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We consider n individuals described by p variables, represented by points of the surface
of unit hypersphere. We suppose that the individuals are fixed and the set of variables
comes from a mixture of bipolar Watson distributions. For the mixture identification, we
use EM and dynamic clusters algorithms, which enable us to obtain a partition of the
set of variables into clusters of variables.

Our aim is to evaluate the clusters obtained in these algorithms, using measures
of within-groups variability and between-groups variability and compare these clusters
with those obtained in other clustering approaches, by analyzing simulated and real
data.

Keywords Dynamic clusters algorithm; EM algorithm; Hierarchical clustering;
Principal cluster component analysis; Variable clustering; Watson distribution

Mathematics Subject Classification 62H30; 62H11; 62H12; 62H25.

1. Introduction

Clustering of variables is very useful in practical situations where there is interest in forming
homogeneous groups of variables, such as in studies of preference, sensory studies, clinical
trials, studies of chemical pollutants in the environment, food industry, etc. (see among
others, the works of Hulshof et al., 1992; Qannari et al., 1997; Vigneau et al., 2001;
Vigneau and Qannari, 2002; Carbonell et al., 2008). There is a large variety of hierarchical
clustering methods that may be used to cluster either individuals or variables (see, e.g.,
Everitt, 1993). Other works on clustering variables include Vigneau and Qannari (2003)
who considered the clustering of variables around latent components, which consists of
performing a hierarchical cluster analysis, followed by a partitioning algorithm and Soffritti
(1999) who suggested a hierarchical method using a multivariate association measure based
on the links between canonical correlation analysis and principal component analysis, and
compared the method with other possible solutions.
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We consider multivariate data with n individuals described by p variables. In the
classical approach, it is usual to assume that the p variables are fixed and the n individuals
are randomly selected from a population of individuals. Now, we consider the dual approach,
where we suppose that the n individuals are fixed and the p variables are randomly selected
from a population of variables. We standardize the variables to be points of the surface of
the n-dimensional unit sphere, denoted by Sn−1 = {x ∈ Rn : x′x = 1} and this kind of data
is known as directional data.

In directional data literature, there are essentially applications with data on circle S1 and
on sphere S2 and the most used distributions are von Mises distribution for modeling circular
data and Fisher distribution or Watson distribution for spherical data (e.g., Fisher et al., 1987;
Mardia and Jupp, 2000). Other distribution for spherical data is Kent distribution (Kent,
1982), which was used by Peel et al. (2001) to form groups of fracture data via a model-
based clustering. Recently, some applications of directional data on higher dimensions have
appeared in literature, in areas such as text analysis, Biostatistics, etc. Dortet-Bernadet and
Wicker (2008) considered a model-based clustering of data that lie on a unit sphere, being
the inverse stereographic projection of a multivariate normal distribution considered as the
directional distribution and these authors applied the clustering method to gene expression
profiles. Banerjee et al. (2005) used in a model-based clustering of directional data, the von
Mises–Fisher, which is an extension to higher dimensions of von Mises distribution and
Fisher distribution and these authors applied the clustering method to text analysis.

We suppose that the sample of variables represented by points of the unit hypersphere is
formed by k clusters of variables and each cluster comes from a bipolar Watson distribution.
So we associate with the sample of variables a mixture of k bipolar Watson distributions
defined on the hypersphere, as in Gomes (1987) and Figueiredo and Gomes (2006a). These
authors considered an approach based on sampling of variables and introduced some new
results concerning the bipolar Watson distribution, taking into account not a sample of
individuals, but a sample of variables. This type of idea was discussed by Hotelling (1933)
who in the context of principal components studied the convergence of the eigenvalues
and eigenvectors of the covariance matrix of groups of variables randomly chosen from
a population of variables, when the dimension of the groups increases. Escoufier (1973)
also proposed a new coefficient for evaluating the proximity of two groups of variables, but
supposing that the variables are observed.

