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Abstract

The extraction of relevant objects (foreground) from a
background is an important first step in many applications.
We propose a technique that tackles this problem using a
cascade of change detection tests, including noise-induced,
illumination variation and structural changes. An objec-
tive comparison of pixel-wise modelling methods is first pre-
sented. Given its best relation performance/complexity, the
mixture of Gaussians was chosen to be used in the pro-
posed method to detect structural changes. Experimental
results show that the cascade technique consistently out-
performs the commonly used mixture of Gaussians, without
additional post-processing and without the expense of pro-
cessing overheads.

1. Introduction

The extraction of moving objects from a visual sequence
is a very important operation in many vision systems. Typ-
ical applications include real-time analysis of visual scenes
in order to identify events and actions, such as visual
surveillance and human-machine interface systems. More-
over, the extraction of video objects is also useful for video
editing applications, among others. Probably due to its
simplicity, the most common approach for discriminating
a moving object from the background is background sub-
traction. The rationale is the subtraction of the current im-
age from a reference image, which is somehow acquired in
a step prior to subtraction. Non-changing segments of the
image are then considered as being part of the background,
whereas the foreground consists of the changing segments,
including moving and new objects. However, if the refer-
ence is not modelled or updated adequately this technique
can be highly susceptible to environment conditions like il-
lumination changes. For example, a straightforward way of
acquiring a reference image would be by obtaining a statisti-
cal representation of the previous IV frames (e.g. pixel-wise
average image). In fact the techniques most frequently em-

ployed rely on the sequence’s previous “history” to obtain a
suitable model. After having the reference image, the seg-
mentation would be completed by a simple thresholded sub-
traction operation. This naive approach, despite its process-
ing efficiency, may not be adequate for real-world systems,
or at least for non-controlled environments. Changes in il-
lumination conditions and dynamic behaviour in the back-
ground may result in unacceptable rates of false positives.
More complex techniques are therefore needed, in order to
achieve robust background modelling. Nevertheless, it is
important to stress that this operation is often required to
perform as fast as possible, since it is usually the first step
in a processing chain, assembled to acquire higher level
semantic knowledge. Overly complex modelling schemes
may reveal themselves unfeasible despite performing at low
error rates.

The different approaches to background subtraction dif-
fer in the way the reference background is modelled and
how the model is updated. Ideally, the performance should
not depend on the camera placement, nor should it be sensi-
ble to what happens in its visual field or to lighting effects.
It should be capable of dealing with movement through clut-
tered areas, objects overlapping in the visual field, shadows,
lighting changes, effects of moving objects in the scene,
slow-moving objects and objects being introduced or re-
moved from the scene.

Existing methods for background modelling may be
classified as predictive or non-predictive. Predictive meth-
ods model the scene as a time series and develop a dynamic
model to recover the current input based on past observa-
tions. Kalman filters [6][13] are usually employed to up-
date slow and gradual changes in the background, thus these
methods are mainly applicable to backgrounds consisting of
stationary objects.

Non-predictive methods for background modelling do
not consider the order of input observations and build a
probabilistic representation (p.d.f.) of the observations at
a particular pixel. Methodologies of this type include the
use of a unimodal distribution (usually a Gaussian)[14]. If
each pixel resulted from a particular surface under particu-
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lar lighting, a single Gaussian would be sufficient to model
the pixel value accounting for acquisition noise. Moreover,
if only lighting changed over time, a single, adaptive Gaus-
sian model per pixel would be sufficient. In practice this
does not happen and sometimes a more complex modelling
is needed, which is the case of mixture of Gaussians (MoG)
[12][7]. In [3], a non-parametric model is proposed, where
a kernel-based function is used to represent each pixel’s
colour distribution. The kernel-based distribution is a gen-
eralization of MoG which does not require parameter esti-
mation. In [5], a similar approach is followed, where the
distribution of temporal variations in colour at each pixel is
used to model the background.

More recent approaches to background modelling in-
clude the principal features[8] approximation that consid-
ers only the more relevant features to create a model and
the mean-shift method[4][11], which was also previously
applied to image segmentation.

