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Abstract. Inductive Logic Programming (ILP) is a well known app-
roach to Multi-Relational Data Mining. ILP systems may take a long
time for analyzing the data mainly because the search (hypotheses)
spaces are often very large and the evaluation of each hypothesis, which
involves theorem proving, may be quite time consuming in some domains.
To address these efficiency issues of ILP systems we propose the APIS
(And ParallelISm for ILP) system that uses results from Logic Pro-
gramming AND-parallelism. The approach enables the partition of the
search space into sub-spaces of two kinds: sub-spaces where clause evalu-
ation requires theorem proving; and sub-spaces where clause evaluation
is performed quite efficiently without resorting to a theorem prover. We
have also defined a new type of redundancy (Coverage-equivalent redun-
dancy) that enables the prune of significant parts of the search space.
The new type of pruning together with the partition of the hypothe-
sis space considerably improved the performance of the APIS system.
An empirical evaluation of the APIS system in standard ILP data sets
shows considerable speedups without a lost of accuracy of the models
constructed.

1 Introduction

Multi-Relational Data Mining (MRDM) addresses the important challenge of
how to learn or mine the large multi-relational databases that are being devel-
oped by individuals and organizations. Inductive Logic Programming (ILP) is a
well known approach to MRDM. It starts from a logic-based representation in
order to induce theories that can describe common patterns in the data, or that
discriminate between classes of examples. ILP benefits from the expressiveness
and conciseness of logic and has been shown to be effective over a large range of
applications.

As most other Multi-Relational Data Mining (MRDM) systems, ILP systems
must search over a very large space. Controlling the running time is thus a key
consideration and has become even more important as data-base size increase.
Indeed, often ILP practitioners have to reduce the search space by using tech-
niques such as sampling or strong language bias in order to actually obtain
results.
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There is therefore a strong motivation to making ILP systems faster [8]. Of
the several approaches being considered, parallelism is a natural fit, given the
widespread availability and the low-cost of modern parallel platforms. Indeed,
one can argue that parallelism is nowadays fundamental in large-scale data
mining. Therefore, it is unsurprising there has been much interest on parallel
ILP [10].

We propose a novel algorithm for parallel ILP data-mining, APIS (And
ParalelISm). APIS takes advantage of previous work in logic programming for
AND-parallelism, and takes it to the context to ILP. Results for our initial
implementation look very promising.

The remainder of the paper is organized as follows. Section 2 provides a
short introduction to ILP necessary to understand our proposal. It also explains
the Logic Programming AND-parallelism foundation of the proposal. Section 3
describes the APIS systems. Section 4 presents an empirical evaluation of the
proposed technique. We survey the parallel execution of ILP systems in Sect. 5.
Finally, in Sect. 6, we draw some conclusions and describe future work.

2 Background

The fundamental goal of a predictive ILP system is to construct a model H
given background knowledge B and observations E, usually called examples in
the machine learning literature. The problem that a predictive ILP system must
solve is to find a consistent and complete model H, i.e., find a set of hypotheses
that explain all given positive examples, while being consistent with the given
negative examples. More formally, given:

– B: background knowledge encoded as statements of a Logic Program.
– L: a pre-defined language for acceptable hypotheses.
– E: a finite set of examples = E+ ∪ E− where the E+ are named positive

examples; E− is an optional set of negative examples; and B � |= E+

the goal is to find a set of logical statements H from the set L of clauses that are
sufficient and consistent with the examples. Sufficiency is defined as B∪H |= E+

and B ∪ {Hi} |= e1 ∨ e2 ∨ · · · ∨ ep (1 ≤ i ≤ k). Consistency is defined as
B ∪ H � |= �� and B ∪ H � |= ∪E−. The sufficiency requirements are designed to
ensure that the theory H predicts the positive examples and that every clause
hi predicts at least one positive example. The consistency requirements try to
ensure that the theory is consistent with the background knowledge, and that it
is a good classifier. One particularly popular framework to constraint the clauses
considered is mode declarations, where one assigns types to clause’s arguments
and says that some arguments must have been bind by a previous literal in the
same clause.