For the identification of the mixture of k bipolar Watson distributions defined on the
hypersphere, we use the EM algorithm proposed by Dempster et al. (1977), which was
applied by Figueiredo and Gomes (2006a) and the dynamic clusters algorithm proposed by
Diday and Schroeder (1976), which was presented by Gomes (1987). The identification of
the mixture allows us to obtain estimates of mixture parameters and a partition of the sample
of variables into clusters of variables. Each cluster is associated with a privileged direction
and a concentration parameter, which measures the concentration around the privileged
direction. The maximum likelihood estimate of the privileged direction of each cluster
corresponds to the first principal component of the cluster. Thus, our approach is similar
to the variable clustering approach based on the dynamic clusters principle, denoted by
principal cluster component analysis (PCCA) proposed by Escoufier (1988). This approach
was used more recently by Vigneau and Qannari (2003), who extended it, for instance,
to the classification of variables taking external data into account. PCCA starts with an
initial partition and then two functions f and g are successively applied until convergence
is attained. The function f associates with each group of the partition, the first principal
component of the group. The function g associates with each first principal component, a
group formed by the variables that are more correlated with that first principal component
than with others first principal components.
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The goodness-of-fit methods for the bipolar Watson distribution on hypersphere, pro-
posed by Figueiredo and Gomes (2006b) may be applied to check whether the clusters
of variables obtained in the algorithms come from bipolar Watson populations. In these
methods, the goodness-of-fit for the bipolar Watson distribution defined on the hypersphere
for large concentration parameter is reduced to the goodness-of-fit of a chi-square dis-
tribution. To test whether a sample comes from a chi-square population, the chi-square
Q–Q plot and Kolmogorov–Smirnov and chi-square tests may be used. Additionally, be-
fore applying the goodness-of-fit methods, Giné and Bingham uniformity tests may be
applied to test whether the sample comes from an uniform population defined on the hy-
persphere. These uniformity tests can be seen in Figueiredo and Gomes (2003) as well as
the power of the tests against a bipolar Watson population or a mixture of bipolar Watson
populations.

In Section 2, we review the distribution used in this article, the bipolar Watson distri-
bution defined on the hypersphere and some useful properties of this distribution, including
the maximum likelihood estimates of its parameters. In Section 3, we present the two algo-
rithms used for the identification of the mixture. In Section 4, after defining the variability
measures between-groups and within-groups, we report on a simulation study, in which
we use these measures to evaluate the solutions obtained in EM algorithm and dynamic
clusters algorithm and compare them to the solutions obtained with a hierarchical clus-
tering method and PCCA, for various dimensions of the sphere, different sample sizes,
and also different parameters of the mixture components. In Section 5, we compare the
two proposed methods with a hierarchical clustering method and PCCA, using real data.
Finally, in Section 6 we conclude the article.

2. The Watson Distribution on the Hypersphere

We consider a particular case of Watson distribution defined on the hypersphere, the bipolar
Watson distribution on hypersphere, denoted by Wn(u, κ), with probability density function
given by

f (x) =
{

1F1

(
1

2
,
n

2
, κ

)}−1

exp{κ(u′x)2}, x ∈ Sn−1, u ∈ Sn−1, κ > 0, (2.1)

where 1F1(0.5, n/2, κ) is the confluent hypergeometric function defined by

1F1

(
1

2
,
n

2
, κ

)
= �

(
n
2

)
�
(

1
2

)
�
(

n−1
2

) 1∫
0

exp (κt) t−05 (1 − t)(n−3)�2 dt. (2.2)

This distribution has two parameters: a directional parameter u and a concentration param-
eter κ , which measures the concentration around u. It is rotationally symmetric about the
principal axis u.