Other techniques combine temporal and spatial mod-
elling. In [9], a mixture model (Gaussians or Laplacians)
is used to represent the distributions of background differ-
ences for static background points. A Markov random field
(MRF) model incorporates the spatial coherence for robust
foreground segmentation.

2. Cascaded foreground segmentation

Before detailing the proposed algorithm let us first con-
sider the following: when no structural change occurs, the
difference between a pixel value, represented by a colour
vector v, in the current frame F°¢ and a reference frame F"
can essentially result from two factors — illumination vari-
ation or noise. Illumination variation can be accounted by
a positive multiplicative factor k£ which modulates the sig-
nal, while noise can be accounted by a superimposed vector
vy, modelled by a Gaussian or Laplacian distribution. —
Figure 1 represents this in a two-dimensional space.

Figure 1. Effects of illumination variation and
noise over a reference colour vector.

Considering that the sophomore cause can be success-
fully eliminated, we are left with the first. Hence, when
a pixel change results solely from illumination variation,

its colour vector is necessarily collinear with the reference
colour vector and a simple test can be used to identify il-
lumination variation-induced changes. Therefore, we will
first address how we can effectively remove typical noise in-
troduced by the capture process in order to guarantee colour
vector collinearity.

2.1. Identification of noise-induced changes

Assuming that we know the reference frame F", we will
first address how we can effectively remove typical noise
introduced by the capture process. For that purpose we
use a method proposed by Aach [1] which states that it is
possible to assess what is the probability that a value at
a given position, in a given image, is due to noise instead
of other causes when compared to another image. It is as-
sumed that the additive noise affecting each image results
from a Gaussian process with mean px and standard de-
viation o . Also, noise affecting successive images in the
sequence is considered as uncorrelated. The standard devi-
ation o can be obtained by computing the statistics of the
difference dy; ;) for each pixel (7, j) between the reference
image and the current image. Now, consider a window W™
containing n pixels around the pixel under evaluation with
ALy = Xk pewr, dfy 1y~ It can be shown that the cor-

responding random variable A? follows a x? distribution.
Given the hypothesis Hy that AQi_ ., results from noise and
not from other factor, the probability that hypothesis Hj is
satisfied is given by:

A%
I'(3, =)

()

P(A? > A ;)[Ho) = (1)

with 02 = 203, and where I'(n/2) is the Gamma func-
tion. The choice for the window size n must have into con-
sideration the trade-off between noise sensitivity and fore-
ground edge definition. Nevertheless, all experiments were
performed using a window size of n = 25. When the esti-
mated probability in equation (1) is smaller than a threshold
T'n we consider that Hy is not satisfied at the pixel position
(ir ).

Whereas for pixels that validate the hypothesis Hy we
guarantee that changes were originated solely by camera
noise, for others we can safely assume that the any effect
of noise is negligible when compared to any other change.
In other words, if a pixel’s colour vector is being modified
by illumination variation and no structural change, we have
VFe kv Fr.

This test defines a first set of pixels that can potentially
be part of the foreground because all pixels that satisfy Hy
are necessarily part of the background and are marked as
such for the current frame; all others need further analysis.
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2.2. Identification of illumination variation-
induced changes

After discarding noise-induced changes, a simple
collinearity test is performed. As previously stated, with
this test any modification introduced by illumination varia-
tion is discarded. The test consists in evaluating the angle
between the current pixel colour vector v and the reference
colour vector v".

c T
cosf = v U 2)
[[oe]f o]

If cos@ is smaller than a threshold 77 very close to 1,
than the vectors are not considered to be collinear and the
test is not validated. In practice, this test can become un-
stable and to overcome this problem we consider a second
threshold in the noise-identification test; the second thresh-
old usually is much smaller than 7. The identification of
illumination variation-induced changes is therefore only ap-
plied only to pixels that fall between both these thresholds.

The set of potential foreground pixels is refined by mark-
ing as background the pixels that validate this second test.
Pixels that have a probability less than the second threshold
in the previous test are maintained as foreground.

