energy Behavior
In classic execution time prediction, the �rst step towards deter-
mining the WCET is to analyze how the processor will behave
when executing a certain statement [25]. This allows us to deter-
mine how the processor will behave while also depending on what
statement(s) was(were) executed before. This is called the Processor
Behavior Analysis step.

The goal is to create an abstract model of such behavior, with
all the processor states which can a�ect energy consumption. In
other words, to create a �nite lattice where the elements are those
states, and the necessary conditions to switch state are described
by monotone transfer functions.

Having such an abstract model for the processor’s energy behav-
ior, all the properties from static data�ow analysis (as presented
before) hold. This was already proven to work before [14]. For
our purpose, we want to make it possible to use this approach to
model every hardware component, in every possible state, which
in�uences the energy consumption.

To �t static program analysis requirements, each component’s
behavior must be independent of all others. Nevertheless, the behav-
ior analysis must be done only once. We need to de�ne a prediction
model, P, able to determine how the hardware components behave
when executing a given instruction. The model P consists of a set
of transfer functions. The input of the prediction model P is a list of
n lattice elements, S, one for each hardware component, and the
output is S′, corresponding to a list of new lattice elements. When
analyzing a statement, the elements in S′ represents the state of
the components after the statement is executed.

As shown in ??, the analysis in a SPL must be extensible to
every product. This requires two things: (1) for every node/program
point there must be a list of lattice elements for every possible
product, and (2) for a given product p the corresponding list of
lattice elements must be updated (using the transfer functions) if
and only if the instruction in the node is included in product p.

The result of an analysis such as this one is similar to the one
presented in Figure 4. However, each node will have associated a
map between product con�gurations and a list of n lattice elements
(for n hardware components), instead of only one lattice element.

3.2 Data-Flow Analysis
In the context of WCET, data-�ow analysis is used for gathering
information about the possible set of values for a variable at various
program points [25]. This is also a key component for our approach,
since it enables us to determine the variables’ values before/after the
execution of each iteration of a loop. We can use such information

87



Products go Green: Worst-Case Energy Consumption in So�ware Product Lines SPLC ’17, September 25-29, 2017, Sevilla, Spain

to test the loop condition after every iteration, and determine the
maximum number of iterations: the loop upper bound.

In WCET analysis all loops must have an upper bound. In fact,
determining a loop bound is crucial to increase the accuracy of the
analysis. However, it is often impossible to accurately determine
such a bound. In order to address this problem, usually additional
information is provided by the programmer: a range of values that
input variables may have.

Assuming that such information is provided, we developed a
technique capable of determining the upper bound of any loop.
This technique is the result of combining static program analysis
to determine the variables’ values at each program point [14], and
abstract execution to automatically derive loop bounds [5].

Figure 5 expresses the result of our technique in Example 1 at
every program point until the �rst iteration of the loop concludes.
We can see that the analysis is feature sensitive, i.e., the propagation
of a variable’s abstract value in an assignment is only considered
for products which include such assignment.

⟦TRUE⟧ : x=input();

⟦A⟧ : x*=2;

⟦B⟧ : x­­;

∀c  {{A}, {B}, {A, B}}:∈

({A} → [(i,0)], {B} → [(i,0)], {A, B}→ [(i,0)])

({A} → [(i,0), (x,[1..100])], {B} → [(i,0), (x,[1..100])], 
{A, B}→ [(i,0), (x,[1..100])])

({A} → [], {B} → [], {A, B}→ [])

⟦TRUE⟧ : (i<x)?

... ⟦TRUE⟧ : i++;

T

⟦TRUE⟧ : i = 0;

⟦TRUE⟧ : x = 0;

({A} → [(i,0), (x,0)], {B} → [(i,0), (x,0)], 
{A, B}→ [(i,0), (x,0)])

F

({A} → [(i,1), (x,[2,4..200])], {B} → [(i,0), (x,[0..99])], 
{A, B}→ [(i,0), (x,[1,3..199])])

({A} → [(i,0), (x,[2,4..200])], {B} → [(i,0), (x,[1..100])], 
{A, B}→ [(i,0), (x,[2,4..200])])

({A} → [(i,0), (x,[2,4..200])], {B} → [(i,0), (x,[0..99])], 
{A, B}→ [(i,0), (x,[1,3..199])])

({A} → [(i,0), (x,[2,4..200])], {B} → [(i,0), (x,[0..99])], 
{A, B}→ [(i,0), (x,[1,3..199])])

VarsVars ValuesValues

xx [1..100][1..100]

...... ......

M

Figure 5: Example 1 data-�ow analysis (loop’s �rst iteration.)

Our approach follows the forward analysis principle [14]. It
begins at the program’s �rst instruction, and once it reaches an
assignment the abstract value for the variable is updated. The result
is propagated to the following instructions, and so on. Considering,
for example, that the instruction being analyzed is an assignment
of the value 5 to a variable a. The abstract value for a will be 5, and
the successor instructions will consider that value for variable a.

Our technique requires a map structure, M , which relates vari-
ables and a range of possible values for them. Every time an in-
struction is found that assigns an input value to a variable, the map
structure M is consulted and the variable gets an abstract value rep-
resenting its range of possible values. If there is no entry in the map,
the variable gets the abstract value >, which will be considered as
the maximum possible value.