If x comes from the bipolar Watson population Wn(u, κ), then for large κ (see Mardia
and Jupp, 2000, p. 236):

2κ{1 − (u′x)2} .∼ χ2
n−1, κ → ∞. (2.3)

Let [x1|x2|...|xp] be a sample of variables from the bipolar Watson distribution defined
on the hypersphere Wn(u, κ).
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The maximum likelihood estimator of the parameter u is the eigenvector of the ori-
entation matrix T = ∑

xix′
i associated with the largest eigenvalue w. So it follows that

the maximum likelihood estimator of the directional parameter u based on the sample of
variables is the first principal component of the sample.

The maximum likelihood estimator of the parameter κ is the solution of the equation
Y (̂κ) = w

p
, where the function Y (.) is defined by Y (κ) = d ln1 F1(0.5, n/2, κ)�dκ.

For more details about this distribution, see, for example, Mardia and Jupp (2000) and
Fisher et al. (1987).

3. Identification of a Mixture of Bipolar Watson Distributions

The probability density function of a mixture with k bipolar Watson components on hyper-
sphere is given by

ϕ (x; φ) =
k∑

i=1

πif (x|ui , κi) , x ∈ Sn−1, ui ∈ Sn−1, κi > 0, (3.1)

where πi , i = 1, ..., k are the mixture proportions, 0 ≤ πi ≤ 1, ∀i ,
∑k

i=1 πi = 1;
f (x|ui , κi) is the density function of the ith component of the mixture, that is, the density
of Wn(ui , κi) distribution given by (2.1) and φ = (u1, ..., uk, κ1, ..., κk, π1, ..., πk) is the
parameter vector of the mixture.

For obtaining a partition of the set of variables [x1|x2|...|xp] into homogeneous groups
of variables, we consider the EM algorithm and the dynamic clusters algorithm, briefly
described bellow.

3.1. EM Algorithm

The EM algorithm is applied to solve the likelihood equations in the mixture parameters
estimation.

The algorithm proceeds iteratively in two steps E- Estimation and M- Maximization.
The algorithm starts with an initial solution for instance to the parameter vector of the

mixture: φ0 = (u0
1, ..., u0

k, κ
0
1 , ..., κ0

k , π0
1 , ..., π0

k ). In the mth iteration, the two steps are:
E-Step
Use estimates φ(m) of the mixture parameters in the mth iteration to estimate the

posterior probability of xi belonging to the jth mixture component:

t
(m)
j (xi) = π

(m)
j f

(
xi |u(m)

j , κ
(m)
j

)∑k
h=1 π

(m)
h f

(
xi |u(m)

h , κ
(m)
h

) , j = 1, ..., k, i = 1, ..., p. (3.2)

M-Step
Use the estimates t

(m)
j (xi) given by (3.2) to maximize the logarithm of the likelihood

function.
The estimate of uj in the (m + 1)th iteration is the eigenvector associated with the

largest eigenvalue wj of the matrix
∑p

i=1 t
(m)
j (xi)xix

′
i , that is,(

p∑
i=1

t
(m)
j (xi) xix

′
i

)
û(m+1)

j = wj û(m+1)
j , j = 1, ..., k; (3.3)
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the estimate of κj in the (m + 1)-th iteration is the solution of the equation

Y
(̂
κ

(m+1)
j

) = wj∑p

i=1 t
(m)
j (xi)

, j = 1, ..., k; (3.4)

and the estimate of πj in the (m + 1)th iteration is given by

π̂
(m+1)
j =

∑p

i=1 t
(m)
j (xi)

p
, j = 1, ..., k. (3.5)

A partition (P1, ..., Pk) of the set of variables is obtained assigning the variable xi to the
component for which the posterior probability is the largest:

Pj = {xi : tj (xi) = max th (xi) , h = 1, ..., k}, (3.6)

and if tj (xi) = th(xi), consider xi ∈ Pj if j < h.

3.2. Dynamic Clusters Algorithm

The aim is to determine a partition of the set of variables into k groups (P1, ..., Pk), so that
Pj group can be considered to come from bipolar Watson Wn(uj , κj ) subpopulation.

