
Int. J. Production Economics 145 (2013) 500–510
Contents lists available at ScienceDirect
Int. J. Production Economics
0925-52
http://d

☆Supp
PTDC/EG

n Corr
E-m

jfgoncal
mgcr@r
journal homepage: www.elsevier.com/locate/ijpe
A biased random key genetic algorithm for 2D and 3D bin
packing problems$

José Fernando Gonçalves a,n , Mauricio G.C. Resende b

a LIAAD, INESC TEC, Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal
b Algorithms and Optimization Research Department, AT&T Labs Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932, USA
a r t i c l e i n f o

Article history:
Received 29 February 2012
Accepted 10 April 2013
Available online 18 April 2013

Keywords:
Bin packing
Genetic algorithm
Three-dimensional
Random keys
73/$ - see front matter & 2013 Elsevier B.V. A
x.doi.org/10.1016/j.ijpe.2013.04.019

orted by Fundação para a Ciência e Tecnolog
E-GES/117692/2010.
esponding author. Tel.: +351 937061379.
ail addresses: jfgoncal@fep.up.pt,
@gmail.com (J.F. Gonçalves),
esearch.att.com (M.G.C. Resende).
a b s t r a c t

In this paper we present a novel biased random-key genetic algorithm (BRKGA) for 2D and 3D bin
packing problems. The approach uses a maximal-space representation to manage the free spaces in the
bins. The proposed algorithm hybridizes a novel placement procedure with a genetic algorithm based on
random keys. The BRKGA is used to evolve the order in which the boxes are packed into the bins and the
parameters used by the placement procedure. Two new placement heuristics are used to determine the
bin and the free maximal space where each box is placed. A novel fitness function that improves
significantly the solution quality is also developed. The new approach is extensively tested on 858
problem instances and compared with other approaches published in the literature. The computational
experiment results demonstrate that the new approach consistently equals or outperforms the other
approaches and the statistical analysis confirms that the approach is significantly better than all the other
approaches.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The three-dimensional bin packing problem (3D-BPP) consists
in packing, with no overlapping, a set of three-dimensional
rectangular shaped boxes (items) into the minimum number of
three-dimensional rectangular shaped bins (containers). All the
bins have identical known dimensions ðD;W ;HÞ and each box i
has dimensions ðdi;wi;hiÞ for i¼ 1;…;n. Without loss of general-
ity one can assume that all input data are positive integers and
that di ≤D, wi ≤W , and hi ≤H for i¼ 1;…;n. It is assumed that the
boxes can be rotated. Fig. 1 shows an example of a bin packing
problem with two bins and more than two hundred boxes. The
two-dimensional bin packing problem (2B-BPP) addresses the
problem for two-dimensional bins (W,H) and boxes ðwi;hiÞ and
can be treated as a special case of 3D-BPP when di ¼D for
i¼ 1;…;n. According to the typology for cutting and packing
problems proposed by Wäscher et al. (2007) bin packing pro-
blems can be classified as Single Stock-Size Cutting Stock Pro-
blem (SSSCSP) for weakly heterogeneous item sets or as 3D-
SBSBPP (3D-Single Bin-Size Bin Packing Problems) for strongly
heterogeneous item sets. The bin packing problem addressed in
ll rights reserved.

ia (FCT) project
this paper is classified as 3D-SBSBPP (3D-Single Bin-Size Bin
Packing Problems). The 2D-BPP and 3D-BPP are strongly NP-hard
as they generalize the strongly NP-hard one-dimensional bin
packing problem (Martello et al., 2000).

Three-dimensional packing problems have numerous relevant
industrial applications such as loading cargo into vehicles, containers
or pallets, or in packaging design. The 3D-BPP can also arise as a sub-
problem of other complex problems not only in packing and cutting
but also in some scheduling problems (Park et al., 1996; Hartmann,
2000).

An exact method for the 3D-SBSBPP that uses a two-level Branch
& Bound method was proposed by Martello et al. (2000). Initially
their proposal only solved robot-packable problems (den Boef et al.,
2005), but later it was modified for solving the general problem
(Martello et al., 2007). Fekete and Schepers (1997, 2004) define an
implicit representation of the packing by means of Interval Graphs
(IGs), the Packing Class (PC) representation. The authors consider the
relative position of the boxes in a feasible packing and, from the
projection of the items on each orthogonal axis, they define a graph
describing the overlappings of the items in the container.

A new class of lower bounds was introduced by Fekete and
Schepers (1997). The authors extend the use of dual feasible
functions, first introduced by Johnson (1973), to two- and three-
dimensional packing problems, including 3D-SBSBPP. Boschetti
(2004) proposed the most recent lower bound, which introduces
new dual feasible functions. This new bound dominates previous
ones. Boschetti and Mingozzi (2003a, 2003b) propose new lower
bounds for the two-dimensional case.

www.elsevier.com/locate/ijpe
www.elsevier.com/locate/ijpe
http://dx.doi.org/10.1016/j.ijpe.2013.04.019
http://dx.doi.org/10.1016/j.ijpe.2013.04.019
http://dx.doi.org/10.1016/j.ijpe.2013.04.019
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ijpe.2013.04.019&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ijpe.2013.04.019&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ijpe.2013.04.019&domain=pdf
mailto:jfgoncal@fep.up.pt
mailto:jfgoncal@gmail.com
mailto:mgcr@research.att.com
http://dx.doi.org/10.1016/j.ijpe.2013.04.019

Fig. 1. Example of a bin packing problem with two bins.

J.F. Gonçalves , M.G.C. Resende / Int. J. Production Economics 145 (2013) 500–510 501
Several constructive and meta-heuristic algorithms have been
designed for solving large bin packing problems. Faroe et al. (2003)
proposed a Guided Local Search heuristic for 3D-SBSBPP and 2D-
SBSBPP, based on the iterative solution of constraint satisfaction
problems. Starting with an upper bound on the number of bins
obtained by a greedy heuristic, the algorithm iteratively decreases
the number of bins, each time searching for a feasible packing of
the boxes using the GLS method. Lodi et al. (1999, 2002) have
developed tabu search algorithms based on new constructive
procedures for two-dimensional and three-dimensional cases
and in Lodi et al. (2004) propose a unified tabu search code for
general multi-dimensional bin packing problems. More recently,
Crainic et al. (2009) developed a two-level tabu search algorithm,
using the representation proposed for nD-SBSBPP by Fekete and
Schepers (2004) and Fekete et al. (2007), in which the first level
aims to reduce the number of bins and the second optimizes the
packing of the bins.

For the two-dimensional bin packing problem (2D-SBSBPP),
Boschetti and Mingozzi (2003b) developed an effective constructive
heuristic that assigns a score to each box, considers the boxes
according to decreasing values of the corresponding scores, updates
the scores using a specified criterion, and iterates until either an
optimal solution is found or a maximum number of iterations is
reached. Monaci and Toth (2006) designed a set-covering-based
heuristic approach inwhich in a first phase a large number of columns
are generated by heuristic procedures and by the execution of the
exact algorithm by Martello and Vigo (1998) with a time-limit. In the
second phase these columns are used for solving a set-covering
problem which gives the solution to the original bin packing problem.
Parreño et al. (2010) propose a new hybrid GRASP/VND algorithm for
solving the 3D-SBSBPP bin packing problemwhich can also be directly
applied to the two-dimensional case (2D-SBSBPP). The constructive
phase is based on a maximal-space heuristic developed for the
container loading problem. In the improvement phase, several new
moves are designed and combined in a VND structure. Mack and
Bortfeldt (2012) present a straightforward heuristic for the 3D-SSSCSP
where all items may be rotated and the guillotine cut constraint has to
be respected. The heuristic is based on a method for the container
loading problem following a wall-building approach and on a method
for the one-dimensional BPP.