2.3. Identification of dynamic background
behaviour

Finally, the probability estimation that a pixel belongs
to the background (4) can be performed only in the pixels
that do not validate the statistical (1) nor the collinearity (2)
tests, resulting in a considerable reduction in execution time
of the algorithm. This is especially true for typical surveil-
lance streams where the relevant moving objects occupy a
small fraction of the entire field of view. Another positive
effect of the proposed modification is the drastic reduction
of small artefacts which often need to be removed in com-
mon mixture of Gaussians modelling by morphological fil-
tering (e.g. connected operators).

To model and identify the dynamic background be-
haviour we will be using pixel-wise background estimation
approaches, as presented in the introduction section. Sev-
eral techniques can be used for this purpose and we will be
considering and testing five of them.

1) Running Average (RAvg) — The background is mod-
elled as the average of the previous frames but, in order to
avoid expensive memory requirements, this average is ap-
proximated by an adaptive filter with a learning rate . Each
background pixel value at position (i, j) and time instant ¢
is given by:

Foreground is then estimated using a thresholded sub-
traction of the current frame and the estimated background.
This technique is probably the most naive but has a very
simple and very fast implementation. The results are there-
fore far from good in particular with complex backgrounds.
Since we are considering only a static representation of
the background to perform the subtraction, whenever some
kind of dynamic behaviour in the background happens it
will be incorrectly classified as foreground. Nevertheless,
the running average should represent the minimum accept-
able performance for these types of algorithms. All tests
were performed with a threshold T'r 4,4 of 15.

2) Mixture of Gaussians (MoG) — Instead of estimating
the background representation directly, another and more
effective approach is to estimate a background model that
can predict the behaviour in each pixel, using the pixel’s
“history”. By estimating the background probability den-
sity function (p.d.f.) we are able to do just that. Assuming
that any structural changes affecting the value of the pixel
are caused by several processes, each modelled by a Gaus-
sian, we can therefore define the probability of observing its
value as:

P(vy) = Y P(Gr)P(vi|Gi) = Y wr - 1(ves ik, o)

k

(3)
where Gy, is the k-th Gaussian of K distributions, wg, (i
and oy, are, respectively, an estimate of the weight, the mean
value and the variance of the k-th Gaussian in the mixture;
7 is the normal density function. Moreover, it can be easily
shown [7] that, given the current colour vector v in a pixel,

the probability that the pixel belongs to the background is:

K K

1 k=1

_ Yk P(vilGr) P(G1) P(B|Gh)
S P(uilGr)P(Gr)

If P(Blvt) > Taoc the pixels that validate this test
are also marked as background and the remaining pixels
form the definitive set of foreground pixels for the current
frame. However, two density estimation problems are left
to resolve: firstly, estimating the distribution of all observa-
tions, within a period of time, at each pixel location using
a Gaussian mixture (3), which provides estimates of both
P(G}) and P(v¢|G}); and secondly, evaluating how likely
each Gaussian in the mixture represents the background,
i.e., P(B|G}). To accomplish the first estimation, In [12]
an online K-means approximation is proposed in order to
model pixel variation over time by a mixture of Gaussians,
as given by Equation (4). It uses a fixed learning rate to
update each Gaussian’s parameters over time and a Gaus-
sian substitution algorithm whenever no match is possible.
However, using a fixed learning rate can often result in slow

P(B|vt)

“)
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convergence. Following the same rationale, and in order
to improve the convergence speed, in [7] it is proposed an
adaptive learning rate schedule for each Gaussian. The esti-
mation of P(B|G},) is based on application-specific heuris-
tics; we will be using this last approach.

The background image representation can be defined
as the expected value of the background process. Thus,
the background pixel at (¢,j) and time ¢ is defined by
Elv; ;| B] which is evaluated by a weighted average of the
Gaussian means.

Elv; j+|B] = lec(:l P (B|Gr)P(Gr) )
K P(BIGK)P(Gr)

The tests with MoG were done with the following pa-
rameters: K = 3, a = 0.005 and T, = 0.05.