The algorithm starts with a initial partition (P 0
1 , ..., P 0

k ) or a set of values (λ0
1, ..., λ

0
k)

for the parameters of the bipolar Watson components.
Two functions f and g are successively applied until convergence is attained. The f

function associates to a partition, a set of values for the parameters of the bipolar Watson
distributions:

f : (P1, ..., Pk) → (λ1, ..., λk) ,

where λj = (uj , κj ) are the parameters of the bipolar Watson distribution associated with
Pj group, estimated through maximum likelihood, based on Pj group.

The g function associates a partition to a set of values for parameters

g : (λ1, ..., λk) → (P1, ..., Pk),

where Pj group of the partition is composed by variables that are closer to the bipolar
Watson distribution with parameter λj = (uj , κj ) than with other parameters.

We consider that a variable x is close to distribution with λ = (u, κ) parameter if fλ(x)
density of the bipolar Watson distribution with λ parameter is large, and then the distance
between x and λ is defined in the following way

D(x, λ) = ln

(
C

fλ (x)

)
, (3.7)

where the constant C must be chosen in the following way:

C ≥ max
{
fλj

(x) , j = 1, ..., k,∀x
}
, (3.8)

so that the distance definition results in a set of limited inferiorly values. The criterion to
be optimized is a function of P ∗ partition and parameters obtained in convergence:∑

1≤i≤k

∑
x∈P ∗

i

D(x, λi). (3.9)
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4. Performance of the Algorithms

Figueiredo and Gomes (2006a) studied the properties of the maximum likelihood estimators
obtained through EM algorithm for a mixture of k bipolar Watson distributions defined on
the hypersphere. Next, we report on a simulation study to analyze the performance of the
EM and Dynamic Clusters algorithms in clustering variables, that is, in evaluating the
solutions obtained by these algorithms, through the variability measures between-groups
and within-groups defined in Mardia and Jupp (2000, p. 240; see also Gomes and Figueiredo,
1999). The between-groups variability measure is defined by the expression

k∑
i=1

λ̂i − λ̂ =
k∑

i=1

pi∑
j=1

κ̂i

{(̂
u′

ixij

)2 − (̂
u′xij

)2
}

and the within-groups variability measure is defined by the expression

k∑
i=1

(̂
κipi − λ̂i

) =
k∑

i=1

pi∑
j=1

κ̂i

{
1 − (̂

u′
ixij

)2
}

,

where Xi = [xi1|xi2|...|xipi
] represents the sample of pi variables of ith subpopulation with

Wn(ui , κi) distribution, i = 1, ..., k, p = ∑k
i=1 pi denotes the total number of variables, ûi

is the eigenvector associated with the largest eigenvalue λ̂i of κ̂iXiX
′
i , i = 1, ..., k, û is the

eigenvector associated with the largest eigenvalue λ̂ of
∑k

i=1 κ̂iXiX
′
i and κ̂i is the maximum

likelihood estimate of the concentration parameter κi associated with the ith bipolar Watson
component, i = 1, ..., k.

Under the null hypothesis of equality of the directional parameters of Watson distribu-

tions, and for large concentration parameters, the statistic F = (
∑k

i=1 λ̂i−λ̂)�(k−1)(n−1)∑k
i=1(̂κipi−λ̂i )�(p−k)(n−1)

has

an approximately F(k−1)(n−1),(p−k)(n−1) distribution.
We used a rejection-type method proposed by Huo (1984) for the simulation of the

bipolar Watson distribution defined on the hypersphere. As EM algorithm and Dynamic
Clusters algorithm depend on the initial solution, we compared both algorithms for the same
initial solution. We took for the initial solution of the algorithms in each case, the partition
obtained in the hierarchical clustering method, using the linear correlation coefficient as a
similarity measure between variables and the complete linkage criterion (furthest neighbor)
as an aggregation criterion.