3D-SBSBPP is NP-hard in the strong sense. Therefore, when large
instances are considered, heuristics are the methods of choice. In this
paper we present a novel biased random-key genetic algorithm
(BRKGA) for the 2D-SBSBPP and 3D-SBSBPP. The approach uses a
maximal-space representation to manage the free spaces in the bins.
The proposed algorithm hybridizes a novel placement procedure
with a genetic algorithm based on random keys. The BRKGA is used
to evolve the order in which the boxes are packed into the bins and
the parameters used by the placement procedure.
The remainder of the paper is organized as follows. In Section 2
we introduce the new approach, describing in detail the BRKGA,
the novel placement strategy, the novel fitness function, and the
parallel implementation. Finally, in Section 3, we report on
computational experiments, and in Section 4 make concluding
remarks.
2. Biased random-key genetic algorithm

We begin this section with an overview of the proposed
solution process. This is followed by a discussion of the biased
random-key genetic algorithm, including detailed descriptions of
the solution encoding and decoding, evolutionary process, fitness
function, and parallel implementation.
2.1. Overview

The new approach is based on a constructive heuristic algo-
rithm which places the boxes one at a time in the bins. A new bin
is opened when the box that we are trying to place does not fit in
the bins that are already open (note that all the bins stay open
until all boxes are packed). The management of the feasible
placement positions is based on a list of empty maximal-spaces
as described in Lai and Chan (1997). A 2D or 3D empty space is
maximal if it is not contained in any other space in the bin. Each
time a box is placed in an empty maximal-space, new empty
maximal-spaces are generated. The new approach proposed in this
paper combines a biased random-key genetic algorithm, a new
placement strategy, and a novel fitness function.

The role of the genetic algorithm is to evolve the encoded
solutions, or chromosomes, which represent the box packing
sequence (BPS) and the vector of box orientations (VBO) used for
packing the boxes into the bins. For each chromosome, the
following phases are applied to decode the chromosome:
(1)
 Decoding of the box packing sequence: This first phase decodes
part of the chromosome into the BPS, i.e. the sequence in
which the boxes are packed into the bins.
(2)
 Decoding of box orientations: The second phase decodes part of
the chromosome into the vector of box orientations VBO to be
used by the placement procedure.
(3)
 Placement strategy: The third phase makes use of BPS and VBO,
defined in phases 1 and 2, and constructs a packing of the
boxes into the bins.
(4)
 Fitness evaluation: The final phase computes the fitness of the
solution (or measure of quality of the bin packing). For this

Feedback Fitness of Chromosome
(Number of Bins Used)

Chromosome

Box Packing
Sequence

Phase

Ev
ol

ut
io

na
ry

 P
ro

ce
ss

 o
f t

he
 G

en
et

ic
 A

lg
or

ith
m

Placement
Procedure

Box
Orientation

Decode 1st part of chromosome
into the

Box Packing Sequence (BPS)

into the
Vector of Box Orientations (VBO)

Decode 1st part of chromosome

Use BPS and VBO
to place each box in the bins

Fig. 2. Architecture of the algorithm.

J.F. Gonçalves , M.G.C. Resende / Int. J. Production Economics 145 (2013) 500–510502
phase we developed a novel measure of fitness which
improves the quality of the solutions significantly.
Fig. 2 illustrates the sequence of steps applied to each chromo-
some generated by the BRKGA.

The remainder of this section describes the genetic algorithm,
the decoding procedure, and the placement strategy in detail.
2.2. Biased random-key genetic algorithm

Genetic algorithms with random keys, or random-key genetic
algorithms (RKGA), for solving sequencing problems were intro-
duced in Bean (1994). In a RKGA, chromosomes are represented as
vectors of randomly generated real numbers in the interval [0,1].
The decoder, a deterministic algorithm, takes as input a chromo-
some and associates with it a solution of the combinatorial
optimization problem for which an objective value or fitness can
be computed.

Random key GAs are particularly attractive for sequencing
problems and/or when the chromosomes have several parts (see
for example Gonçalves and Almeida, 2002; Gonçalves and
Resende, 2004, or Goncalves and Sousa, 2011). Unlike traditional
GAs, which need to use special repair procedures to handle
permutations or sequences, RKGAs move all the feasibility issues
into the objective evaluation procedure and guarantee that all
offspring formed by crossover are feasible solutions. When the
chromosomes have several parts traditional GAs need to use
different genetic operators for each part. However, since RKGAs
use parametrized uniform crossovers (instead of the traditional
one-point or two-point crossover), they do not need to have
different genetic operators for each part.

A RKGA evolves a population of random-key vectors over a
number of generations (iterations). The initial population is made
up of p vectors of r random keys. Each component of the solution
vector, or random key, is generated independently at random in
the real interval [0,1]. After the fitness of each individual is
computed by the decoder in generation g, the population is
partitioned into two groups of individuals: a small group of pe
elite individuals, i.e. those with the best fitness values, and the
remaining set of p−pe non-elite individuals. To evolve a population
g, a new generation of individuals is produced. All elite individual
of the population of generation g are copied without modification
to the population of generation g+1. RKGAs implement mutation
by introducing mutants into the population. A mutant is a vector of
random keys generated in the same way that an element of the
initial population is generated. At each generation, a small number
pm of mutants is introduced into the population. With pe þ pm
individuals accounted for in the population g+1, p−pe−pm addi-
tional individuals need to be generated to complete the p indivi-
duals that make up population g+1. This is done by producing
p−pe−pm offspring solutions through the process of mating or
crossover.

A biased random-key genetic algorithm, or BRKGA (Gonçalves
and Resende, 2011), differs from a RKGA in the way parents are
selected for mating. While in the RKGA of Bean (1994) both parents
are selected at random from the entire current population, in a
BRKGAs each element is generated combining a parent selected at
random from the elite partition in the current population and one
selected at random from the rest of the population. Repetition in
the selection of a mate is allowed and therefore an individual can
produce more than one offspring in the same generation. As in
RKGAs, parameterized uniform crossover (Spears and Dejong, 1991)
is used to implement mating in BRKGAs. Let ρe be the probability
that an offspring inherits the vector component of its elite parent.
Recall that r denotes the number of components in the solution
vector of an individual. For i¼ 1;…; r; the i-th component c(i) of
the offspring vector c takes on the value of the i-th component e(i)
of the elite parent e with probability ρe and the value of the i-th
component eðiÞ of the non-elite parent e with probability 1−ρe.

J.F. Gonçalves , M.G.C. Resende / Int. J. Production Economics 145 (2013) 500–510 503
When the next population is complete, i.e. when it has p
individuals, fitness values are computed for all of the newly
created random-key vectors and the population is partitioned into
elite and non-elite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial
optimization problem indirectly by searching the continuous
r-dimensional hypercube, using the decoder to map solutions in
the hypercube to solutions in the solution space of the combina-
torial optimization problem where the fitness is evaluated.

To specify a biased random-key genetic algorithm, we simply
need to specify how solutions are encoded and decoded and how
their corresponding fitness values are computed. We specify our
algorithm next by first showing how the bin packing solutions are
encoded and then decoded and how their fitness evaluation is
computed.
2.2.1. Chromosome representation and decoding
A chromosome encodes a solution to the problem as a vector of

random keys. In a direct representation, a chromosome represents
a solution of the original problem, and is called genotype, while in
an indirect representation it does not, and special procedures are
needed to obtain from it a solution called a phenotype. In the
present context, the direct representation of packing patterns as
chromosomes is too complicated to encode and manipulate.
Instead, solutions will be represented indirectly by parameters
that are later used by a decoding procedure to obtain a solution. To
obtain the solution (phenotype) we use the decoding procedures
described in Section 2.3.4.