3) Kernel Density Estimation (KDE) — It is possible to
approximate each background’s pixel p.d.f. by the his-
togram of the most recent values classified as background.
This approach has however some problems. Namely, being
the histogram a step function, the p.d.f. modelling can re-
veal itself erroneous. In [3], it is proposed a non-parametric
model based on Kernel Density Estimation (KDE). KDE
guarantees a smoothed, continuous representation of the
histogram. The background p.d.f. is given as a sum of
Gaussian kernels centred in the most recent N background
values, xi:

N
1
Plv) = & > n(ve = vg, k) ©6)
k=1

Even if background values are not known, unclassified
sample data can be used instead. This inaccuracy will be
recovered along model updates. Given 6, the pixel with
the colour vector vy is classified as foreground if P(v;) <
Tk pE, where T is a global threshold. An important issue in
KDE is the estimation of X5, - the kernel bandwidth. In [3],
it is considered a diagonal matrix for simplicity and each
variance is estimated in the time domain by analysing the
set of differences between two consecutive values

Model update consists in selectively updating the vector
of the previous IV background values. The model proposed
in [3] also considers the use of two concurrent similar mod-
els, one for long-term and the other for short-term mem-
ory. In addition, spatial correlation is taken into consider-
ation by the model. However, we will not be considering
both these modifications since we are comparing pixel-wise
modelling techniques. These types of considerations should
be transversal to all algorithms we are evaluating. The tests
executed with this algorithm used the following parameters:
N =50and Tk pg = 106,

4) Principal Features (PF) — More recently, other ap-
proaches were proposed to estimate the background p.d.f..

In [8], the background is represented at each pixel by the
most frequent features, or principal features.

The classification is done using a Bayesian framework,
and it is shown that a pixel represented by v is classified as
belonging to the background if:

2P(v|B)P(B) > P(v) %

Otherwise, it is classified as belonging to the foreground.
We need however to know a priori or estimate the probabil-
ities P(v|B), P(B) and P(v). As stated previously, one
way to estimate these probabilities is to use a histogram of
features. The important contribution of [8] is that it pro-
poses that these probabilities can be estimated using solely
the most representative features in the histogram, given that
these can represent the background effectively. Therefore,
for a proper selection of features, there would be a small
value N of features (the principal features) that can approx-
imate well the background by Zszl P(uvg|B).

The learning and update process is done using a table
of statistics for the possible principal features of the back-
ground. The update of estimated probabilities through time
is done using a simple adaptive filter according to the type
of change that occurred (gradual or “once-off™).

Note also that the algorithm proposed in [8] uses sev-
eral types of features, namely: spectral, spatial and tempo-
ral features. For this comparison we will be using only the
spectral features, i.e. colour information. Otherwise, the
results for this algorithm would be biased. The tests exe-
cuted with principal features used the following parameters:
a = [ = 0.04 (rate for probability and background learn-
ing, respectively), M = 50, N = 20 and M1 = 0.75 (for
“once-off” detection).

5) Mean Shift (MS) — The mean shift technique is an iter-
ative gradient-ascent method that allows it to detect modes
of a multimodal distribution and their covariance matrix.
The only parameter needed is the bandwidth range that is
application-specific. The mean shift algorithm states that,
for a given set of points z;,7 = 1,...,n, the mean shift
vector in the one-dimensional case can be expressed as:

D1 Tig (x_hx)Q _
> 9 (17}11)2

where x is an arbitrary pont in the data space, h is
a positive value called the analysis bandwidth and g(u)
is a bounded support function, first derivative of another
bounded support function, k(u), or kernel profile. It can
be proven that, for a kernel with a convex and monoton-
ically decreasing profile, the iterative procedure z't! =
m(z') + 2! converges.