First, we generated simulated samples from mixtures with equal proportions of two
bipolar Watson Wn(u1, κ) and Wn(u2, κ) distributions, with common concentration pa-
rameter κ . We considered different sphere dimensions (n = 10, 20, 30); various sample
sizes p for each n (p = 20, 30 for n = 10, p = 30 for n = 20 and p = 50 for n = 30);
several values of the concentration parameter associated with bipolar Watson components
(κ = 10, 30, 50, 100) and different angles between directional parameters of the compo-
nents (θ = 18◦, (18◦), 90◦).

For each final solution obtained in the algorithms, we calculated the variability mea-
sures between-groups and within-groups, which are represented in Figure 1 for n = 10, p =
20 and n = 10, p = 30 and in Figure 2 for n = 20, p = 30 and n = 30, p = 50. The so-
lutions obtained by the algorithms were equal, and consequently the variability measures
coincided for both algorithms, except for very overlapped components, that is, when the
angle between directional parameters associated with the components was very small
(θ = 18o) or for components with small concentration parameter for a sphere dimension n
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Figure 1. Between-groups and within-groups variability for the solutions obtained in EM and DC

algorithms for n = 10, p = 20 (above) and n = 10,p = 30 (below).

(κ = 10). Consequently, in general in each graph of Figures 1 and 2, the respective lines
are overlapped for both algorithms, being visible only two instead of four lines.

From Figures 1 and 2, we observe that, except when the common concentration
parameter is small for each sphere dimension n (κ = 10 for n = 10, κ = 30 for n =
20 and κ = 50 for n = 30), the between-groups variability increases substantially as the
separability between components increases. Additionally, for mixtures with well-separated
components, the between-groups variability exceeds largely the within-groups variability,
while for poorly separated mixtures, within-groups variability is larger than between-groups
variability.

Second, we generated samples from mixtures with equal proportions of two bipolar
Watson Wn(u1, κ1) and Wn(u2, κ2) distributions, with different concentration parameters
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Figure 2. Between-groups and within-groups variability for the solutions obtained with EM and
DC algorithms for n = 20, p = 30 (above), n = 30, p = 50 (below).
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Figure 3. Between-groups and within-groups variability for the solutions obtained with EM and
DC algorithms for n = 10, p = 30 and κ1 = 10, κ2 = 20 (left), κ1 = 20, κ2 = 30 (right).

κ1 and κ2. For the solutions obtained in the algorithms, we calculated variability mea-
sures between-groups and within-groups. We considered n = 10, p = 30, different angles
between directional parameters of the components, θ = 18◦, (18◦), 90◦ and different con-
centration parameters (κ1 = 10, κ2 = 20 or κ1 = 10, κ2 = 30).

Both algorithms gave the same solution except for poorly-separated components (that
is, small angle between the directional parameters of the components, θ = 18◦, 36◦) or for
components with relatively small concentration parameters (κ1 = 10, κ2 = 20 for n = 10).

So the variability measures coincided in many cases and consequently we observe in
general two instead of four lines in each graph of Fig. 3.

Similarly to the case of components with common concentration parameter, we observe
that, except for small concentration parameters (κ1 = 10 and κ2 = 20 for n = 10), the
between-groups variability increases rapidly as the angle between directional parameters
increases. In addition, for well-separated components, the between-groups variability is
larger than the within-groups variability and for poorly separated components, the within-
groups variability exceeds the between-groups variability. Although these algorithms have
similar performance in many cases, we can choose one of them, depending on the advantages
and disadvantages of each. The EM algorithm has the advantage of providing strongly
consistent estimators (Redner and Walker, 1984), with asymptotic normal distribution,
while the estimators obtained with the dynamic clusters algorithm are not convergent. On
the other hand, dynamic clusters algorithm converges rapidly to an optimum local, while
EM algorithm may converge slowly to the optimum local.

Finally, we compare the solutions obtained in EM algorithm, dynamic clusters (DC)
algorithm, PCCA and hierarchical clustering based on the linear correlation coefficient and
complete linkage criterion. The solution obtained in the hierarchical clustering method was
the initial solution in EM and DC algorithms and PCCA. For this purpose, we calculated
the value of F- statistic for these solutions in the following cases: n = 10, p = 20, κ = 30,
n = 10, p = 30, κ = 10, 30 and n = 20, p = 30, κ = 30. See Fig. 4.