Each solution chromosome is made of 2n genes as depicted in
Fig. 3. The first n genes are used to obtain the Box Packing Sequence
and the genes n+1 to 2n are used to obtain the Vector of Box
Orientations. The placement procedure described in Section 2.3.4
makes use of BPS and VBO to construct a solution corresponding to
the chromosome.

The decoding (mapping) of the first n genes of each chromo-
some into a box packing sequence, BPS, is accomplished by sorting,
in ascending order of the corresponding gene values, the boxes.
Fig. 4 shows an example of the decoding process for the BPS. In
this example there are 8 boxes. The sorted genes correspond the
BPS¼ ð5; 8; 3; 1; 4; 2; 6; 7Þ.
Box Packing Sequence Box Orientation

Fig. 3. Solution encoding.

Unordered boxes

Unsorted genes

Box Packing Sequence (BPS)

Sorted genes

4 728 13

1

0.45

2

0.67

3

0.35

4

0.49

5

0.07

6

0.78

7

0.87

8

0.17

5 6

Box Packing Sequence (BPS)

0.870.780.670.490.450.350.07 0.17

Fig. 4. Decoding of the box packing sequence.
The decoding of the vector of box orientations, VBO, is obtained
for i¼1,…,n, as

VBOi ¼ Genenþi:

Note that the VBO does not directly indicate the orientation
used for a box.

Only after having selected an EMS in which to place a box can
the VBO be used to determine what orientation to use for a box
(see Section 2.3.3 for more details about the decoding of the box
orientation).

2.2.2. Fitness function
To evolve the solutions the evolutionary process needs a

measure of solution fitness, or quality measure. A natural fitness
function for this type of problem is the number of bins, NB, used by
a solution. However, since different solutions can have the same
NB, this measure does not differentiate well the potential for
improvement of solutions having the same value of NB.

To better differentiate the potential for improvement we propose
a novel measure of fitness which we call adjusted number of bins,
aNB. The aNB combines NB with a measure of the potential for
improvement of the bin packing solution which has values in the
interval]0,1[. The rationale for this new measure is that if we have
two solutions that use the same number of bins, then the one having
the least loaded bin will have more potential for improvement.

Let, LeastLoad be the load on the least loaded bin of a solution and
let the capacity of the each bin be BinCap¼W � H � D ðW � HÞ for
the 3D (2D) case. The value of the adjusted number of bins is given by

aNB¼NBþ LeastLoad
BinCap

:

The computational results in Section 3 show that this novel
measure of fitness significantly improves the quality of the solutions.

2.3. Placement strategy

In the next sections we describe the main components of the
placement strategy.

2.3.1. Maximal-spaces
While trying to place a box in the bins we use a list S of empty

maximal-spaces (EMSs), i.e. largest empty rectangular spaces
available for filling with boxes. Maximal-spaces are represented
by their vertices with minimum and maximum coordinates
(xi; yi; zi and Xi; Yi; Zi respectively). To generate and keep track
of the EMSs, we make use of the difference process (DP), developed
by Lai and Chan (1997). The DP process consists of the following
three main steps:
�
 Place a box in a EMS;

�
 Generate new EMSs resulting from the intersection of the box

being placed with the existing EMSs and remove the inter-
sected EMSs;
�
 Eliminate the EMSs which have infinite thinness or those that
are totally inscribed by other EMSs.

Fig. 5 depicts an example of the application of the DP process.
In the example we assume that we have one box to be packed in
one bin (see Fig. 5a. Initially, since the bin is empty, the box is
packed at the origin of the bin as shown in Fig. 5b. Fig. 5c shows
the three new EMSs resulting from the intersection of the box
placed with the initial EMS (the empty container).

The elimination of EMSs that are totally inscribed by other EMSs
is the most time consuming task in the DP process. In order to
reduce the computation time for this task we added the following
rules to the difference process:

3

1

B
C

2

2

2

A

Position sele

Fig. 7. Example of he

3

1

B
C

A

Position selected by the
DFTRC-1 heuristic to place box 2.

2

Fig. 6. Example of heuri

Fig. 5. Example of difference process (DP). a) Box to be packed and initial maximal-
space; b) Box packed in the maximal-space and c) Newly generated maximal-spaces.

J.F. Gonçalves , M.G.C. Resende / Int. J. Production Economics 145 (2013) 500–510504
�

cted

uris

stic
If the volume of a newly created EMS is smaller than the
volume of each of the boxes remaining to be packed do not add
it to S (note that EMSs with infinite thinness will automatically
be removed by this step);
�
 If the smallest dimension of a newly created EMS is smaller than
the smallest dimension of each of the boxes remaining to be
packed do not add it to S (note that this rule is very important for
the elimination of EMSs where no box fits and that are not
removed by the previous rule, since they have a large volume).

With the above rules we were able to reduce, for most problem
instances, the computational time by approximately 60%.

2.3.2. Placement heuristics
When searching for a position to pack a box we will consider as

candidate positions only the minimum coordinates (xi; yi; zi) of
the feasible EMSs (an EMS will be considered feasible for a box if
the box fits in it using at least one of the its possible orientations).
The placement heuristic will be used to choose, in a bin, the EMS
where a box will be placed. Ideally the placement heuristic should
produce a packing as compact as possible in order to leave free
space for the remaining boxes.

Initially we considered the Back-Bottom-Left (BBL) heuristic
rule. However, as observed by Liu and Teng (1999), we noticed
that some optimal solutions could not be constructed by the BBL
placement heuristic. To overcome this weakness, we looked for
4

FTR-Corner

D

2

2

 by the DFTRC-2 heuristic to place box 2.

DFTRC DFTRC

DFTRC

DFTRC

tic DFTRC-2.

4

FTR-Corner

D

DFTRC

DFTRC

DFTRC

DFTRC-1.

J.F. Gonçalves , M.G.C. Resende / Int. J. Production Economics 145 (2013) 500–510 505
improved heuristics and developed two new placement heuristics
rules which use the Distance to the Front-Top-Right Corner (DFTR
C) of the container as measure of compactness. The greater the
DFTRC the more compact we will consider the packing of the box.
The first heuristic, denoted as DFTRC-1, calculates DFTRC for the
minimum coordinates (xi; yi; zi) of all feasible EMSs for the box
being packed and chooses the EMS which maximizes DFTRC. The
second heuristic, denoted as DFTRC-2, calculates, for all feasible
EMSs and all feasible box orientations in each EMS, the DFTRC of
the front-top-right corner of the box being packed and chooses the
EMS which maximizes DFTRC. Heuristics DFTRC-1 and DFTRC-2 are
illustrated using an example in Figs. 6 and 7, respectively. In the
example we have a 2D partial packing of boxes 1, 3, and 4 and we
want to choose a place where to pack box 2. If we use heuristic
DFTRC-1 box 2 will be positioned in point A and if we use heuristic
DFFTRC-2 box 2 will be positioned in point C. Note that the EMS
having as minimum coordinates point B is not feasible for box
2 and that the EMSs having as minimum coordinates points A and
D only allow one feasible orientation of box 2.

Fig. 8 presents the pseudo-code for the DFTRC-2 placement
heuristic.