Mode-Directed Inverse Entailment (MDIE) [15] takes advantage of mode
declarations to constrain the ILP search space. The key idea in MDIE is to find
all literals that could be used in rules that explain the example. This is achieved
by selecting a seed example and then constructing the saturated clause from the
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set of all literals that could be used to prove (directly or indirectly) the example.
Several ILP systems [2,9,15,22] use the saturated clause in order to anchor the
search space lattice.

MDIE implementations such as Progol [15] or Aleph [22] start from a most
general clause, and then enumerate the clauses that subsume the bottom-clause
until finding a good clause that can be included in the theory. The search space
is therefore bound by the combinations of literals in the bottom-clause and thus
can grow very quickly, severely restricting the scalability of ILP systems. Several
approaches have been proposed in order to address this important problem. Work
has included faster evaluation of nodes in the search space [8,20], and reducing
redundancy in the search space through more intelligent search or refining bias.
A promising approach is to divide the search space and to use parallelism in
order to improve running times, as discussed next. During the search each clause
has to be evaluated by counting how many examples can be derived when the
hypothesis is added to the background knowledge. This evaluation procedure
requires a theorem prover and is most often the major time consuming step in
the search procedure. For efficiency sake it is usual to keep track of the examples
derivable by each clause (coverage lists). To avoid evaluating the refined clauses
in the complete list of examples the coverage lists of the “parent clause” are
usually used.

2.1 Parallel Execution of Logic Programs

There is a strong connection between parallelism in the context of ILP and par-
allelism in the context of logic programming (LP). Parallelism has been widely
studied in LP [12], where it can be exploited implicitly, by parallelising the LP
inference mechanism, or explicitly, by extending logic programs with primitives
that create and manage tasks and allow for task communication.

Explicit parallelism is often implemented by interfacing to existing low-level
primitives, such as Posix Threads [23], or MPI [11]. In contrast, implicit par-
allelism provides independency from the underlying low-level primitives. Two
major sources of implicit parallelism have been recognized. In or-parallelism, the
search in the LP system is run in parallel. Or-parallelism is known to achieve
scalable speedups on current hardware [6] but it works better when we want to
perform complete search, which may be expensive in the context of ILP.

And-Parallelism corresponds to running conjunctions of goals, or and-tasks,
in parallel. If the goals communicate during the parallel computation, it is called
dependent and-parallelism. Dependent and-parallelism may be used for concur-
rent languages or to implement pipelines [1]. On the other hand, independent
and-parallelism (IAP) is useful in divide-and-conquer applications and often cor-
responds to coarse-grained tasks.

Modern IAP implementations support both shared-memory, such as thread-
based systems [14], and distributed platforms [4]. Our approach is based on
independent and-parallelism (IAP).
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3 The APIS System

The APIS system is based on a new approach to the parallel execution of ILP
systems. This approach establishes a partition on the hypothesis space enabling
each sub-space to be executed in parallel. There are two types of sub-spaces: sub-
spaces requiring theorem proving for clause evaluation; and sub-spaces that effi-
ciently compute clause evaluation without the need of theorem proving. Not only
the partition enables the parallel search but also achieves additional speedups
resulting from the fact that some of the sub-spaces do not use theorem proving
to evaluate the hypotheses. Although a partition is established on the hypothe-
sis space the resulting sub-spaces are not completely independent as we explain
later.

The theoretical foundation of our proposal is based on results from Logic
Programming (LP) AND-parallelism.

And-Parallelism corresponds to running conjunctions of goals, or and-tasks,
in parallel. Independent and-parallelism (IAP) is useful in divide-and-conquer
applications and often corresponds to coarse-grained tasks.

It is well known in LP that if a clause has subsets of literals with literals
in each subset not sharing variables with any literal of the other subsets, then
each subset can be executed in parallel. When traversing the hypothesis space an
MDIE-based ILP system constructs and evaluates clauses. Traditionally clause
evaluation is done using a theorem prover1. Among the clauses constructed dur-
ing the search, there are clauses that satisfy the LP IAP constraint: clauses with
sets of literals that do not share variables. We can then think of a search pro-
cedure that generates in parallel each subset of literals in the “traditional” way
(using theorem proving for evaluation) and then combines each sub-set to form
a new clause and make the evaluation of the combined clause in a more efficient
way. The coverage of the combined clause is computed by the intersection of
the coverage lists of the clauses being combined. This result cannot, however, be
efficiently applied in a traditional ILP system since it is computationally expen-
sive to determine if the partition of the clause’s literals into sub-sets that do not
share variables exists. The key point of the APIS system approach is to analyze
the mode declarations and establish the partition of the hypothesis space based
on the mode declarations, thus avoiding the analysis of each clause for inde-
pendent sets of literals at induction-time. Such partition can be computed as a
pre-processing step in an efficient way. The overall process is therefore divided
in two steps: a pre-processing step where mode declarations are used to estab-
lish the partition of the hypothesis space; and the execution in parallel of the
sub-spaces resulting from the previous step. We now explain each step in detail.