The F-statistic always took the lowest value for the hierarchical clustering solution
and consequently, this solution was the worst solution. The solutions obtained with EM

algorithm, DC algorithm and PCCA were equal or very similar and so the value of F-
statistic was equal or approximately equal, except when the concentration parameters are
low or the components are badly separated.
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Figure 4. F-statistic for the solutions obtained with EM and DC algorithms, PCCA and Hierarchical
Clustering method.

5. Example

We used aggregate data at firm level provided by Associação Portuguesa de Bancos. We
considered 26 Portuguese banks with information on 20 variables that describe both the
labor and product markets of the banking sector. These variables are: Share of workers by
occupation: managerial (pf1), technical (pf2), administrative (pf3) and auxiliary (pf4); Share
of workers with tenure: below 6 yr, (pten1), between 6 and 11 yr (pten2) and greater than
11 yr (pten3); Share of workers by main activity: commercial (pact1) and other (pact2); Net
situation of the bank (NSeuros), Number of employees per bank (Nemp), Tax of return of the
investment (ROA), Market share (Share), Age of the bank (Age), Wage, Profit per worker,
real (Profit), Capital labor ratio (Kaplab), Profit per worker, non real (RBemp), Asset per
worker (Asset), Sales of the bank per worker (Sales). Once that variables related with share
of workers by occupation, main activity and seniority, sum to one, we selected, for analysis,
only three variables describing the occupational categories, one variable describing the
main activity and two variables describing the seniority categories.

Although in this case, the sample size is not large compared to the dimension of the
sphere (p = 17 and n = 26) and also the concentration parameter estimate of the bipolar
Watson distribution associated with the sample of variables is not very high (̂κ = 20.459),
we obtained the chi-square Q–Q plot for the sample of variables, which is represented in
Fig. 5 and suggests a mixture of three Watson components.

Since the EM algorithm and the dynamic clusters algorithm require the number of
components of the mixture to be known, we applied the hierarchical clustering method based
on the linear correlation coefficient and complete linkage criterion, which also suggested
three components. The solution obtained was:

Group 1 = {Wage,RBemp,Asset,Sales,Kaplab}
Group 2 = {pf1,pf2,pten1,pten2,ROA,profit}
Group 3 = {NSeuros,Nemp,pact1,Share,Age,pf3}.

This solution was taken as the initial solution of the EM and dynamic clusters algo-
rithms and the final solution obtained with EM algorithm (EM(1)) was

Group 1 = {Wage,RBemp,Asset,Sales}
Group 2 = {pf1,pf2,pf3,pten1,pten2,ROA,Age,profit}
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Figure 5. Chi-square Q–Q plot for the sample of variables.

Group 3 = {NSeuros,Nemp,pact1,Share,Kaplab}
and with dynamic clusters algorithm (DC) was

Group 1 = {Wage,RBemp,Kaplab,Asset,Sales}
Group 2 = {pf1,pf2,pf3,pten1,pten2,ROA, profit}
Group 3 = {NSleuros,Nemp,pact1,Share,Age}.

As the previous algorithms depend on the initial solution, we also considered several
initial solutions chosen at random for EM algorithm, and we took the final solution
that minimized the normalized entropy criterion, NEC (Celeux and Soromenho, 1996).
The same solution was obtained using Akaike Information Criterion, AIC (Akaike, 1974),
Bayesian Information Criterion, BIC (Schwarz, 1978) and Approximate Weight of Evidence
criterion, AEW (Banfield and Raftery, 1993), that is, these criteria were minimized for the
same solution. The solution obtained (EM(2)) was

Group 1 = {NSeuros,Nemp,Share}
Group 2 = {pf2,pf3}
Group 3 = {pf1, pact1,pten1,pten2,ROA,Age, Wage,RBemp,Kaplab,Profit,Asset,Sales} .