2.3.3. Box orientation
To select the orientation of a box we have considered two

alternatives. The first alternative uses the vector VBO supplied by
the BRKGA and can be combined with both of the placement
heuristics DFTRC-1 and DFTRC-2. Let EMS be the empty maximal
space selected for placing a box i, by any of the heuristic placement
heuristics, and let BOs be a vector with all the feasible orientations
of the box i in EMS, the orientation selected, BOn, is given by

BOn ¼ BOsð⌈VBOi � nBOs⌉Þ

where nBOs is the number of box orientations in vector BOs and
⌈x⌉ is the smallest integer greater than x.

The second alternative does not use any information supplied
by the BRKGA and can only be used in combination with the
placement heuristic DFTRC-2. In this case the orientation selected
Fig. 8. Pseudo-code of the DTRC-2 heuristic procedure.

Table 1
Alternative placement procedures.

Name Placement heuristic Box orientation

DFTRC�1�VBO DFTRC-1 VBO
DFTRC�2�VBO DFTRC-2 VBO

DFTRC�22 DFTRC-2 DFTRC-2
for a box is equal to the winning orientation BOn returned by the
DFTRC-2 (see Fig. 8).

2.3.4. Placement procedure
The placement procedure follows a sequential process which

packs one box in a bin at each stage. The order in which the boxes
are packed is defined by the BPS evolved by the BRKGA.

The procedure combines the following elements: the vectors
BPS and VBO defined by the BRKGA, the lists Sb of empty maximal
spaces for every open bin b, and one of the placement heuristics
defined above (DFTRC-1 or DFTRC-2). Each stage is comprised of
the following five main steps:
(1)
 Box selection;

(2)
 Bin and empty maximal space selection;

(3)
 Box orientation selection;

(4)
 Box packing;

(5)
 State information update.
We tried three alternative placement procedures: two resulting from
the combination of the heuristics DFTRC-1 and DFTRC-2 with VBO
supplied by the BRKGA to obtain the orientation and one resulting
from the use of DFTRC-2 to select where to pack a box and its
orientation. Table 1 names and summarizes the alternatives accord-
ing to the heuristic placement and the box orientation method used.

As will be shown in the numerical experiments (Section 3) the
alternative DFRTC-2-VBO obtains the best results.

The pseudo-code of the placement procedure for alternative
DFRTC-2-VBO is given in Fig. 9. The box selection at stage i selects
Fig. 9. Pseudo-code for the PLACEMENT procedure.

J.F. Gonçalves , M.G.C. Resende / Int. J. Production Economics 145 (2013) 500–510506
for packing the box in the i-th position of BPS (lines 4 of the
pseudo-code). The selection of the bin and empty maximal space
searches, in the open bins, for a maximal space where the box BPSi
fits, using DFTRC-2 (line 9 of the pseudo-code). As soon as a bin is
found, the bin search stops (first fit rule). If no bin is found, a new
bin is opened (lines 15-20 of the pseudo-code). Once a bin and a
maximal space is selected, the box orientation selection is carried
out (lines 21–23 of the pseudo-code). The box packing consists in
packing the box BPSi in the bin and the maximal selected (line 24
of the pseudo-code). The final step, state information update,
consists in updating the list of empty maximal spaces of the bin
where the last box packing occurred, using the DP procedure (line
25 of the pseudo-code).
2.4. Parallel implementation

The parallelization applies only to the task that performs the
evaluation of the chromosome fitness since it is the most time
consuming. Since the tasks related with the GA logic consume very
little time compared to decoding they were not parallelized. This
type of parallelization is easy to implement and in multi-core CPUs
allows for a large reduction in computational times (almost a
linear speed-up with the number of cores). The parallel imple-
mentation of our heuristic was done using the OpenMP Applica-
tion Program Interface (API) which supports multi-platform
shared-memory parallel programming in C/C++.
3. Numerical experiments

In this section we report on results obtained on a set of
experiments conducted to evaluate the performance of the biased
Table 2
Efficient approaches used for comparison.

Approach Source of approach Type of method

TS3 Lodi et al. (1999, 2002) Tabu search (2D/3D)
HBP Boschetti and Mingozzi (2003b) Heuristic (2D)
GLS Faroe et al. (2003) Guided local search (2D/3D)
SCH Monaci and Toth (2006) Set covering based heuristic (2D)
TS2P Crainic et al. (2009) Parallel tabu search (3D)
GVND Parreño et al. (2010) GRASP/VND (2D/3D)

Table 3
Type characterization.

Type 1: wj∈½1; 12W �, hj∈½23H;H�, dj∈½23D;D�;
Type 2: wj∈½23W ;W �, hj∈½1; 12H�, dj∈½23D;D�;
Type 3: wj∈½23W ;W �, hj∈½23H;H�, dj∈½1; 12D�;
Type 4: wj∈½12W ;W �, hj∈½12H;H�, dj∈½12D;D�;
Type 5: wj∈½1; 12W �, hj∈½1; 12H�, dj∈½1; 12D�.

Table 4
Datasets used for testing the 2D bin packing algorithm.

Class Description

bwmv Includes 500 instances generated by Berkey and Wang (1987) and by Mart
comprises 50 instances, 10 for each value of n ∈f20;40;60;80;100g. All ins
http://www.or.deis.unibo.it/research_pages/ORinstances/2BP.html.

cgcut Proposed by Christofides and Whitlock (1977). Available from the ORLIB l
gcut,
ngcut

Proposed by Beasley (1985a, 1985b) (these instances are two-dimensional
(2003)). Available from the ORLIB library.

beng Proposed by Bengtsson (1982), available in PackLib2 (Fekete et al., 2007),
random key genetic algorithm for the bin packing problem
(BRKGA-BPP) proposed in this paper.

3.1. Benchmark algorithms

We compare BRKGA-BPP with the six approaches listed in
Table 2. These approaches are the most effective in the literature
to date.

3.2. Test problem instances

A standard benchmark set of 320 problems generated by Martello
et al. (2000) was used for testing the 3D bin packing algorithm.
The instance generator is available at http://www.diku.dk/�pisinger/
codes.html These instances are organized into 8 classes with
40 instances each, 10 instances for each value of n∈f50; 100;
150; 200g. For Classes 1–5, the bin size is W ¼H ¼D¼ 100 and there
are five types of items which have wj; hj, and dj drawn at random
from a uniform distribution according to the intervals presented in
Table 3. For Class k ðk¼ 1;…;5Þ, each item of type k is chosen with
probability 60%, and the other four types with probability 10% each.
Classes 6–8 are as follows:
�

ello
tan

ibra
cutt

http
Class6: bin size W ¼H ¼D¼ 10;wj; hj; dj∈½1;10�;
�
 Class7: bin size W ¼H ¼D¼ 40;wj; hj; dj∈½1;35�;
�
 Class8: bin size W ¼H ¼D¼ 100;wj; hj; dj∈½1;100�.
For testing the 2D bin packing algorithm we used the following
sets of instances which were also used to evaluate the other
benchmark algorithms by their authors (Table 4).

3.3. GA configuration

The configuration of genetic algorithms is oftentimes more an
art form than a science. In our past experience with genetic
algorithms based on the same evolutionary strategy (see
Gonçalves et al., 2005, 2009, 2011; Gonçalves and Resende,
2012), we obtained good results with values of TOP, BOT, and
Crossover Probability (CProb) in the intervals shown in Table 5.

For the population size, we obtained good results by indexing it to
the dimension of the problem, i.e. we use small size populations for
small problems and larger populations for larger problems. With this
in mind, we conducted a small pilot study to obtain a reasonable
configuration (16 3D instances, two from each class with n¼200). We
tested all the combinations of the following values:
and Vigo (1998). These instances are divided into 10 classes where each class
ces, and the corresponding best known solution values, are available at

ry.
ing problems that were transformed into 2D-BPP as explained by Faroe et al.

://mo.math.nat.tu-bs.de/packlib/index.html.