Definition 1. Island. An island is a set of mode declarations satisfying the
following two conditions. Each mode declaration shares at least one type with
other modes in the same island. Each mode declaration does not share any type
1 Counting the number of examples derivable from the hypothesis and the background

knowledge.
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with any other mode declaration outside the island. Types of the head literal are
excluded from the above mentioned “type checking”.

The core of the APIS system is the identification of the islands since they will
be used in the partition of the hypothesis space. The algorithm for the automatic
identification of the islands is described by Algorithm 1. The use of the islands
in the the parallel search of the hypothesis space is described by Algorithm2.

Algorithm 1. Islands computation from the mode declarations
1: function ComputeIslands(AllModes)
2: IslandsSet ← ∅
3: Modes ← removeHeadInputArguments(AllModes) � pre-processing step
4: while Modes �= ∅ do � process all modes
5: Mode = withoutInputArguments(Modes)
6: Modes = Modes \ { Mode }
7: Island = ExtendIsland({Mode}, Modes)
8: IslandsSet ← IslandsSet ∪ { Island }
9: end while
10: return IslandsSet
11: end function
12:
13: function ExtendIsland(Island, Modes)
14: repeat
15: Mode = LinkedToTheIsland(Modes) � returns ∅ if no mode was found
16: Modes = Modes \ { Mode }
17: Island ← Island ∪ { Mode }
18: until Mode = ∅
19: return Island � Island as a set of modes
20: end function

The algorithm to compute the islands accepts as input a set of mode dec-
larations and returns a set of islands. First, a pre-processing is done to remove
the types appearing in the head mode declaration and the mode arguments that
are constants. After the pre-processing the algorithm enters a cycle where each
island is determined and terminates whenever there are no more mode declara-
tions to process. In the main cycle a seed mode is chosen to start a new island
and then the island is “expanded”. Expanding an island consists in adding any
mode declaration not yet in the island sharing a type with any mode already in
the island. The expansion stops as soon as there is no mode outside the island
sharing a type with the modes inside the island.

APIS execution algorithm is schematized in Algorithm2. Algorithm 2 starts
by computing the islands and each client node is instructed to upload the data
set without the mode declarations. In the line of MDIE greedy cover ILP algo-
rithms the main cycle generates hypotheses, adds the best discovered hypothesis
to the final theory and removes the examples covered by the added hypothesis.
The cycle is repeated until no uncovered positive examples are left. The speci-
ficity of APIS is evident in (steps 8 through 19). In this part of the algorithm
APIS uses a pool of client nodes and a pool of sub-spaces of the hypothesis space
to search (determined by the partition made on the mode declarations). Each
node searches a sub-space. There are two kinds of sub-spaces: “saturation-based”
sub-spaces; and “combination-based” sub-spaces. A saturation-based sub-space



98 R. Camacho et al.

Algorithm 2. The APIS parallel execution algorithm
1: function InduceTheory(DataSet, Clients)
2: Islands ← ComputeIslands(GetModes(DataSet))
3: Theory ← ∅
4: Examples ← PositiveExamples(DataSet) � initial positive examples
5: broadCast(Clients, loadIslandsDataSets)
6: while Examples �= ∅ do � while not covering all positives
7: Samples = getSample(Examples)
8: Jobs ← getJobs(Islands, Samples)
9: while Jobs �= ∅ do � all islands processed in the cycle
10: if Clients �= ∅ then
11: W ← client(Clients) � get next available client
12: Clients ← Clients \ { W }
13: J ← nextJob(Jobs) � select a non-processed job
14: Jobs ← Jobs \ { J }
15: sendMsg(W, J) � client W processes job J
16: end if
17: if FinishedClient(C) �= ∅ then Clients ← Clients ∪ { C }
18: end if
19: end while
20: h = IslandsResults() � returns the best hupothesis
21: Covered = Cover(h, Examples) � compute h coverage
22: Examples = Examples \ Covered
23: if Examples �= ∅ then broadcast(Clients, removeExamples(Covered))
24: end if
25: Theory ← Theory ∪ { h }
26: end while
27: return Theory
28: end function