Table 1
Sizes and concentration parameter estimates of the groups, percentage of variance explained
by the first principal component of each group, variability measures and F- statistic for

EM(1), DC and EM(2) solutions

EM (1) DC EM (2)

Group 1 2 3 1 2 3 1 2 3

pi 4 8 5 5 7 5 3 2 12
κ̂i 42.51 24.91 39.55 30.96 26.45 39.70 159.98 583.23 21.32
% variance 70 47 68 58 50 68 92 98 37
Bet.-groups var. 151.05 124.68 396.08
Wit.-groups var. 220.32 220.09 223.58
F- statistic 4.80 3.97 12.40
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Table 2
Sizes and concentration parameter estimates of the groups, percentage of variance explained
by the first principal component of each group, variability measures and F-statistic for the

solutions obtained in hierarchical clustering and PCCA

Hierarchical clustering PCCA

Group 1 2 3 1 2 3

pi 5 6 6 4 6 7
κ̂i 30.96 24.93 32.74 42.51 30.19 28.48
% variance 58.30 47.03 60.71 70.07 57.16 54.35
Between-groups var. 104.75 143.36
Within-groups var. 220.97 219.53
F-statistic 3.32 4.57

Considering that clusters’ sizes are really small, we did not apply the goodness-of–
fit methods for the bipolar Watson distribution defined on the hypersphere proposed by
Figueiredo and Gomes (2006b) to check whether the clusters of variables obtained in the
algorithms come from bipolar Watson populations. For the same reason, we did not apply
the uniformity tests.

Table 3
Linear correlations between the variables and the first principal component of the clusters

of EM(1), DC and EM(2) solutions

EM (1) DC EM (2)

Variables/Group 1 2 3 1 2 3 1 2 3

Wage 0.81 — — 0.80 — — — — 0.57
RBemp 0.88 — — 0.86 — — — — 0.69
Asset 0.76 — — 0.75 — — — — 0.76
Sales 0.89 — — 0.90 — — — — 0.86
pf1 — 0.38 — — 0.37 — — — 0.31
pf2 — 0.88 — — 0.89 — — −0.99 —
pf3 — −0.86 — — −0.89 — — 0.99 —
pten1 — 0.82 — — 0.77 — — — 0.75
pten2 — 0.76 — — 0.69 — — — 0.66
ROA — 0.45 — — 0.55 — — — 0.10
Age — 0.55 — — — −0.58 — — −0.66
Profit — 0.58 — — 0.56 — — — 0.36
NSeuros — — 0.89 — — −0.90 0.96 — —
Nemp — — 0.97 — — −0.98 0.97 — —
pact1 — — 0.72 — — −0.71 — — −0.73
Share — — 0.90 — — −0.88 0.95 — —
Kaplab — — 0.57 0.49 — — — — 0.38
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Table 4
Linear correlations between the variables and the first principal component of the clusters

obtained with Hierarchical Clustering method and PCCA

Hierarchical clustering PCCA

Variables/Group 1 2 3 1 2 3

Wage 0.80 — — 0.81 — —
RBemp 0.86 — — 0.88 — —
Asset 0.75 — — 0.76 — —
Sales 0.90 — — 0.89 — —
pf1 — 0.29 — — −0.42
pf2 — 0.80 — — 0.89 —
pf3 — −0.56 — −0.86 —
pten1 — 0.80 — — 0.77 —
pten2 — 0.70 — — 0.67 —
ROA — 0.64 — — 0.60 —
Age — — −0.57 — — 0.58
Profit — 0.74 — — 0.70 —
NSeuros — — −0.88 — — 0.87
Nemp — — −0.97 — — 0.97
pact1 — — −0.71 — — 0.73
Share — — −0.88 — — 0.85
Kaplab 0.49 — — — — −0.58

From Table 1, taking into account the variability measures, or more precisely the F-
statistic (12.4, 4.8 and 3.97 for EM(2), EM(1) and DC solutions, respectively) and the
average percentage of variance explained by the first principal component of the groups
(75.7%, 61.7% and 58.7% for EM(2), EM(1) and DC solutions, respectively), we conclude
that the solutions obtained with EM algorithm are preferable to the solution obtained with
dynamic clusters algorithm.