If a given program point has more than one predecessor instruc-
tion (e.g., at the end of if structures), it means the variable abstract
values must be joined. We de�ned a join operator that merges the

possible variable values. For example, if the instruction a++ has
two predecessors that propagated the abstract values 1 and 5 for
variable a, then the join operator transforms those values in a single
one: [1, 5]. This means that variable a can have two di�erent values
at that entry point, which is in fact true. The propagated result after
the instruction a++ will then be [2, 6].

Once the analysis reaches a loop, it knows all the possible abstract
values for those variables, and tries to symbolically execute such
loop with them. For every iteration of the loop the stop condition is
veri�ed, and if it fails for all possible values of the variables, then
we have reached the upper bound of that loop.

To ensure that this analysis will �nish, it is necessary to provide
an exagerated upper bound, for the case that the loop condition
never fails for the possible abstract values (when the map struc-
ture M does not have an entry to every variable with input values
assigned to it). This value can be parameterized, according to the
program under analysis. For example, for a program calculating the
length of a word, this value should be the maximum length of any
word under consideration.

3.3 Combining SPL Static Analysis With
Energy Estimation

In subsection 3.1, we explained how to predict the behavior of
hardware components in a feature-oriented manner. This analysis
allows us to predict how the hardware will behave after executing
every statement, and for every valid product in the SPL.

Similarly to SPL static analysis, the result will be stored in a
CFG with a lifted lattice L in each node, representing the hardware
components states for each product, as shown in Figure 6. Here,
every Li represents a list of n lattice elements, one for each of the n
hardware components considered. For example, {A} → L1 (where
L1 = {l1, ..., ln }) means that L1 holds the states of the n hardware
components after the execution of x=input(), for the product with
the con�guration {A}. After executing x*=2, the lifted lattice L1
will change to L2 for products with con�guration {A} and {A,B},
since that instruction is only included in products with feature A.

⟦TRUE⟧ : x=input();

⟦A⟧ : x*=2;

⟦B⟧ : x­­;

∀c  {{A}, {B}, {A, B}}:∈

({A} → , {B} → , {A, B}→ )⊥ ⊥ ⊥

({A} → L
1
, {B} → L

1
, {A, B}→ L

1
)

({A} → L
2
, {B} → L

1
, {A, B}→ L

2
)

({A} → L
2
, {B} → L

3
, {A, B}→ L

4
)

...

...

EB1 = ({A} → J1, {B} → 0, {A,B} → J1)

Energy Model

J1

...

...

Figure 6: Calculating local energy bounds for each node in the CFG

The information in every node represents only the state of the
machine before executing the instruction in that node. In order to
get an energy estimation, and following the WCET principle, we
need to match the states (lattice elements) with an energy model, E,
where the consumption per state is speci�ed. E can be described as a
function that takes as argument a tuple (i,C, s ), where i is the node
instruction, C is the hardware component, and s is the component

88



SPLC ’17, September 25-29, 2017, Sevilla, Spain M. Couto, P. Borba, J. Cunha, J. P. Fernandes, R. Pereira and J. Saraiva

state (i.e., the lattice element), and returns a consumption value
re�ecting the work made by the hardware component C to execute
i while in the state s . With n hardware components, this function
must be invoked n times for each node.

The energy model will give a local energy bound for each node
in the CFG, which will serve as input to a constraint solving system
capable of predicting the energy consumption of the entire program
in the worst case scenario based on such local bounds. This will be
further explained in subsection 3.4. For the purpose of validating our
work, we created a speci�c energy model, which we will present in
Section 5.1. Our analysis can, however, use di�erent energy models
provided by, for example, hardware manufacturers.

After matching all this information with the aforementioned
energy model the CFG will have, for every node i , a set of local
energy bounds EBi . Each element j of every EBi will be the local
energy bound for a valid product con�guration j. If the instruction
in the node is not included in the product con�guration j, then its
local bound will be 0.

Figure 6 represents part of the CFG of Example 1, where it is
possible to see the energy model assigning an energy value to all
product con�gurations in a node. In the example, since the instruc-
tion is included only in products {A} and {A,B}, they both receive
the value J1, while the product {B} gets 0. Also, the value J1 re�ects
the combined consumption of all hardware components, and so it
depends on the list of lattice elements represented by L1.

3.4 Worst Case Prediction
The primary goal of this work, as we said before, is to determine
the energy consumed by every product in a worst case execution
scenario. Until now, we have shown how to determine the energy
consumption of each statement individually, concerning the context
in which it executes. However, we need to estimate the overall
consumption of a product, considering that not all statements have
the same impact, for example loop statements will probably execute
more frequently, and if statements may not always execute.

There is a widely used approach in WCET prediction called IPET
- Implicit Path Enumeration Technique[12]. This technique consists
of translating the CFG into a system of constraints. Such constraints
are a result of combining program �ow and CFG node execution
time bounds, with the program WCET estimation being the result.

From static analysis, each node i has a local execution time upper
bound, ti , expressing the contribution of the node’s statement to
the total execution time, when executed once. IPET considers a new
variable, xe , where e is an entity which can be a node or an edge
between two nodes. This variable represents the number of times e
is expected to execute, and all these count variables are subject to
constraints re�ecting the program’s structure and possible �ows.