is generated as in a typical saturation followed by reduction steps that charac-
terize MDIE systems. The difference is that to generate the sub-space a sub-set
of the mode declarations (an island) is used. All clauses constructed in this kind
of subspace are evaluated by proving the examples from background knowl-
edge and the hypothesis under evaluation. On the other hand in “combination-
based” sub-spaces theorem proving is not required. Each clause constructed in
a combination-based sub-space merges pairs of clauses each one coming from
previously searched spaces that do not share islands. This restriction allows the
evaluation of the new clauses by intersection of the parent’s coverage lists. We
can see that there is a dependency among combination-based sub-spaces. The
saturation-based sub-spaces are the only ones completely independent. Let us
further remark that in the main cycle of the algorithm we search several hypoth-
esis spaces at the same time2. We have an hypothesis space for each example of
the seed. All of the jobs to execute (sub-spaces to be searched) are in a common
pool but only sub-spaces belonging to the same example are combined. The num-
ber of jobs associated with each example is equal to the number of all possible
combinations of the islands up to the clause length. First the saturation-based
sub-spaces are generated, then these sub-spaces are combined in pairs them in
groups of three and so on up to the “clause length” value. The combinations
are all computed once before execution of the algorithm and each sub-space is
schedule to run as soon as the two “parents” finish.
2 As many as the size of the sample.
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3.1 Redundancy Avoidance

It is well known that there is a lot of redundancy among the hypotheses in an
ILP search space. Several types and remedies have been identified and proposed,
see [19]. With the APIS approach there is a another redundancy situation that
can be avoided and therefore improving the search.

As explained previously, if a clause is “constructed” by combining two clauses
from different islands, its coverage is computed by the intersection of the two
coverage lists of the clauses being combined. The coverage result depends only
on the coverage lists of the combining clauses and not on the clauses per se3. If
we have clause C1 and clause C2 with the same positives and negatives coverage
lists originated from the same island and we try to combine each of them with
clause C3, from a different island, we will necessarily obtain two clauses (C1

“+” C3 and C2 “+” C3) with the same coverage lists (positives and negatives).
Combining each of C1 or C2 with clauses from other islands will always result
in clauses with equal coverage lists. We call such clauses (C1 and C2) coverage
equivalent clauses.

Definition 2. Coverage-equivalent clauses. Two clauses C1 and C2 are cov-
erage equivalent if both cover exactly the same positive and negative examples.

Although coverage equivalent clauses may not be equivalent in the logic sense,
a coverage-based ILP system will always report only one exemplar of the coverage
equivalent class. In the APIS system we keep only one exemplar of each coverage
equivalent classes (the shortest clause).

Coverage equivalence is used in APIS for pruning in the following way. Dur-
ing the search of a sub-space the inconsistent clauses are stored in a file. The pur-
pose is to combine them with other inconsistent clauses from other sub-spaces.
Pruning takes place at saving time. From each coverage equivalence class only a
single clause is saved.

4 Experiments and Results

4.1 Experimental Settings

We have used four data sets to evaluate the APIS system. DBPCAN is part
of the water disinfection by-products database and contains predicted estimates
of carcinogenic potential for 178 chemicals. The goal is to provide informed
estimates of carcinogenic potential to be used as one factor in ranking and prior-
itizing future monitoring, testing, and research needs in the drinking water area
[24]. The second data set is CPDBAS, the Carcinogenic Potency Data Base that
contains detailed results and analyzes of 6540 chronic, long term carcinogenesis
bio assays.
3 Opposite from what happens when literals share variables.
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A description of the background knowledge for these two data sets4 can
be found in [3]. Other two data sets used in this study are the carcinogenesis
and mutagenesis well known in ILP and can be found in the Oxford University
Machine Learning repository5 along with an explanation of the domain that
produced the data.