All points z;,7 = 1,...,t, belonging to a mode will
converge to the same point, the mode center, or mean fi,,.
Moreover, if we assume Gaussian modes, for each feature,

m(x) =

IEE |-:

COMPUTER
SOCIETY

IEEE Workshop on Motion and Video Computing (WMVC'07)
0-7695-2793-0/07 $20.00 © 2007 IEEE



in this case the components of the colour vector v, the p.d.f
consists of a weight sum of the U modes modelled by a
Gaussian distribution. A threshold test can simply be ap-
plied to the estimated p.d.f:

H Wu, f)n Lfs H(u, f);g(u f)) <Twrs

IIMQ

Note that we are assuming that the features f, f
1,..., F are independent. The weights wy,, ) also need to
be estimated, and are generally defined by heuristics. If the
probability estimated for a given pixel value v is smaller
than the threshold T, the pixel is classified as foreground.
The method and optimizations proposed in [11] were im-
plemented and tested. The mean shift algorithm was tested
for all sequences with the parameters: N = 50, h = 3 and
Tys = 1020,

6) Comparison — A comparative study of background
modelling techniques was previously presented in [10],
however this study consists of a theoretical comparison of
several algorithms and no qualitative tests are presented. In
order to get a better understanding of the algorithms, we
tested them in several sequences. The results for the se-
quences SW, SH and OD are presented next. Please refer to
section 3 for more details on the test sequences. All tests
were executed using only colour vectors as features; the
YUYV colour space was used. The measure used to compare
the segmentations and the ground-truth was the Perceptual
Spatial Quality (PSpQ) measure proposed in [2]. All algo-
rithms were implemented by the authors and the tests were
performed in a Pentium 4 3.4GHz with 1GB of RAM.

Table 1 summarizes the results obtained for each algo-
rithm in each sequence; for each algorithm-sequence com-
bination the PSpQ measure and the frames per second (fps)
are presented. No post-processing was employed on each
algorithm’s output segmentations. Figure 2 shows the evo-
lution of PSpQ over time from the evaluated sequences.

| [ sW [ SH | oD |
RAvg | PSpQ || 0.942 [ 0.816 | 0.909
fps 233 212 278

MoG | PSpQ || 0.963 | 0.970 | 0.983

fps 7.3 5.8 7.5

KDE | PSpQ || 0.914 | 0.770 | 0.923
fps 2.5 2.3 2.6

PF PSpQ || 0.823 | 0.723 | 0.800
fps 4.1 2.9 39

MS PSpQ || 0.975 | 0.900 | 0.935
fps 0.04 0.04 0.05

Table 1. Average PSpQ measure and frames
per second over the evaluated frames of each
sequence.

Results show that the mixture of Gaussians and mean

shift algorithm perform consistently better than the others.
However, the latter’s processing time is extremely high,
which invalidates its use for real-time applications. With
these results in mind, we have opted to base our algorithm
on the mixture of Gaussians approach to background mod-
elling.

2.4. Summary

The algorithm can be seen as cascade of different tech-
niques resulting in the refinement of the segmentation pro-
vided by the previous. First we use the statistical test (1)
to determine the set S, of pixels that are identified as being
changed by any phenomenon other than noise - in our model
a structural change or illumination variation. Then, on that
set of pixels a simple collinearity test (2) is performed in or-
der to assert that the modification was not due to some mod-
ification in illumination conditions, removing any pixel that
are, resulting in a new set S, of candidate pixels. Finally,
the set is further refined eliminating any structural change
that resulted from some repetitive dynamic behaviour of the
background using the mixture of Gaussians modelling. The
result is the final set of pixels S, which are labelled as be-
longing to the foreground, i.e., any relevant moving object.

Although the different classification tests appear cas-
caded, some interaction happens between them. Namely,
if the change results from camera noise and not from other
factor, the model is updated with the current background
value instead of the new frame value. This way we ef-
fectively reduce model error by only introducing modifica-
tions to the model when any other phenomenon than noise
changes the pixel value. Also, background representation
defined by the MoG model and described by (5) is used as
the reference image F".

Figure 3 summarizes the algorithm in pseudo-code,
which until the end of the article will be called as cascaded
mixture of Gaussians (CMoG).