Table 5
Range of parameters in past implementations.

Parameter Interval

TOP 0.10–0.25
BOT 0.15–0.30
Crossover Probability (CProb) 0.70–0.80

http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html

J.F. Gonçalves , M.G.C. Resende / Int. J. Production Economics 145 (2013) 500–510 507
�

Tab
Con

P

p
p
p
ρe
Fi
St

Tab
Res

C

1

2

3

4

5

6

7

8

To
To

Not
TOP∈f0:10;0:15;0:20;0:25g;

�
 BOT∈f0:15;0:20;0:25;0:30g;

�
 CProb∈f0:70;0:75;0:80g;

�
 Population size with 10, 20, 30 and 40 times the number of

items in the problem instance.

For each of the possible configurations, we made three inde-
pendent runs of the algorithm (with three distinct seeds for
the random number generator) and computed the average total
value. The configuration that minimized the sum, over the pilot
problem instances, was TOP ¼ 10%, BOT ¼ 15%, CProb¼ 0:7, and
Population size ¼ 30 times the number of boxes in the problem
instance. The configuration presented in Table 6 was held constant
for all experiments and all problem instances. The computational
results presented in the next section demonstrate that this con-
figuration not only provides excellent results in terms of solution
quality but is also very robust.
le 6
figuration parameters for the BRKGA−BPP algorithm.

arameter Value

¼ 30�n

e¼ 0.10� p

m¼ 0.15� p
¼ 0.70
tness¼ aNB¼adjusted number of bins (to minimize)
opping criterion¼ 200 generations

le 8
ults for the three-dimensional instances.

lass Bin size n L2 BRKGA-BPP

6r NB aNB

100�100�100 50 12.5 11.8 13.4 13.4
100 25.1 23 26.7 26.6
150 34.7 31.7 36.6 36.4
200 48.4 43.4 51 50.8

100�100�100 50 12.7 11.8 13.9 13.8
100 24.1 22.5 25.7 25.6
150 35.1 31.5 37 36.6
200 47.5 42.5 49.6 49.4

100�100�100 50 12.3 11.6 13.3 13.3
100 24.7 22.6 26.2 25.9
150 36.0 32.4 37.6 37.5
200 47.8 42.3 50.1 49.8

100�100�100 50 28.7 28.9 29.4 29.4
100 57.6 58.4 59.0 59.0
150 85.2 86.4 86.8 86.8
200 116.3 118.3 118.8 118.8

100�100�100 50 7.3 7.5 8.3 8.3
100 12.9 13.7 15.0 15.0
150 17.4 18.6 20.1 20.0
200 24.4 25.3 27.1 27.1

10�10�10 50 8.7 9.4 9.8 9.7
100 17.5 18.9 19.0 18.9
150 26.9 28.2 29.2 29.0
200 35.0 33.3 37.3 37.3

40�40�40 50 6.3 6.4 7.4 7.4
100 10.9 11.3 12.3 12.2
150 13.7 14.6 15.5 15.3
200 21.0 20.3 23.4 23.4

100�100�100 50 8.0 9.2 9.2 9.2
100 17.5 18.2 18.9 18.9
150 21.3 22.1 23.6 23.6
200 26.7 24.8 29.4 29.3

tal classes 1, 4-8 6840 6837 7272 7258
tal classes 1–8 9242 9009 9806 9777

e: the best values for the versions with no rotation appear in bold.
3.4. Computational results

Algorithm BRKGA-BPP was implemented in C++ and the com-
putational experiments were carried out on a computer with a
Intel Core i7-2630QM @2.0 GHZ CPU running the Linux operating
system with Fedora release 16.

As described above algorithm BRKGA-BPP allows each box to use,
if possible, several orientations (six orientations for the 3D and two
orientations for the 2D). However, the other benchmark algorithms
only use one orientation. To make the comparison fair we con-
strained our algorithm BRKGA-BPP to use only the orientation that
the other benchmark algorithms use. Too show the potential of
BRKGA-BPP when all the box orientations are allowed we have also
included in the tables columns with header 6r and 2r which
correspond to the results that BRKGA-BPP obtains when all rotations
are allowed, respectively, for 3D and 2D instances (as expected the
results are better).

As mentioned above, we considered three alternative place-
ment procedures: DFTRC-1-VBO, DFTRC-2-VBO, and DFTRC-22. We
TS3 GVND TS2P GLS

aG aT T-200

7.3 0.1 3.5 13.4 13.4 13.4 13.4
19.1 1.5 16.1 26.6 26.6 26.7 26.7
47.5 9.8 41.3 36.7 36.4 37.0 37.0
51.0 20.8 81.7 51.2 50.9 51.1 51.2
10.1 0.2 3.1 13.8 13.8 – –

34.1 2.6 15.4 25.7 25.7 – –

72.5 14.4 39.7 37.2 36.9 – –

52.5 20.5 78.1 50.1 49.4 – –

8.5 0.1 3.2 13.3 13.3 – –

50.5 4.0 15.7 26.0 26.0 – –

43.6 8.7 39.7 37.7 37.6 – –

55.1 21.6 78.5 50.5 50.0 – –

1.0 0.0 3.1 29.4 29.4 29.4 29.4
1.0 0.1 17.1 59.0 59.0 58.9 59.0
1.0 0.2 48.4 86.8 86.8 86.8 86.8
1.0 0.5 101.5 118.8 118.8 118.8 119.0
3.4 0.1 7.1 8.4 8.3 8.3 8.3

10.4 1.5 29.0 15.0 15.0 15.2 15.1
43.5 15.0 68.9 20.4 20.1 20.1 20.2
30.2 19.7 130.6 27.6 27.1 27.4 27.2
10.1 0.1 2.7 9.9 9.8 9.8 9.8
14.0 0.8 11.3 19.1 19.0 19.1 19.1
34.7 4.6 26.4 29.4 29.2 29.2 29.4
63.6 15.3 48.2 37.7 37.4 37.7 37.7
2.8 0.1 5.9 7.5 7.4 7.4 7.4

31.7 3.8 23.9 12.5 12.5 12.3 12.3
31.1 8.9 57.1 16.1 16.0 15.8 15.8
24.5 12.4 101.4 23.9 23.5 23.5 23.5
4.6 0.1 5.6 9.3 9.2 9.2 9.2
9.1 1.1 23.6 18.9 18.9 18.8 18.9

47.5 12.3 51.9 24.1 24.1 23.9 23.9
42.5 21.5 101.1 30.3 29.8 30.0 29.9

7320 7286 7298 7302
9863 9813

Table 7
Overall results obtained by each of the alternative place-
ment procedures.

Data set DFTRC-1-VBO DFTRC-2-VBO DFTRC-22

2D 7001 6990 7012
3D 9023 9009 9031

J.F. Gonçalves , M.G.C. Resende / Int. J. Production Economics 145 (2013) 500–510508
will first present the overall results obtained by each of the
alternatives and then compare in detail the best alternative with
the other approaches. Table 7 presents the overall number of bins
used for each alternative for the 2D and 3D datasets.

Statistical tests show that the placement procedure DFTRC-2-
VBO performs significantly better than the other two.

The results reported below the algorithm BRKGA-BPP refer to
BRKGA-BPP using placement heuristic DFTRC-2-VBO.

The computational results corresponding to 3D instances are
shown in Table 8, which compares the solutions obtained by
BRKGA-BPP with the other benchmark algorithms referred in
Table 2. Each row of the table gives the average values for the
instances of each class-size. Column 4 shows L2, the correspond-
ing lower bound obtained by Martello et al. (2000). Columns 5 to
10 contain details of our BRKGA-BPP algorithm: column with
Table 9
Results for the two-dimensional instances. Part I.