The data sets are characterized in Table 1 together with the associated
Aleph’s parameters used in the experiments. The nodes limit parameter indi-
cated in the table concern the sequential execution value. When running APIS
we have divided the nodes limit among the saturation-based sub-spaces. For each
saturation-based sub-space the nodes limit is a weighted proportion of the nodes
limit of the sequential execution. The weight used is based on the number of
mode declaration of the corresponding island. For instance, let us consider the
carcinogenesis data set. The nodes limit is set to 1 million (1M) clauses in
the sequential execution. Four islands where identified hence the nodes limits
in the saturation-based sub-spaces were the following ones: 3/34 * 1M for island
1; 24/34 * 1M for island 2; 4/34 * 1M for island 3 and 3/34 * 1M for island 4.
In carcinogenesis there are 34 mode declarations, 3 in island 1, 24 in island 2, 4
in island 3 and 3 in island 4. The nodes limit used in the sequential execution
is the overall nodes limit used by APIS for each example. In the current exper-
iments the overall nodes limit is split among the saturation-based sub-spaces
according to the number of mode declaration in their island. If the saturation-
based sub-spaces did not reach their nodes limit (what happens frequently for
some of them) the combination-based sub-spaces can run and use the number
of nodes not used by the saturation-based sub-spaces. As said before, for each
example the global limit, used in the sequential execution, is never surpassed by
the complete set of sub-spaces searched.

Table 1. Characterization of the data sets used in the study. In the cells of the second
column P/N represents the number of positive examples (P) and negative examples
(N). The 5 right most columns are the values for Aleph’s parameters.

data set name number of number of clause nodes noise minimum sample
examples islands length (Millions) positives size

carcinogenesis 162/136 4 5 0.5 10 12 30
mutagenesis 125/63 5 6 1 4 9 25
dbpcan 80/98 37 7 1 2 5 30
cpdbas 843/966 37 6 0.1 150 150 5

All the experiments were carried out on a cluster of 8 nodes having two quad-
core Xeon 2.4 GHz and 32 GB of RAM per node and running Linux Ubuntu 8.10.
4 Source data for both data sets is available from the Distributed Structure-Searchable

Toxicity (DSSTox) Public Data Base Network from the U.S. Environmental Protec-
tion Agency http://www.epa.gov/ncct/dsstox/index.html,accessedDec2008.

5 http://www.cs.ox.ac.uk/activities/machlearn/applications.html

http://www.epa.gov/ncct/dsstox/index.html, accessed Dec 2008
http://www.cs.ox.ac.uk/activities/machlearn/applications.html


AND Parallelism for ILP: The APIS System 101

Table 2. Speedups (a) and accuracy (b) obtained in the experiments numbers in
each cell correspond to average and standard deviation (in parenthesis). There is no
statistical difference (α ≤ 0.05) between the sequential execution accuracy values and
the parallel execution for each data set.

data set number of worker nodes
2 4 6 7

carcinogenesis 4.8(2.1) 5.6(2.7) 6.7(2.6) 6.1(2.6)
mutagenesis 76.5(32.9) 138.9(82.7) 188.4(119.3) 231.3(148.6)
dbpcan 13.8(2.5) 26.7(4.3) 36.5(5.5) 41.1 (5.9)
cpdbas 18.3(7.0) 31.4(16.1) 36.2(26.9) 28.5(11.8)

(a)

data set sequential number of worker nodes
execution 2 4 6 7

carcinogenesis 53.7(3.8) 58.9(5.5) 57.8(3.8) 57.8(4.8) 58.0(7.6)
mutagenesis 84.1(6.9) 80.7(5.4) 82.0(4.8) 80.9(5.2) 81.3(4.7)
dbpcan 87.9(5.0) 89.8(4.1) 89.3(5.1) 89.3(5.1) 89.3(5.1)
cpdbas 54.0(1.8) 51.2(1.4) 53.6(1.2) 53.5(1.2) 53.4(1.0)

(b)

To estimate the predictive quality of the classification models we compute the
average values (speed-up and accuracy) of 10 (70 %/30 %) train/test splits. The
ILP system used was Aleph 5.0 [22].