The constraints for IPET must follow a basic but strong principle:
the number of times an entity e is accessed, xe , must be equal to the
sum of the number of times each of its predecessors are accessed,
while also being equal to the sum of the number of times each of
its successors are accessed. In other words, for every entity e ,

xe =
∑

xi =
∑

x j

for all entities i and j that are predecessors and successors of e .

For our purpose, the local upper bound for each node (ti ) will
be the one determined by using the method described in subsec-
tion 3.3, i.e. the energy consumption local bound. IPET will take
care of determining the values for every xi , in a way in which it
maximizes the overall energy consumption. In other words, the
worst case energy consumptionWCEC (just as WCET) is calculated
by maximizing a function de�ned as the sum of all ti multiplied
by its corresponding xi . In other words, with N instructions in a
program, the WCEC function for a product is de�ned as:

WCEC =max (
N∑
i=0

xi ∗ ti )

Figure 7 shows how the constraints for the product {A} of Exam-
ple 1 would look like. Note that the loopbound constraint indicates
that the loop will execute at most 200 times, since the loop is upper
bounded by the value of the variable x , and it’s maximum value at
that point is 200. For product {B}, this constraint would be xF ≤ 99.

(A)    i=0;    

(B)    x=0;    

(C)  x=input();

(D)    x*=2;    

(E)    x­­;    

(G)    i++;    (F)   (i<x)?   

x
A

x
B

x
C

x
D

x
E

x
G

x
F

x
start

x
exit

start

exit

x
startA

x
AB

x
BC

x
DE

x
CD

x
EF

(H)  return 0; 

x
FG

x
GF

x
H

x
FH

x
Hexit

Constraints for product {A}

//start and exit conditions
x
start

=1, x
exit

=1

//structural conditions
x
start

= x
startA

x
A
= x

startA 
= x

AB

...
x
F
= x

FG
+ x

FH 
= x

EF
+ x

GF

x
E
= 0

...
x
H
= x

FH
= x

Hexit

x
exit

= x
Hexit

//Loopbound constraint
x
F
<=200

//WCEC Expression
WCEC=max(x

A
*t

A
 + x

B
*t

B       

               
+...+ x

H
*t

H
)

Figure 7: IPET constraints for product {A} of Example 1

The IPET technique could already be used to determine the worst
case energy consumption scenario of a product. However, we have
to provide information about statements to be included/excluded
in the product, since we do not want to consider the energy con-
sumption in�uence of statements from excluded features. For this,
we can set a few extra restrictions that will assure the exclusion
of feature-dependent statements not included in the product being
analyzed. This will be a restriction such as xe = 0, for all entities e
which are instructions and not part of the product being analyzed.

Using this strategy we may then calculate the worst case energy
consumption scenario for each product in a SPL. Considering the 4
products included in Example 1 (with con�gurations {A}, {B} and
{A,B}), our technique determines the product with con�guration
{B} is the most energy e�cient. This is due to the fact that the loop
for this product is bounded to 99 iterations, roughly 50% less than
the loop bound for {A} (200 iterations) and {A,B} (199 iterations).
This causes the amount of work to be substantially less in {B}, thus
the energy consumption will also be lower.

4 THE SERAPIS TOOL
To validate our technique, we developed a prototype tool, named
Serapis. This tool is able to, given the source code of a SPL, statically
reason about the energy consumption of its products.

We implemented our technique using 3 distinct languages: both
C and Python for the energy model generation and for the dynamic

89



Products go Green: Worst-Case Energy Consumption in So�ware Product Lines SPLC ’17, September 25-29, 2017, Sevilla, Spain

energy measuring framework, and Haskell for the actual WCEC
prediction tool in SPLs. In this section, we will explain the work�ow
of the tool, as well as its capabilities and limitations.

The work�ow of Serapis is divided in 3 steps. The �rst step
consists of creating the feature-sensitive CFG for the SPL, following
the principles presented in section 2. Our approach in this step was
to create the CFG from the Abstract Syntax Tree (AST) representing
the analyzed SPL. In order to simplify the source code analysis,
we considered a simpli�ed intermediate representation of the C
language, calledC Intermediate Language - CIL 1. This language
works as a subset of the C language, making it possible to have
all the functionalities allowed by the C language but reducing the
syntactic sugar to the minimum (for example, for loops and variable
initialization at declaration time are not allowed).

Using the tools provided by CIL, we are able to transform the
source code in the SPL from C to CIL, parse the code and create
the AST representing the program. The CFG was created using an
Haskell library for graph creation and manipulation 2. As explained
in ??, every node in the CFG contains information about a source
code statement and the features that implement it.

The pre-processor references to features (as explained in subsec-
tion 2.1) also need to be included in order to identify code blocks be-
longing to speci�c features. Since such references were not parsable
by CIL, we developed a domain speci�c pre-processor capable of
transforming such references into parsable statements. Our pre-
processor transforms every #ifdef <feature> primitive in a func-
tion call to the form __feature_<feature>(), and every #endif in
a function call to the form __endFeature(). At the CFG construc-
tion phase, we used those function calls to determine the features
which implement each statement. Every time a function call ap-
pears in the �rst form, the statements which follow are assigned to
that feature, until the corresponding __endFeature() call appears.