Class Bin size n LBn BRKGA-BPP

2r NB aNB aG

1 10�10 20 7.1 6.6 7.1 7.1 1
40 13.4 12.8 13.4 13.4 4
60 19.7 19.5 20 20 14
80 27.4 27 27.5 27.5 1

100 31.7 31.3 31.7 31.7 30
2 30�30 20 1.0 1.0 1.0 1.0 1

40 1.9 1.9 1.9 1.9 5
60 2.5 2.5 2.5 2.5 3
80 3.1 3.1 3.1 3.1 4

100 3.9 3.9 3.9 3.9 13
3 40�40 20 5.1 4.7 5.1 5.1 1

40 9.2 9.2 9.4 9.4 5
60 13.6 13.4 13.9 13.9 11
80 18.7 18.2 18.9 18.9 16

100 22.1 22 22.3 22.3 17
4 100�100 20 1.0 1.0 1.0 1.0 1

40 1.9 1.9 1.9 1.9 1
60 2.3 2.3 2.5 2.5 1
80 3 3.1 3.1 3.1 13

100 3.7 3.7 3.8 3.7 13
5 100�100 20 6.5 5.9 6.5 6.5 1

40 11.9 11.4 11.9 11.9 3
60 17.9 17.2 18 18 8
80 24.1 23.9 24.7 24.7 7

100 27.9 27.7 28.2 28.1 28
6 300�300 20 1.0 1.0 1.0 1.0 1

40 1.5 1.6 1.7 1.6 16
60 2.1 2.1 2.1 2.1 1
80 3.0 3.0 3.0 3.0 1

100 3.2 3.2 3.4 3.3 16
7 100�100 20 5.5 5.2 5.5 5.5 1

40 10.9 10.2 11.1 11.1 10
60 15.6 14.6 15.9 15.8 18
80 22.4 20.8 23.2 23.2 2

100 26.9 25 27.1 27.1 12
8 100�100 20 5.8 5.3 5.8 5.8 1

40 11.2 10.3 11.3 11.3 5
60 15.9 14.7 16.1 16.1 18
80 22.3 20.4 22.4 22.4 11

100 27.4 25.2 27.8 27.8 10
9 100�100 20 14.3 14.3 14.3 14.3 1

40 27.8 27.5 27.8 27.8 1
60 43.7 43.5 43.7 43.7 1
80 57.7 57.3 57.7 57.7 1

100 69.5 69.3 69.5 69.5 1
10 100�100 20 4.2 4.1 4.2 4.2 4

40 7.4 7.2 7.4 7.4 1
60 9.8 9.9 10.0 10.0 22
80 12.3 12.5 12.9 12.8 12

100 15.3 15.4 15.9 15.8 23

Total classes 1–10 7173 6988 7241 7234

Note: The best values for the versions with no rotation appear in bold.
header 6r represents the average best solution found when all
the six rotations are allowed and the fitness function used is aNB;
column with header NB represents the average best solution
found when no rotations are allowed and fitness function used is
NB; column with header aNB represents the average best solution
found when no rotations are allowed and fitness function used is
aNB, columns with headers aG, aT, and T-200 represent, respec-
tively, the average number of generations to the best solution, the
average time to the best solution and the average time for 200
generations. The last four rows show the results, first for all
classes for a complete comparison with TS3 and GVND and then
for classes 1, 4, 5, 6, 7, 8 which allow the comparison with TS2P
and GLS.

The results show that our BRKGA-BPP algorithm consistently
equals or outperforms algorithms TS3, GVND, and GLS. In relation
GVND SCH GLS TS3 HBP

aT T-200

.0 0.0 0.1 7.1 7.1 7.1 7.1 7.1

.3 0.0 0.6 13.4 13.4 13.4 13.5 13.4

.3 0.1 1.3 20 20 20.1 20.1 20.1

.9 0.0 3.3 27.5 27.5 27.5 28.2 27.5

.4 1.2 7.8 31.7 31.7 32.1 32.6 31.8

.0 0.0 0.8 1.0 1.0 1.0 1.0 1.0

.9 0.0 1.6 1.9 1.9 1.9 2.0 1.9

.4 0.0 2.3 2.5 2.5 2.5 2.7 2.5

.3 0.1 3.1 3.1 3.1 3.1 3.3 3.1

.4 0.3 5.1 3.9 3.9 3.9 4.0 3.9

.9 0.0 0.4 5.1 5.1 5.1 5.5 5.1

.2 0.0 1.0 9.4 9.4 9.4 9.7 9.5

.3 0.1 2.0 13.9 13.9 14.0 14.0 14.0

.8 0.3 3.0 18.9 18.9 19.1 19.8 19.1

.6 0.4 4.6 22.3 22.3 22.6 23.6 22.6

.0 0.0 0.5 1.0 1.0 1.0 1.0 1.0

.0 0.0 1.2 1.9 1.9 1.9 1.9 1.9

.0 0.0 2.4 2.5 2.5 2.5 2.6 2.5

.3 0.2 3.5 3.1 3.2 3.3 3.3 3.3

.3 0.4 5.7 3.8 3.8 3.8 4.0 3.8

.9 0.0 0.5 6.5 6.5 6.5 6.6 6.5

.7 0.0 1.0 11.9 11.9 11.9 11.9 11.9

.5 0.1 2.1 18 18 18.1 18.2 18

.0 0.1 3.2 24.7 24.7 24.9 25.1 24.8

.7 0.7 4.8 28.2 28.2 28.8 29.5 28.7

.0 0.0 0.6 1.0 1.0 1.0 1.0 1.0

.7 0.1 1.3 1.7 1.7 1.8 1.9 1.8

.9 0.0 2.6 2.1 2.1 2.2 2.2 2.1

.0 0.0 3.7 3.0 3.0 3.0 3.0 3.0

.8 0.5 6.2 3.4 3.4 3.4 3.4 3.4

.0 0.0 0.4 5.5 5.5 5.5 5.5 5.5

.1 0.1 1.0 11.1 11.1 11.3 11.4 11.1

.2 0.2 2.1 15.9 15.8 15.9 16.2 16.0

.8 0.0 3.5 23.2 23.2 23.2 23.2 23.2

.5 0.3 4.7 27.1 27.1 27.5 27.7 27.4

.9 0.0 0.4 5.8 5.8 5.8 5.8 5.8

.2 0.0 1.0 11.3 11.3 11.4 11.4 11.3

.5 0.2 2.0 16.1 16.2 16.3 16.2 16.2

.6 0.2 3.3 22.4 22.4 22.5 22.6 22.6

.1 0.2 4.8 27.8 27.9 28.1 28.4 28.0

.0 0.0 0.4 14.3 14.3 14.3 14.3 14.3

.0 0.0 1.0 27.8 27.8 27.8 27.8 27.8

.0 0.0 2.4 43.7 43.7 43.7 43.8 43.7

.0 0.0 4.0 57.7 57.7 57.7 57.7 57.7

.0 0.0 6.6 69.5 69.5 69.5 69.5 69.5

.3 0.0 0.5 4.2 4.2 4.2 4.3 4.3

.9 0.0 1.1 7.4 7.4 7.4 7.5 7.4

.5 0.2 2.2 10.0 10.1 10.2 10.4 10.2

.6 0.2 3.4 12.9 12.8 13.0 13.0 13.0

.0 0.5 4.7 15.9 15.9 16.2 16.6 16.2

7241 7243 7284 7360 7275

Table 10
Results for the two-dimensional instances. Part II.