4.2 Results and Discussion

Overall, the results show that significant speedups were achieved by APIS, well
beyond the number of processors (Table 2(a))6 without affecting accuracy (no
statistical significant difference for α ≤ 0.05), Table 2(b). To understand the
results a second set of experiments were performed with several sorts of countings
on all parts of the APIS system. In these second set of experiments we have
measured the execution times of all sub-spaces, we have counted the number of
constructed clauses and the number of pruned clauses (shown in Table 3).

We have focus our initial attention on the saturation-based sub-spaces since
their running times and number of nodes searched are much larger than the
intersection-based sub-spaces. Results in Table 3 concern the saturation-based
sub-spaces only.

We can observe that the number of clauses constructed by APIS (in the
saturation-based sub-spaces) is smaller than in the sequential execution. For
example, in the mutagenesis data set the whole number of clauses constructed
in saturation-based sub-spaces are 20 % of the number in sequential runs. This is
due to the lower limit imposed in each sub-space and because some of those sub-
spaces do not reach the nodes limit. The accuracy values are similar (Table 2(b))
despite the reduction in the total number of nodes searched.
6 Except for the carcinogenesis data set.



102 R. Camacho et al.

The major contribution for the speedups is, however, from the parallel search
of the sub-spaces. We identified two sources of the parallel execution on the
speedups. With enough CPUs (number of workers larger than the number of
the islands) the execution time would be broadly determined by the slower sub-
space search. For example, in mutagenesis data set, if we have more than 5
CPU workers we can search the five saturation-based sub-spaces in parallel.
The overall time is determined by the slower search. With this effect alone we
would expect the speedups to be close to the speedup of the search in the slower
subspace. In the first result’s column of Table 3 we can see, for example, that
the slowest sub-space in mutagenesis has a speedup of 10.8 when compared with
the sequential run.

Looking at the global data sets speedup results we see that the speedup of the
slowest sub-space search alone does not explain the global speedups obtained.
Again, looking at the results columns 4th and 5th in Table 3, we can see in
column 4 the number of “slow” sub-spaces (1 in mutagenesis and 3 in dbpcan,
for example) and can also see in column 5 that the other sub-saves use less than
10 % of the time of the slower ones. The is there are a one or few “slow” sub-
spaces and their run time is much larger than the others. This means that we
can start processing the next example much earlier than the finish time of the
slower sub-space. In practice we can run several examples in parallel. This is also
a significant contribution for the global speedup.

Another contribution, although weaker, for the speedup results is the use of
intersection of coverage lists instead of theorem-proving. The number of clauses
evaluated using intersection of coverage lists is rather small (when compared
with the theorem-proving case) but represent also a faster method to evaluate
clauses.

Table 3. Execution statistics. Column two shows the average (and standard devia-
tion) of the quotient between the sequential run time of an example and the slowest
sub-space (speedup). Column three sown the percentage of nodes constructed by APIS
in the saturation-subspaces and the nodes constructed in the sequential run. Column
four shows the number of “slow” subs-paces (left) and total number of saturation-
based subspaces (right). Column 5 shows the average run time of all sub spaces
(except the slowest ones) as a percentage of the slowest run time. The last column
shows the coverage equivalence pruned nodes as a percentage of the total number
of nodes constructed. Results concern the saturation-based sub-spaces only. Execu-
tion times and nodes constructed are negligible when compared with saturation-based
subspace’s values.

data set name Slowest sbsp. nodes constructed Number of Av. other sub-spaces Coverage Equiv.
speedup in the sbspcs. (%) “slow” sbsps. (%) pruning

carcinogenesis 2.7(1.8) 29 1/4 2(5) 12(4)
mutagenesis 10.8(8.7) 20 1/5 7(0) 16(10)
dbpcan 15.3(11.1) 80 3/37 1(1) 27(8)
cpdbas 5.3(5.8) 16 1/37 1(1) 18(5)
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Table 4 show the island’s membership of predicates that appear in the sequen-
tial execution theories.

Table 4. Island’s membership of the predicates found in the clauses of the theories of
sequential execution. N means a clause with all predicates in island N, N-M means a
clause with predicates belonging to islands N and M, and N-M-L means a clause with
predicates belonging to islands N, M and L. A list of the island’s predicates can be
found in Table 5 of the Appendix.

data set name islands ids

carcinogenesis 1 , 1-3, 1-4, 2-3, 3-4, 1-2-3

mutagenesis 3, 4, 2-3, 2-4, 3-4, 1-3-4

dbpcan 1, 1-2

cpdbas 1, 2, 1-2

5 Parallel Execution of ILP Systems

Based on the principal performance bottlenecks for ILP systems identified in
Sect. 1, we classify three main sources of parallelism in ILP systems [10].