The second step is the static analysis step, which corresponds
to the �rst three phases of the strategy presented in Section 3.
Here, the CFG is given as input to a series of functions, each one
responsible for a speci�c type of analysis:

• Energy behavior analysis: determines the machine state
of hardware components after each statement execution,
using the �xed-point computation technique.

• Flow analysis: determines the variable types and values
before each loop execution, and symbolically executes each
loop to determine its upper bound.

• Local energy bounds: considering the result of the two
previous analysis, the energy model calculates a local en-
ergy bound value for each product, on each node.

Once all the analysis are �nished, the result is passed to the
third and �nal step: the overall energy prediction. In this step, the
CFG and the loop upper bounds are used to create the constraints
and the maximization function needed by IPET (as described in
subsection 3.4). For the maximization function, the cost of each
statement is given by the energy model, along with the information
from the other analysis. To implement this, we used an integer
linear programming (ILP) library for Haskell, which allows to create
the maximization function along with a set of constraints, and

1More information can be found here: https://people.eecs.berkeley.edu/~necula/cil/.
2The functional graph libray (fgl): https://hackage.haskell.org/package/fgl.

has an implemented algorithm to compute the solution for such a
problem 3. The overall work�ow of Serapis is described in Figure 8.

SPLSPL
Source CodeSource Code

CCCCCCCCCCCC

ASTAST CFGCFG

CILCIL

ParserParser

Static Analysis:Static Analysis:
  - Machine Behavior- Machine Behavior
  - Dataflow- Dataflow
  - Type- Type

SolutionSolution

IPETIPET

SolverSolver

ProductProduct ConsumptionConsumption

PCPC11 114.745 J114.745 J

PCPC22 100.726 J100.726 J

PCPC33 100.723 J100.723 J

...... ......

GraphGraph

ConstructionConstruction

Energy ModelEnergy Model

Figure 8: The Serapis Work�ow

Our tool shares all the advantages of the monotone framework
for static analysis [14], thus the correctness properties are main-
tained. Its accuracy can only be increased by improving both the
energy and machine behavior models. Nevertheless, it also has the
same limitations. The real unavoidable limitation of static analysis
is the fact that recursive functions cannot be considered. Given that,
we used a SPL that has no recursive functions to evaluate it.

Moreover, the data�ow analysis process, used to determine the
loop upper bounds, is very costly in terms of execution time and
memory usage. For an example with around 500 loops and 1500
variables, our tool gave accurate upper bounds, but it did not end
in an acceptable time (took several hours to �nish), so it was not
convenient to use this approach while testing and re�ning the tool.
Given that, we inspected all the loops in the analyzed SPL to see
what was the worst case scenario in terms of number of executions,
and we manually assigned that value to each loop. However, we
have designed some improvements to implement in the data�ow
analysis step, in order to signi�catively reduce the time it takes to
obtain the upper bounds. Such improvements include memoization
and exclusion of variables not used in the loop conditions.

At the moment, Serapis4 has around 2330 lines of code, divided
in 11 modules. The model generator tool and the dynamic energy
measuring framework have 500 and 170 lines of code, respectively.

5 EVALUATION
This section describes the experiments that we designed and con-
ducted to evaluate the technique that we have proposed in section 3
to statically predict the energy consumption of products in a SPL.

In our experiments, we analyzed 7 di�erent products within a SPL
taken from the disparity benchmark of the San Diego Vision Bench-
mark Suite [24]. For our analysis, we implemented a framework
for dynamically measuring the energy consumption of a product,
in addition to the tool implementation that we described in sec-
tion 4. Then, we assess our technique by comparing the observed
consumptions against our static predictions.

As we described in subsection 3.3, our technique needs an energy
model with energy consumption values predicted for single instruc-
tions. So, in subsection 5.1 we start by describing our approach to
generate an energy model which can be used by our technique.

All studies were conducted on a desktop with the following
speci�cations: Linux Ubuntu 14.04 LTS operating system, kernel
version 4.4.0-59-generic, with 6GB of RAM, a Ivy Brigde Intel(R)
Core(TM) i5-3210 CPU@2.50GHz

3The ILP package: https://hackage.haskell.org/package/hmatrix-glpk-0.5.0.0.
4For reviewing purposes, Serapis is available at https://bitbucket.org/marco10/serapis.

90

https://people.eecs.berkeley.edu/~necula/cil/
https://hackage.haskell.org/package/fgl
https://hackage.haskell.org/package/hmatrix-glpk-0.5.0.0
https://bitbucket.org/marco10/serapis


SPLC ’17, September 25-29, 2017, Sevilla, Spain M. Couto, P. Borba, J. Cunha, J. P. Fernandes, R. Pereira and J. Saraiva

5.1 Static Model Creation
Both the energy and prediction models are crucial components
needed by our technique. The results’ accuracy depends on the
energy values’ precision in the energy model, and on the accuracy
in detecting behavior changes in the hardware.

These kind of models are allways hardware/language dependent,
which means that we need to follow a modelling approach previ-
ously presented and build our own models. In fact, modeling the
hardware behavior requires exhaustive knowledge about it: how it
was programmed, what are the possible execution states, what is
necessary to transition to/from a state, etc. Since there is not, to the
best of our knowledge, an adequate study showing the in�uence of
hardware behavior on energy consumption, for now we were only
able to create a machine with a single state per hardware compo-
nent. Given this, the consumption of each instruction on that state
will be an average of several measurements. This will result in a
lattice with only one element, and therefore the transfer function is
the identity function, since the lattice element will not change.