Class n Inst LBn BRKGA-BPP GVND SCH GLS TS3

2r NB aNB aG aT T-200

cgcut 16–62 3 9 7.67 9 9 1.0 0.01 1.84 9 9 9 9
gcut 10–50 13 8 7.31 8 8 2.0 0.01 0.69 8 8 8 8.31
ngcut 7–22 12 2.67 2.5 2.67 2.67 1.0 0.00 0.96 2.67 2.67 2.67 3
beng 1–8 20–120 8 6.75 6.75 6.75 6.75 14.1 0.09 3.29 6.75 6.88
beng 9–10 160–200 2 6.5 6.5 6.5 6.5 1.0 0.13 26.99 6.5

Note: The best values for the versions with no rotation appear in bold.

Table 11
Evolution of the total number of bins, aNB, and the percentage of best solutions found, %Best, as the number of generations increases.

Datasets Number of Generations

1 10 25 50 75 100 125 150 175 200

3D aND 10066 9959 9862 9806 9798 9791 9786 9781 9778 9777
%Best 34% 50% 74% 91% 93% 96% 97% 99% 100% 100%

2D�1 aND 7359 7299 7261 7248 7245 7241 7234 7234 7234 7234
%Best 75% 87% 95% 97% 98% 98% 100% 100% 100% 100%

2D�2 aND 236 232 231 231 231 230 230 230 230 230
%Best 84% 95% 97% 97% 97% 100% 100% 100% 100% 100%

J.F. Gonçalves , M.G.C. Resende / Int. J. Production Economics 145 (2013) 500–510 509
to algorithm TS2P the results show that BRKGA-BPP obtains better
values for 15 subclasses, obtains equal values for 7 subclasses
and obtains worse values for only 2 subclasses (4–100 and
8–100). The statistical analysis of the results using the Wilcoxon
test for the matched pairs BRKGA�BPPoTS3, BRKGA�BPPo
GVND, BRKGA�BPPoTS2PACK and BRKGA�BPPoGLS show that
BRKGA-BPP is significantly better than all the other algorithms
obtaining p-values for all paired comparisons smaller than 0.001.

The computational results corresponding to the 2D instances are
shown in Tables 9 and 10, which compare the solutions obtained by
BRKGA-BPP with the other benchmark algorithms referred in Table 2.
In Table 9, each row shows the average values for the instances of
each class-size. Column 4 shows LBn, the lower bound reported by
Monaci and Toth (2006), computed by applying all the lower-
bounding procedures from the literature and an exact algorithm for
a long computing time. Columns 5–10 contain details of our BRKGA-
BPP algorithm: the column with header 2r represents the average
best solution found when all the two rotations are allowed and the
fitness function used is aNB; the column with header NB represents
the average best solution found when no rotations are allowed and
the fitness function used is NB; the column with header aNB
represents the average best solution found when no rotations are
allowed and fitness function used is aNB; the columns with headers
aG, aT, and T-200 represent, respectively, the average number of
generations to the best solution, the average time to the best
solution, and the average time for 200 generations. The last five
rows show the results for a complete comparison with GVND, SCH,
GLS, TS3, and HBP. Table 10, has the same structure as Table 9 and
compares BRKGA-BPP with the other benchmark algorithms on a set
of two-dimensional instances which are well-known in the literature.
The results in Table 9 show that BRKGA-BPP consistently equals
or outperforms algorithms GVND, SCH, GLS, TS3, and HBP in all
subclasses. The statistical analysis of the results using the Wilcoxon
test for the matched pairs BRKGA�BPPoGVND, BRKGA�BPPoSCH,
BRKGA�BPPoGLS, BRKGA�BPPoTS2P, and BRKGA�BPPoHBP
show that BRKGA-BPP is significantly better than all the other
algorithms obtaining, p-values for all paired comparisons smaller
than 0.01.
For the subclasses in Table 10 the BRKGA-BPP algorithm obtains
the same values as GVND and GLS and outperforms SCH and TS3 in
one of the subclasses.

The improved performance of the novel fitness measure,
adjusted number of bins, aNB, in relation to the usual number of
bins, NB, is clearly demonstrated in Tables 8 and 9 where aNB
produces better results than NB for 17 3D-subclasses and for 7 2D-
subclasses. Overall, the use of aNB instead of NB reduced the total
number of bins from 9806 to 9777 for the 3D instances and from
7241 to 7234 for the 2D instances.

Table 11 presents the evolution of the total number of bins,
aNB, and the percentage of best solutions found, %Best, as the
number of generations increases for all the three datasets. From
Table 11 it is clear that BRKGA-BPP would still obtain better results
than the other approaches even if only 50 generations were used
for the 3D datasets and if only 125 generations were used for the
2D datasets.

In terms of computational times, we cannot make any fair and
meaningful comments since all the other approaches were imple-
mented and tested on computers with different computing power.
Instead, we limit ourselves to reporting the average running times
to the best solution and for 200 generations.
4. Concluding remarks

In this paper we addressed the three-dimensional bin packing
problem which consists in packing, with no overlapping, a set of
three-dimensional rectangular shaped boxes into the minimum
number of three-dimensional rectangular shaped bins. All the bins
have identical known dimensions and each box i is has dimensions
ðdi;wi;hiÞ for i¼ 1;…;n. It is assumed that the boxes can be
rotated.

A novel biased random-key genetic algorithm (BRKGA) for the
2D-SBSBPP and 3D-SBSBPP was developed. The approach uses a
maximal-space representation to manage the free spaces in the
bins (Lai and Chan, 1997). The proposed algorithm hybridizes a
novel placement procedure with a genetic algorithm based on

J.F. Gonçalves , M.G.C. Resende / Int. J. Production Economics 145 (2013) 500–510510
random keys. The BRKGA is used to evolve the order in which the
boxes are packed into the bins and the parameters used by the
placement procedure. Two heuristic procedures, DTFTRC-1 and
DTFTRC-2, are used to determine the bin and the free maximal
space where each box is placed. A novel fitness function that
improves significantly the solutions quality is also developed.

The new approach is extensively tested on 858 problem
instances and compared with other approaches published in the
literature. The computational experiments results demonstrate
that the new approach consistently equals or outperforms the
other approaches and the statistical analysis confirms that the
approach is significantly better than all the other approaches.
Acknowledgments

This work has been supported by funds granted by the ERDF
through the Programme COMPETE and by the Portuguese Govern-
ment through FCT – Foundation for Science and Technology,
project PTDC/EGE-GES/117692/2010.

References

Bean, J., 1994. Genetic algorithms and random keys for sequencing and optimiza-
tion. ORSA Journal on Computing 6, 154–160.

Beasley, J., 1985a. Algorithms for unconstrained two-dimensional guillotine cutting.
Journal of the Operational Research Society 36, 297–306.

Beasley, J., 1985b. An exact two-dimensional non-guillotine cutting tree search
procedure. Operations Research 33, 49–64.

Bengtsson, B., 1982. Packing rectangular pieces – a heuristic approach. The
Computer Journal 25, 353–357.

Berkey, J., Wang, P., 1987. Two-dimensional finite bin-packing algorithms. Journal
of the Operational Research Society 38, 423–429.

Boschetti, M., 2004. New lower bounds for the three-dimensional finite bin packing
problem. Discrete Applied Mathematics 140, 241–258.

Boschetti, M., Mingozzi, A., 2003a. The two-dimensional finite bin packing problem.
Part I. New lower bounds for the oriented case. 4OR: A Quarterly Journal of
Operations Research 1, 27–42.

Boschetti, M., Mingozzi, A., 2003b. The two-dimensional finite bin packing problem.
Part II. New lower and upper bounds. 4OR: A Quarterly Journal of Operations
Research 1, 135–147.