3. Results and discussion

Several sequences were used to evaluate the proposed
method performance. The first sequence, called shopping
(SH) shows a view of a shopping corridor and is one of
the test case scenarios made publicly available by the EC
Funded CAVIAR project/IST 2001 37540 !. The scene
consists of people walking, browsing the stores’ displays
or waiting for others. It has stable illumination conditions,
except for a small portion in the right side of the field of
view. However, hard shadows and reflections in the floor
and in the display’s glass are present. The second sequence,

'OneShopOneWaitlcor ~ sequence  available  at
homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Figure 2. PSpQ for each tested frame in the sequence SW, SH and OD (from left to right).

Input: ¢, K, Ty, Tyand Ts
begin
fort=0, ...
get current frame Fc
foreach pixel in Fc
/I classification
if (1)> Ty
classify pixel as background
else if (1) > 10Ty
if (2)> T,
classify pixel as background
else if (4) > Ts
classify pixel as background
else
classify pixel as foreground
/I update background
update my, L and Gin (4)
update reference using (5)
end foreach
t=t+1
end for
end

Figure 3. Proposed algorithm.

labelled outdoor (OD) shows an outdoor scene with sev-
eral people passing along the camera field of view and is
available from the MPEG-7 test set (results are presented
for stream A). The sequence has some noise and although
the illumination conditions are fairly stable, the background
presents significant vegetation swing. The speedway (SW)
sequence was captured from a bridge over a speedway and
is also available from the MPEG-7 test set (results are pre-
sented for stream 5). It shows different sorts of vehicles
moving in both directions. Overall, it is the most stable
stream regarding background changes but some relevant
shadows are present. To compare the results, some frames
of each sequence were manually segmented by visual in-
spection in order to obtain a ground-truth set. The follow-
ing frames were considered: 350, 355,... and 400 in the

SH sequence; 880, 885,... and 930 in the OD sequence;
and 2510, 2515,... and 2560 in the SW sequence. Be-
sides these three sequences, the test set also includes nine
sequences first used in [8] and made available?, namely:
Meeting room with moving curtain (MR), Campus with wa-
vering tree branches (CAM), Lobby in an office building
with switching on/off lights (LB), Shopping center (SC),
Hall of an airport (AP), Restaurant (BR), Subway station
(SS), Water surface (WS), and Fountain (FT).

All experiments were performed using the YUV colour
space. Moreover, to reduce the implementation complex-
ity, it was considered a diagonal covariance matrix. The
background model consisted of a mixture of 3 Gaussians,
a learning rate o of 0.005 and a threshold Ts of 0.05. For
the statistical test it was used a significance threshold T’y of
10~*. Finally, for the collinearity test it was used a thresh-
old T of 0.995. All thresholds were found through empiri-
cal testing to be fairly stable and can be used without mod-
ification for typical real-world scenes. The MoG algorithm
was tested with the same parameters as in section 2.

Table 2 shows the average of two metrics from [2]: Per-
ceptual Spatial Quality (PSpQ) and Relative Spatial Accu-
racy (RSpAcc). Results show that PSqQ present very sim-
ilar results for both algorithms, since it tends to privilege
larger segmentations. However, visual inspection of the
segmentations show that the results can be very different
as Figure 4 shows. This figure shows the segmentation re-
sults for frames 365 and 415 of the SH sequence, frame 600
of the OD sequence and frame 2550 of the SW sequence,
from left to right. The top row shows the original frame, the
second row shows the results from the MoG implementa-
tion of [7] and the third row shows the results obtained with
CMoG. Taking this into consideration, RSpAcc was also
used to compare both algorithms. In Figure 5 the evolution
of the measure RSpAcc between the segmented frames and
the “ground-truth” frames are presented.