In order to get the energy measures, we developed a dynamic
framework capable of executing single instructions and obtain en-
ergy estimations for these. We used the Running Average Power
Limit (RAPL) tool, which provides accurate energy measurements [6].
For now, we are only exploring RAPL’s ability to provide CPU-
related energy consumption estimations. Thus, we created an en-
ergy model only for the CPU hardware component.

The energy modeling process of single instructions varies be-
tween instruction types. Following the approach for energy model-
ing presented in [7], source code instructions may basically be of
two types: (1) single-cost operations or (2) API/function invocations.
Single-cost operations are source code instructions where energy
cost is constant, and it depends only on the number of operands it
has. Arithmetic and logic operations, such as a division or a xorl,
are examples of such instructions. The cost of such an operation is
composed of a constant consumption C, plus an o�set O which is
directly proportional to the number of operands.

Estimating the energy cost of an API/function invocation re-
quires a di�erent technique. In most cases, we do not have access to
the source code of an API/function, so we must have an estimation
for its energy cost, which may depend on several things. First, it
inevitably depends on the number of arguments of the function, as
they need to be pushed to the stack before the function call. Second,
it can depend on the value of the arguments, since there might
be a loop in the function parameterized by the arguments, or it
may have a premature return instruction included, which can be
triggered depending on one or more arguments. The type of the
arguments may also play a role in the energy cost (ex. reading and
storing a double is di�erent than reading and storing an integer.)

In order to address these problems, we had to look at each one
individually. For functions with a variable number of arguments or
types (such as scanf), we tested them several times, each time with
an increasing number of arguments, or with di�erent types. After
obtaining the consumption values, the framework tries to detect if
there is a relation between the number of arguments (of the same
type) and the energy consumed, i.e., if diving the consumption for
the number of arguments results in an equal value C, or in values
with a slight di�erence between them. If so, the consumption value

for that function will then be the constant value C multiplied by
the arguments length. The same principle was applied when the
arguments types were variable, except that the consumption value
was divided by the type size in bytes (ex. integers need 4 bytes to
be stored, while chars need only one).

The framework work�ow for estimating the energy cost of both
types of instructions is identical. For a given instruction i, the
framework executes it 20 million times. This ensures a measure-
ment of a su�ciently long duration that exceeds the sampling
interval of our energy measurement tool (RAPL). We repeated this
process 200 times, to reduce the impact of cold starts, cache e�ects
or background processes, and we obtain the energy consumption
for each time. Using these values, we calculate the average value,
after removing the outliers (5 highest and lowest values).

In most cases, single-cost instructions (or even functions) depend
on other instructions. For example, the instruction a=b*2 is an
assignment to the variable a of a multiplication between the variable
b and the constant value 2. In order for this to work, the variable
b needs to be already declared and have some value assigned to
it, but we only want to know the cost of a=b*2. To address this
problem, we have assigned, to each instruction/function, the list of
independent instructions they depend on.

Given the average value for each instrucion/function i, calcu-
lated after the 200 measurements, we subtract the average value
of each of the dependencies. The �nal consumption will be the
resulting value. Figure 9 shows the overall process for energy mod-
eling of both single instructions and functions. For our evaluation
purpose, we modeled the energy consumption for 18 functions from
the C library, which is the set of functions used in the disparity
benchmark referred before.

200 loop200 loop200 loop200 loop Intruc.Intruc. DescriptionDescription Cons.Cons.

a   Int←a   Int← Assign int to varAssign int to var 8.34E­98.34E­9

a   Float←a   Float← Assign float to Assign float to 
varvar

7.74E­97.74E­9

Int + IntInt + Int Add 2 int varsAdd 2 int vars 1.23E­91.23E­9

...... ...... ......

scanfscanf scanf functionscanf function 4.71E­74.71E­7

atoiatoi atoi functionatoi function 9.53E­89.53E­8

...... ...... ......

Energy Model

InstructionsInstructionsInstructionsInstructions

FunctionsFunctionsFunctionsFunctions Gen. CodeGen. Code

++

20 million loop20 million loop20 million loop20 million loop

RAPLRAPL

Measures >>  StatisticsStatistics
>>  Dependencies Dependencies 
  treatment  treatment

Execution

{
Figure 9: Work�ow of the Energy Model Creator

5.2 Experimental Evaluation - Methodology
In order to evaluate WCEC and Serapis, we have used them to
analyze the energy consumption of a real SPL.

Indeed, we have taken seven products within a line obtained from
the disparity benchmark, from the San Diego Vision Benchmark
Suite [24]. We are using the conversion to the C code given by [19].5

The disparity benchmark is able of calculating the disparity
between two images, which can be used to detect the depth of
objects in an image. We used this SPL for the evaluation process
since it is a real-world software system, widely used for research
purposes, and also because it avoids the static analysis limitations.

All seven products from the SPL share most of the source code, but
di�er on its implementation for computing the disparity between
5Although there are 2 more products in the line, they do not share any code with the
other 7, so we have discarded them here.