Finally, we compare EM(1), EM(2), and DC solutions with the hierarchical clustering
solution, previously given, and with the solution obtained with PCCA, using the hierarchical
clustering solution as initial solution. This last solution is given by

Group 1 = {Wage, RBemp,Asset, Sales}
Group 2 = {pf2,pf3,pten1,pten2,ROA,Profit}
Group 3 = {pf1,Age,Sleuros,Nemp,pact1,Share,Kaplab} .

From Table 2, comparing the solutions obtained in the hierarchical clustering and PCCA
with the previous ones, in terms of F-statistic (3.33 and 4.57 for hierarchical clustering and
PCCA, respectively) and average percentage of variance explained by the first principal
components of groups (55.35% and 60.53% for the hierarchical clustering method and
PCCA, respectively), we observe that the solution obtained with hierarchical clustering
method has the worst performance and the solutions obtained with EM algorithm are those
that have better performance.

In Tables 3 and 4, we indicate the linear correlations between the variables of each group
and the first principal component of the group, for all solutions. Although the solutions
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obtained are not equal, the variables quite correlated with the first principal component of
the respective groups are clustered together in almost all solutions. In fact, NSeur, Nemp,
Share are always together in a cluster, pf2 and pf3 are always together in another cluster
(except for the solution obtained with hierarchical clustering method) and also, Asset, Sales,
Wage, RBemp are always together in a cluster.

Thus, in general, one first component opposes technical to administrative functions of
workers; other first component is associated with net situation, number of employees, and
share of the banks, and the other first component is associated with assets per worker, profit
per worker, nonreal, wage and sales of the bank per worker.

6. Conclusion

We proposed an approach for clustering of variables, based on the identification of a mixture
with bipolar Watson components defined on the hypersphere, through EM and dynamic
clusters algorithms.

Both algorithms gave the same solution for simulated data from a mixture of two bipolar
Watson components, except for very small concentration parameters or very overlapped
components. Concerning variability measures between-groups and within-groups, EM

and dynamic clusters algorithms presented identical performance to PCCA and better
performance than hierarchical clustering method for simulated and real data.
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The authors thank Natália Monteiro from University of Minho, Portugal, for the data used
in this work.

The authors also thank the helpful comments and suggestions given by the referees
and associate editor of this journal.

Funding

This work is funded (or part-funded) by the ERDF European Regional Development Fund
through the COMPETE Programme (operational programme for competitiveness) and by
National Funds through the FCT-Portuguese Foundation for Science and Technology within
project FCOMP - 01-0124-FEDER-037281.

References

Akaike, H. (1974). A new look at statistical model identification. IEEE Trans. Automat. Contr. 19:
716–723.

Banerjee, A., Dhillon, I., Ghosh, J., SRA, S. (2005). Clustering on the unit hypersphere using von
Mises–Fisher distributions. Journal of Machine Learning Research 6:1345–1382.

Banfield, J. D., Raftery, A. E. (1993). Model-Based Gaussian and non-Gaussian Clustering. Biomet-
rics 49:803–821.

Carbonell, L., Izquierdo, L., Carbonell, I., Costell, E. (2008). Segmentation of food consumers
according to their correlations with sensory attributes projected on preference spaces. Food
Quality and Preferences 19:71–78.

Celeux, G., Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a
mixture model. Journal of Classification 13(2):195–212.



Variable Clustering Based on Watson Distribution 2635

Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, B 3:
1–38.

Diday, E., Schroeder, A. (1976). New approach in mixed distributions detection. Révue Française D’
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