The proposed method outperforms mixture of Gaussians
modelling method in all test sequences. Even without post-

2http ://perception.i2r.a-star.edu.sg/bk model/
bk_index.html
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| | sSW [ SH | oD [ MR [CAM | LB | SC | AP | BR | SS | WS | FT |

w/o pp PSpQ 0.963 | 0.970 | 0.983 | 0.968 | 0.988 | 0.982 | 0.964 | 0.968 | 0.935 | 0.930 | 0.964 | 0.986

MoG RSpAcc || 0.963 | 0.941 | 0.930 | 0.823 | 0.833 | 0.900 | 0916 | 0.844 | 0.834 | 0.753 | 0.946 | 0.927
method | w/pp PSpQ 0.938 | 0.953 | 0978 | 0.961 | 0.982 | 0.970 | 0918 | 0.946 | 0.889 | 0.838 | 0.956 | 0.983
[7] RSpAcc || 0.975 | 0.947 | 0.970 | 0911 | 0.940 | 0.961 | 0.950 | 0.905 | 0.860 | 0.789 | 0.973 | 0.973
w/o pp PSpQ 0.941 | 0.971 | 0.984 | 0.966 | 0.988 | 0.981 | 0.951 | 0.972 | 0.922 | 0.943 | 0.962 | 0.985

CMoG RSpAcc || 0978 | 0.971 | 0.976 | 0.967 | 0.898 | 0.956 | 0.968 | 0.953 | 0.921 | 0.852 | 0.972 | 0.980
method | w/pp PSpQ 0.937 | 0.962 | 0.983 | 0.968 | 0.983 | 0.966 | 0.910 | 0.959 | 0.853 | 0.866 | 0.951 | 0.982
RSpAcc || 0.981 | 0.972 | 0.981 | 0.975 | 0.953 | 0.973 | 0.969 | 0.962 | 0.925 | 0.880 | 0.975 | 0.987

Table 2. Results over the selected sequences.
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Figure 5. Results obtained with the measure RSpAcc for each sequence. Both algorithms MoG and
CMoG are being evaluated without and with post-processing. From left to right and from top to
bottom, the graphs are from the sequences SW, SH, OD, MR, CAM, LB, SC, AP, BR, SS, WS and FT.

processing the CMoG method performs significantly bet-
ter than the regular MoG with post-processing in many se-
quences and has similar performance in the other two se-
quences. In fact, for all sequences, CMoG’s results with
and without post-processing do not differ much. Note that
for noisy and highly dynamic scenes, like OD, the regu-
lar method without post-processing has the worst results.
Also note that for the LB and SS sequences a noticeable
drop happens at some point in time. This is due to sud-
den changes of global illumination, that are not properly
handled by pixel-wise estimation of the background, as is

the case — higher level input would be needed in order to
quickly adapt to the changes. Nevertheless, CMoG easily
returns to the normal classification performance. Addition-
ally, the proposed method is faster than the original MoG:
for 176 x 144 sequences, MoG performs at 26fps, while
CMoG performs at 30fps; for 352 x 288 sequences, MoG
performs at 6fps, while CMoG performs at 8fps.
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Figure 4. Segmentation results. The top row
shows the original frame. The second row
shows the results from the MoG implementa-
tion of [7]. The third row shows the results
obtained with CMoG.

4. Conclusion

An efficient method of extracting moving objects (fore-
ground) from a moderately dynamic background consists
of modelling each pixel value evolution through time, by
estimating the p.d.f. Several methods exist for this pur-
pose, such as kernel density estimation, principal features
statistical modelling, mean shift or mixture of Gaussians.
An objective comparison was performed and results show
that the latter proved to be the one that had the best per-
formance/complexity relation. Additionally, we presented a
method that performs a cascaded evaluation of typical dy-
namic elements that, although changing in time, we want
to remove from the final foreground estimation. These ele-
ments include acquisition noise, illumination variation and
repetitive structural changes or very slow in time. The
proposed method performed consistently better than a reg-
ular mixture of Gaussians method. Even without post-
processing the results show a similar or better performance
than the regular method with post-processing. Moreover,
typical illumination variation changes, like shadows, are
successfully eliminated without the additional use of poste-
rior complex shadow detection and suppression techniques.
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