91



Products go Green: Worst-Case Energy Consumption in So�ware Product Lines SPLC ’17, September 25-29, 2017, Sevilla, Spain

2 images: given a pair of images for a scene, taken from slightly
di�erent positions, the disparity map algorithm computes the depth
information for objects jointly represented in the two pictures 6.

The so called disparity map algorithm is the variability compo-
nent, and it gives rise to 7 di�erent and exclusive features, which
are: Original_noZ3, Original_Z3, Unchecked, Modi�ed1, Modi�ed2,
No_Intermediates and Manual_Interchange. In other words, it is
mandatory for a product to include only one of this features.

WCEC Accuracy: The �rst step of the evaluation process con-
sisted of determining the actual worst-case energy consumption
value for each product. In order to do this, we used the brute-force
algorithm: we generated all the 7 products, instrumented the source
code with energy measurement calls, and then executed each prod-
uct 200 times. This was performed by our dynamic energy mea-
suring framework, which is responsible for executing the products
with the same input and measure the energy consumption. Since
our goal is to determine the energy consumed in the worst case,
we retrieved the highest value for every product in the 200 mea-
surements obtained 7. Just like for the energy model creation, we
used RAPL to get the actual measurements, which minimizes the
instrumentation overhead by simply measuring the energy before
and after the program execution.

By combining the created energy model, as described in subsec-
tion 5.1, with our technique (implemented in a tool, as described in
section 4), we were able to compute accurate estimates for the worst
case energy consumption of every product. The results obtained are
presented in Table 1.

Table 1: Study Results

Product LOC
Observed
WCEC

Predicted
WCEC Di�. % Error

Exec.
Time

Pred.
Time

{Original_noZ3} 2938 114,17 J 114,75 J 0,58 J 0,50% 13.87s 409.57s
{Original_Z3} 2550 90,80 J 100,73 J 9,93 J 10,93% 11.57s 161.48s
{Unchecked} 2503 87,93 J 100,72 J 12,79 J 14,54% 10.97s 165.69s
{Modi�ed1} 1884 64,91 J 66,54 J 1,63 J 2,52% 8.54s 35.98s
{Modi�ed2} 1801 64,47 J 70,08 J 5,62 J 8,71% 8.58s 29.08s
{No_Intermediates} 1753 58,87 J 64,93 J 6,07 J 10,31% 8.01s 13.24s
{Manual_Interchange} 1754 56,80 J 67,06 J 10,26 J 18,07% 7.40s 13.66s

As we can see, the consumption values which the technique
predicted were always higher then the measured ones, which is
adequate since we want to predict the worst case. Moreover, it has
a maximum error percentage of 18.07% and a minimum of 0.5%,
while the maximum di�erence in joules is only 12.79. These are very
promising values, since the error percentages and di�erence values
are considerably low, considering that this is the �rst approach for
energy consumption prediction in SPLs.

WCEC Performance: Our static analysis technique works at
the source code level. Thus, it can be seen as an interpreter which,
at execution time, parses the code, builds data structures (ASTs and
CFGs), and performs complex computations. The WCEC analysis
of a speci�c product will always take more time than executing its
compiled (and optimized) code, as the results of Table 1 con�rm
(see results displayed in the last two columns). However, it should
be noticed that, to measure the energy consumption a of product in
a SPL, developers have to generate the product, instrument it with
energy monitoring code, and �nally run the product. This overhead
is not re�ected in the execution times shown in Table 1.
6The products’s source code is avaiable at http://specs.fe.up.pt/publications/array16.zip.
7The 200 measurements have similar consumptions (with small standard deviation).

Regarding static analysis, the technique that we propose assures
that the source code of every feature is analyzed only once, contrary
to the use of traditional static analysis techniques. The exception is
the worst case prediction technique shown in subsection 3.4, which
works at the product level. This means the solver will run once per
product and thus repeat the calculations for shared features. In the
future we intend to improve the performance of Serapis by encoding
a SPL in the solver in a di�erent way so it does not recalculate the
constraints for shared features.

6 RELATEDWORK
Energy consumption awareness has brought up an increasing inter-
est in analyzing the energy e�ciency of software systems. Develop-
ers seem to be now more focused on reducing energy consumption
through software improvement [18], since it is the software that
triggers the hardware behavior. This principle guided several re-
search works that appeared in the last decade.

Studies have shown that the energy consumption of a software
system can be signi�cantly in�uenced by a lot of factors, such as
di�erent design patterns [16], data structures [17], and refactor-
ings [20]. Even in software testing the decisions made in�uence
the consumption at the testing phase [11]. In the contex of mobilie
devices, there are other works that focus on analizing energy per
software application [9], or even compare di�erent usages of similar
applications [8], while others tried to determine the energy con-
sumed by code blocks, such as functions/methods [13] or lines of
code [10]. Most of the works are based on energy models: a predic-
tion model able to determine the energy consumption by matching
information retrieved from hardware components to previously
obtained measurements [15, 26].

More recently, a few more works appeared which were focused
not in measuring energy, but in predicting the energy consumption
of di�erent programs [3]. This was achieved by combining program
analysis tools and techniques, and more detailed energy consump-
tion models (instruction oriented instead of hardware oriented).
The result of these studies is an estimate of the energy consumed
by a certain program in a speci�c scenario.