Search parallelism arises from the need to enumerate clauses. We can further
distinguish between parallel execution of multiple searches, and the parallel exe-
cution within a search. The granularity of the latter is substantially finer than
the former. This strategy was the first to be exploited, as an extension of Dehaspe
and De Raedt’s Claudien system [7]. It is also exploited by Ohwada et al. [18]
and by Wielemaker and Srinivasan in the context of randomised search [23].

Evaluation parallelism arises from the need to compute the utility of a clause.
This usually requires determining the subset of E entailed by the Di given B
and Hi−1. A coarse-grained strategy involves partitioning E into blocks. The
blocks are then provided to individual processors, which compute the examples
covered in the block. Ohwada and Mizoguchi [17] implement evaluation and
search parallelism in the context of inverse entailment.

Data parallelism arises when individual processors are provided with subsets
of the examples prior to invoking the search procedure in Figure. Wang and
Skillicorn [21] use this technique to parallelise the Progol algorithm [16]. They
also use search and evaluation parallelism. Matsui et al. [13] compared search
and evaluation parallelism, with initial promise for data-parallelism.

Notice that other classification criteria can be used. For example, as for LP
systems, we can divide strategies into those that expect to use shared memory
and those that expect to use distributed memory. Clare and King’s Polyfarm [5]
is an example of a system designed for distributed environments. Fonsecaet al.’s
survey of parallel ILP systems [10], reports that most of the best results for
parallel ILP were obtained on shared-memory architecture, but argues that there
is scope for experimenting with distributed-memory “clusters”.
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6 Conclusions

A new ILP system based on the partition of the hypothesis space and parallel
search of the generated sub-spaces was presented. The partition of the hypothesis
space results in two types of sub-spaces: “saturation-based and “combination-
based” sub-spaces. Saturation-based sub-spaces are searched as in a “traditional”
MDIE-based system. Combination-based sub-spaces combine clauses from two
previously searched sub-spaces and evaluate them efficiently by intersection of
the coverage lists of the clauses being combined. Using the process of combination
of clauses a new type of redundancy was identified and implemented. Results of
the APIS system, on well known data sets, show very good speed-ups without
lost in accuracy. We are currently performing further runs in order to achieve
good speedups without any decrease in accuracy. The procedure taken consists
in finding a reasonable way of determining the “nodes” limit for the sub-spaces.
This limit is specially critical for the saturation-based sub-spaces since they
produce the initial set of clauses that are being combined in other sub-spaces.
If node limit is too small we may loose crucial (sub-)clauses important for the
combination process.
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A Composition of the Dataset’s Islands

Table 5 shows the partial composition of the islands that where used to define
the hypothesis sub-spaces. In the table we show only the predicates that appear
in the models constructed in the sequential execution runs.
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Table 5. Island’s membership of the predicates that appear in the final theories induced
by the APIS system.

data set island
name 1 2 3 4

carcinogenesis
ames/1
has property/3
mutagenic/1

ashby alert/3
ether/2
ar halide/2
non ar 6c ring/2
non ar hetero 5 ring/2

atm/5
lteq/2
gteq/2

ind/3
lteq/2

mutagenesis ring size 5/2
logp/2
gteq/2

lumo/2
lteq/2

atm/5
bond/4
gteq/2
lteq/2

dbpcan

chemical fingerprint/2
rotatable bondcount/2
primary carbon/2
atLeastOneOfFuncGroups/2
resonant count/2
tertiary carbon/2
primary carbon/2
secondary carbon

pharmacophore fingerprint/4
ltPharmacophoreArg3/2
ltPharmacophoreArg2/2
gtPharmacophoreArg2/2

cpdbas

atLeastOneOfFuncGroups/2
heteroaromatic ringcount/2
fusedaliphatic ringcount/2
tertiary carbon/2
tautomer count/2
ringcount/2
tertiary carbon/2

pharmacophore fingerprint/4
ltPharmacophoreArg2/2
gtPharmacophoreArg/2
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