Christofides, N., Whitlock, C., 1977. An algorithm for two-dimensional cutting
problems. Operations Research 25, 30–44.

Crainic, T., Perboli, G., Tadei, R., 2009. TS2PACK: a two-level tabu search for the
three-dimensional bin packing problem. European Journal of Operational
Research 195, 744–760.

den Boef, E., Korst, J., Martello, S., Pisinger, D., Vigo, D., 2005. Erratum to “The three-
dimensional bin packing problem”: robot-packable and orthogonal variants of
packing problems. Operations Research 53, 735–736.

Faroe, O., Pisinger, D., Zachariasen, M., 2003. Guided local search for the three-
dimensional bin-packing problem. INFORMS Journal on Computing 15,
267–283.

Fekete, S., Schepers, J., 1997. A new exact algorithm for general orthogonal d-
dimensional knapsack problems. In: Algorithms–ESA'97, Springer, pp. 144–156.

Fekete, S., Schepers, J., 2004. A combinatorial characterization of higher-
dimensional orthogonal packing. Mathematics of Operations Research 29,
353–368.
Fekete, S., Schepers, J., VanderVeen, J., 2007. An exact algorithm for higher-
dimensional orthogonal packing. Operations Research 55, 569–587.

Goncalves, J.F., Sousa, P.S.A., 2011. A genetic algorithm for lot sizing and scheduling
under capacity constraints and allowing backorders. International Journal of
Production Research 49, 2683–2703.

Gonçalves, J.F., Almeida, J.R., 2002. A hybrid genetic algorithm for assembly line
balancing. Journal of Heuristics 8, 629–642.

Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C., 2005. A hybrid genetic algorithm for
the job shop scheduling problem. European Journal of Operational Research
167, 77–95.

Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C., 2009. A genetic algorithm for the
resource constrained multi-project scheduling problem. European Journal of
Operational Research 189, 1171–1190.

Gonçalves, J.F., Resende, M.G.C., 2004. An evolutionary algorithm for manufacturing
cell formation. Computers and Industrial Engineering 47, 247–273.

Gonçalves, J.F., Resende, M.G.C., 2011. Biased random-key genetic algorithms for
combinatorial optimization. Journal of Heuristics 17, 487–525.

Gonçalves, J.F., Resende, M.G.C., 2012. A parallel multi-population biased random-
key genetic algorithm for a container loading problem. Computers and Opera-
tions Research 39, 179–190.

Gonçalves, J.F., Resende, M.G.C., Mendes, J.J.M., 2011. A biased random-key genetic
algorithm with forward-backward improvement for the resource constrained
project scheduling problem. Journal of Heuristics 17, 467–486.

Hartmann, S., 2000. Packing problems and project scheduling models: an integrating
perspective. Journal of the Operational Research Society, 1083–1092.

Johnson, D., 1973. Near-Optimal Bin Packing Algorithms. Ph.D. Thesis, Massachu-
setts Institute of Technology.

Lai, K., Chan, J., 1997. Developing a simulated annealing algorithm for the cutting
stock problem. Computers and Industrial Engineering 32, 115–127.

Liu, D., Teng, H., 1999. An improved BL-algorithm for genetic algorithm of the
orthogonal packing of rectangles. European Journal of Operational Research
112, 413–420.

Lodi, A., Martello, S., Vigo, D., 1999. Approximation algorithms for the oriented two-
dimensional bin packing problem. European Journal of Operational Research
112, 158–166.

Lodi, A., Martello, S., Vigo, D., 2002. Heuristic algorithms for the three-dimensional
bin packing problem. European Journal of Operational Research 141, 410–420.

Lodi, A., Martello, S., Vigo, D., 2004. TSpack: a unified tabu search code for multi-
dimensional bin packing problems. Annals of Operations Research 131,
203–213.

Mack, D., Bortfeldt, A., 2012. A heuristic for solving large bin packing problems in
two and three dimensions. Central European Journal of Operations Research 20
(2), 337–354.

Martello, S., Pisinger, D., Vigo, D., 2000. The three-dimensional bin packing
problem. Operations Research 48, 256–267.

Martello, S., Pisinger, D., Vigo, D., Boef, E., Korst, J., 2007. Algorithm 864: general
and robot-packable variants of the three-dimensional bin packing problem.
ACM Transactions on Mathematical Software 33, 7:1–7:12.

Martello, S., Vigo, D., 1998. Exact solution of the two-dimensional finite bin packing
problem. Management Science 44, 388–399.

Monaci, M., Toth, P., 2006. A set-covering-based heuristic approach for bin-packing
problems. INFORMS Journal on Computing 18, 71–85.

Park, K., Lee, K., Park, S., Kim, S., 1996. Modeling and solving the spatial block
scheduling problem in a shipbuilding company. Computers and Industrial
Engineering 30, 357–364.

Parreño, F., Alvarez-Valdes, R., Oliveira, J., Tamarit, J., 2010. A hybrid GRASP/VND
algorithm for two-and three-dimensional bin packing. Annals of Operations
Research 179, 203–220.

Spears, W., Dejong, K., 1991. On the virtues of parameterized uniform crossover. In:
Proceedings of the Fourth International Conference on Genetic Algorithms,
pp. 230–236.

Wäscher, G., Haussner, H., Schumann, H., 2007. An improved typology of cutting
and packing problems. European Journal of Operational Research 183,
1109–1130.

http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref1
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref1
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref2
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref2
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref3
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref3
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref4
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref4
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref5
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref5
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref6
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref6
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref7
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref7
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref7
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref8
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref8
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref8
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref9
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref9
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref10
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref10
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref10
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref10
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref11
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref11
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref11
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref12
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref12
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref12
http://refhub.elsevier.com/S0925-5273(13)00183-7/othref0005
http://refhub.elsevier.com/S0925-5273(13)00183-7/othref0005
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref14
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref14
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref14
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref15
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref15
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref16
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref16
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref16
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref17
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref17
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref18
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref18
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref18
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref19
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref19
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref19
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref20
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref20
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref21
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref21
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref22
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref22
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref22
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref23
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref23
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref23
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref24
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref24
http://refhub.elsevier.com/S0925-5273(13)00183-7/othref0010
http://refhub.elsevier.com/S0925-5273(13)00183-7/othref0010
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref26
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref26
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref27
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref27
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref27
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref28
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref28
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref28
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref29
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref29
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref30
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref30
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref30
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref31
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref31
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref31
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref32
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref32
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref33
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref33
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref33
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref34
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref34
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref35
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref35
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref36
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref36
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref36
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref37
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref37
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref37
http://refhub.elsevier.com/S0925-5273(13)00183-7/othref0015
http://refhub.elsevier.com/S0925-5273(13)00183-7/othref0015
http://refhub.elsevier.com/S0925-5273(13)00183-7/othref0015
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref39
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref39
http://refhub.elsevier.com/S0925-5273(13)00183-7/sbref39

	A biased random key genetic algorithm for 2D and 3D bin packing problems
	Introduction
	Biased random-key genetic algorithm
	Overview
	Biased random-key genetic algorithm
	Chromosome representation and decoding
	Fitness function

	Placement strategy
	Maximal-spaces
	Placement heuristics
	Box orientation
	Placement procedure

	Parallel implementation

	Numerical experiments
	Benchmark algorithms
	Test problem instances
	GA configuration
	Computational results

	Concluding remarks
	Acknowledgments
	References