Regarding software product lines, Thüm et al. survey analy-
sis strategies [23], but they do not explore data-�ow analysis ap-
proaches, neither performance or energy consumption estimation.
Related work on data �ow analysis [1, 2] and performance esti-
mation [4, 21, 22] for SPLs share with the surveyed work, and
our work, the general goal of checking properties of a SPL with
reduced redundancy and e�ciency. Similar to the initial phases
of our approach, the data �ow analysis works and a number of
approaches covered by the survey adopt a family-based analysis
strategy, manipulating only family artifacts such as code assets and
feature model. Contrasting, a fully product-based strategy, such as
the generate-and-analyze approach we use as baseline, manipulate
products and therefore might be too expensive for product lines
having a large number of products. We reduce risks and part of the
performance penalty by requiring a per product analysis only in
the �nal phase of our approach. To avoid this kind of de�ciency, the
mentioned performance estimation work opts for a sampling ap-
proach, which is more e�cient but does not guarantee the obtained
results apply for all products.

92

http://specs.fe.up.pt/publications/array16.zip


SPLC ’17, September 25-29, 2017, Sevilla, Spain M. Couto, P. Borba, J. Cunha, J. P. Fernandes, R. Pereira and J. Saraiva

7 CONCLUSION AND FUTUREWORK
This paper introduced a technique to statically predict the energy
consumed by all products in a SPL in the worst-case scenario which
we termed Worst-Case Energy Consumption. This technique mainly
relies on two components: i) the combination between the static
program analysis concepts and the Worst-Case Execution Time tech-
nique, and ii) the existence of an energy model which assigns energy
consumption values to di�erent types of instructions and function
calls. We explained how we implemented our technique in a tool
called Serapis, and also how we created the required energy model
by following an already existing approach.

We evaluated our technique by comparing the consumption val-
ues predicted for every product in a SPL with the actual measured
ones. We considered 7 products from a SPL consisting of a bench-
mark for the disparity map algorithm, used for image processing.
All 7 products had di�erent implementations for that algorithm.

Our results show that it is possible to determine the energy con-
sumed by a product without actually executing and measuring it.
Indeed, our technique was able to always give accurate estimations,
showing a mean error percentage of 9.4% and a standard deviation
of 6.2%. The predicted values were also always higher then the mea-
sured ones, which was expected since the technique is supposed to
predict the worst-case. Nevertheless, the accuracy of our technique
can still be improved. The machine behavior model is very simplis-
tic, and thus it does not re�ect the real behavior of a realistic CPU.
Moreover, improving such a model makes it necessary to adapt the
energy model, so it can not only give instruction oriented, but also
machine state oriented energy estimations.

Although most of WCEC analysis is feature-oriented, the ILP
constraint solver estimates consumption per product, not reusing es-
timations of previously analyzed features. Since this is a constraint
solver limitation, we plan to explore other techniques for constraint
solvers which avoids this restriction. This will improve the perfor-
mance of Serapis, namely in SPLs where features are shared between
several products. The performance will also be improved by using
more advanced techniques to compute loop bounds, that we are
currently including in our prototype. Finally, we also plan to apply
WCEC in optimizing the energy consumption of SPLs.

Acknowledgments
We would like to thank Simão Melo de Sousa (University of Beira Interior)
for helpful discussions about the topics of this paper, and to the anonymous
reviewers for the valuable comments and feedback. This work is �nanced by
the ERDF – European Regional Development Fund through the Operational
Programme for Competitiveness and Internationalisation - COMPETE 2020
Programme and by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia within project POCI-01-0145-
FEDER-016718, and FLAD/NSF under the project with ref. 278/2016.

REFERENCES
[1] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and M. Mezini. 2013.

SPLLIFT: Statically Analyzing Software Product Lines in Minutes Instead of
Years. In Proc. of 34th ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI ’13). ACM, 355–364.

[2] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba. 2012. Intraprocedural Data�ow
Analysis for Software Product Lines. In Proc. of 11th Annual Int. Conf. on Aspect-
oriented Software Development (AOSD ’12). ACM, 13–24.

[3] N. Grech, K. Georgiou, J. Pallister, S. Kerrison, and K. Eder. 2014. Static energy
consumption analysis of LLVM IR programs. CoRR abs/1405.4565 (2014).

[4] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wąsowski. 2012. Variability-
Aware Performance Modeling: A Statistical Learning Approach. (2012), 301–311.

[5] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. 2006. Automatic Deriva-
tion of Loop Bounds and Infeasible Paths for WCET Analysis Using Abstract
Execution. In 2006 27th IEEE Int. Real-Time Systems Symposium (RTSS’06). 57–66.

[6] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. 2012. Measuring Energy Consump-
tion for Short Code Paths Using RAPL. SIGMETRICS Perform. Eval. Rev. 40, 3
(2012), 13–17.

[7] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. 2013. Estimating Mobile
Application Energy Consumption using Program Analysis. In Proc. of 35th Int.
Conf. on Software Engineering (ICSE).

[8] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann. 2015. EcoDroid:
An Approach for Energy-based Ranking of Android Apps. In Proc. of 4th Int.
Workshop on Green and Sustainable Software (GREENS ’15). IEEE Press, 8–14.

[9] M. Kjærgaard and H. Blunck. 2012. Unsupervised Power Pro�ling for Mobile
Devices. In Mobile and Ubiquitous Systems: Computing, Networking, and Services,
Alessandro Puiatti and Tao Gu (Eds.). Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, Vol. 104.
Springer Berlin Heidelberg, 138–149.

[10] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. 2013. Calculating Source
Line Level Energy Information for Android Applications. In Proc. of 2013 Int.
Symposium on Software Testing and Analysis (ISSTA 2013). ACM, 78–89.

[11] D. Li, Y. Jin, C. Sahin, J. Clause, and W. G. J. Halfond. 2014. Integrated Energy-
directed Test Suite Optimization. In Proc. of 2014 Int. Symposium on Software
Testing and Analysis (ISSTA 2014). ACM, 339–350.

[12] Y. S. Li and S. Malik. 1995. Performance Analysis of Embedded Software Using
Implicit Path Enumeration. In Proc. of 32Nd Annual ACM/IEEE Design Automation
Conference (DAC ’95). ACM, 456–461.

[13] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P. Fernandes.
2016. Haskell in Green Land: Analyzing the Energy Behavior of a Purely Func-
tional Language. In 2016 IEEE 23rd Int. Conf. on Software Analysis, Evolution, and
Reengineering (SANER), Vol. 1. 517–528.

[14] A. Møller and M. I. Schwartzbach. 2015. Static Program Analysis. (May 2015).
Department of Computer Science, Aarhus University.

[15] S. Nakajima. 2013. Model-based Power Consumption Analysis of Smartphone
Applications. In 16th Int. Conf. on Model Driven Engineering Languages and
Systems (MoDELS 2013), Miami, Florida, USA, September 29th, 2013.

[16] R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, and J. Saraiva. 2017.
Helping Programmers Improve the Energy E�ciency of Source Code. In Proc. of
the 39th International Conference on Soft. Eng. Companion. ACM. (to appear).

[17] R. Pereira, M. Couto, J. Cunha, J. P. Fernandes, and J. Saraiva. 2016. The In�uence
of the Java Collection Framework on Overall Energy Consumption. In Proc. of
5th Int. Workshop on Green and Sustainable Software (GREENS ’16). ACM, 15–21.

[18] G. Pinto, F. Castor, and Y. D. Liu. 2014. Mining Questions About Software Energy
Consumption. In Proc. of 11th Working Conf. on Mining Software Repositories
(MSR 2014). ACM, 22–31.

[19] L. Reis, J. Bispo, and J. M. P. Cardoso. 2016. SSA-based MATLAB-to-C Compilation
and Optimization. In Proc. of 3rd Int. Workshop on Libraries, Languages, and
Compilers for Array Programming (ARRAY 2016). ACM, New York, USA, 55–62.

[20] C. Sahin, L. Pollock, and J. Clause. 2014. How Do Code Refactorings A�ect
Energy Usage?. In Proc. of 8th ACM/IEEE Int. Symposium on Empirical Software
Engineering and Measurement (ESEM ’14). ACM, 36:1–36:10.

[21] A. Sarkar, J. Guo, N. Siegmund, S. Apel, and K. Czarnecki. 2015. Cost-E�cient
Sampling for Performance Prediction of Con�gurable Systems (T). In Proc. of
30th Int. Conf. on Automated Soft. Eng. (ASE ’15). IEEE Comp. Soc., 342–352.

[22] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner. 2015. Performance-in�uence
Models for Highly Con�gurable Systems. In Proc. of 10th Joint Meeting on Foun-
dations of Software Engineering (ESEC/FSE 2015). ACM, 284–294.

[23] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. 2014. A Classi�cation and
Survey of Analysis Strategies for Software Product Lines. ACM Comput. Surv.
47, 1 (2014), 6:1–6:45.

[24] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and
M. B. Taylor. 2009. SD-VBS: The San Diego Vision Benchmark Suite. In Proc.
of 2009 IEEE Int. Symposium on Workload Characterization (IISWC) (IISWC ’09).
IEEE Computer Society, 55–64.

[25] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G.
Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J.
Staschulat, and P. Stenström. 2008. The Worst-case Execution-time Problem -
Overview of Methods and Survey of Tools. (2008).

[26] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang. 2010.
Accurate Online Power Estimation and Automatic Battery Behavior Based Power
Model Generation for Smartphones. In Proc. of Eighth Int. Conf. on Hardware/-
Software Codesign and System Synthesis (CODES/ISSS ’10). ACM, 105–114.

93


	Abstract
	1 Introduction
	2 Static Analysis in SPL's
	2.1 Basic Concepts of Software Product Lines
	2.2 Static Dataflow Analysis concepts
	2.3 Static Analysis in Software Product Lines

	3 Static Energy Analysis in SPLs
	3.1 Static Prediction of Energy Behavior
	3.2 Data-Flow Analysis
	3.3 Combining SPL Static Analysis With Energy Estimation
	3.4 Worst Case Prediction

	4 The Serapis Tool
	5 Evaluation
	5.1 Static Model Creation
	5.2 Experimental Evaluation - Methodology

	6 Related Work
	7 Conclusion and Future Work
	References



