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Abstract. Given the large volumes and dynamics of data that recommender systems
currently have to deal with, we look at online stream based approaches that are able to
cope with high throughput observations. In this paper we describe work on incremental
neighborhood based and incremental matrix factorization approaches for binary ratings,
starting with a general introduction, looking at various approaches and describing existing
enhancements. We refer to recent work on forgetting techniques and multidimensional
recommendation. We will also focus on adequate procedures for the evaluation of online
recommender algorithms.

1 Introduction

“Recommender system” is a designation that is currently used in more than one sense. Neverthe-
less, it typically refers to an information system, or part of it, that assists users in making choices
from a very large catalog of items [26]. Although quite common in e-commerce, recommendation
capabilities appear in a great variety of applications and situations, including e-learning [15],
health [8], human resource management [31] and public transports [19]. Central to each recom-
mender systems is the filtering criterion that is applied to the whole collection of available items.
This criterion can be defined in many different ways, depending on the approach and on the
available information at the time of recommendation.

The impact of recommender systems is now clearly recognized by companies and society. Ama-
zon, a company who had a major role in the popularization of modern automatic recommenders,
acknowledges that 35% of consumer choices are driven by recommendations [20]. Netflix reports
a considerably larger value of 75%, which is comprehensible given that the service is payed via a
flat rate and the consumption of movies and tv series can be done in a more streaming fashion.
It is also recognized that displayed recommendations can improve the reputation of items, even
if the predicted rating is low [23]. Recommendations may reduce the variety of items that users
consume (the filter bubble effect), but may also allow the discovery of novel music and books,
timidly moving towards the serendipity effect. Recommendations may also promote a rich get
richer phenomenon and make marketeers worry about getting noticed by algorithms rather than
getting noticed by users [13].

The two central entities of a recommender system are users and items. The general setting is
that users interact with items, are interested in new items and items are recommended to users.
The algorithms that produce the recommendations rely on models of both users and items. The
modeling of users is called profiling and is based on the selection of descriptive measurable dimen-
sions. Among these we may use demographic information, user activity and existing interaction
with items (e.g. user bought item, user viewed item description, user listened to music), user’s



social connections, textual reviews, numerical ratings, etc. Items are also modeled on the basis
of item content, including meta-data, item textual description and, if available, images or audio.
Any item usage data (user-item interactions) can also be used to characterize and profile items.
In general, an automatic recommendation can have the form of a predicted score (estimation of
how much a user likes an item), a Top-N list with the N most likely preferred items or even a
structured suggestion such as trip with multiple stops.

In this paper we describe our contributions to the problem of Top-N recommendation explor-
ing interaction data. We focus on online/incremental algorithms, as well as techniques that help
deal with temporal issues and the exploration of multiple dimensions.

2 Profiling

It is costumary to divide the flavors of user and item profiling into content based and usage
based. This results in content based filtering and collaborative filtering. An example of the former
is: “If the user likes prize-winning novelists then recommend a book written by a Nobel prize
of literature”. In this case, characteristics of item content are used to produce the matching.
In collaborative filtering, information is gathered from a set of users and their interaction with
items. Since no content data has to be used, collaborative filtering recommenders do not have to
possess any kind of capability of “understanding” the content and merely rely on the “wisdom
of the crowd”. Although this is, more often than not, an advantage, it can also be a source of
the “tyranny of the average”, making life harder to users in behavior niches. It also suffers more
easily of difficulties in making recommendations to new users or in recommending new items,
the so called cold start problems.

In collaborative filtering approaches, profiling a specific user can be reduced to collecting the
interaction of that user with items. One possible interaction is the rating of items by the users.
These ratings are values in a pre-defined range, e.g. one to five stars, and can be treated as
continuous. In this case the profile of the user can be represented by a real valued vector with as
many dimensions as items. Ratings express explicit opinions of users, require more effort from
the user and are, for that reason, relatively hard to obtain. They provide, however, high quality
information. Another possible interaction is an action of the user over an item that indicates
some interest or preference of the user for that item. One common example of such an action is
“user bought item”. The profile of an user is then a binary vector with ones on the dimensions
corresponding to preferred items. Another way of seeing the profile in this binary setting is as
the set of items the user interacted with. The binary setting is also sometimes called unary
since only positive information is collected. Binary data is typically much cheaper to obtain than
ratings data since it can result from the normal interaction of users with items, as they browse
the catalog or decide to buy. An intermediate possibility is to automatically infer the degree of
preference of an user from the natural interactions with the items. For example, we can infer
that a user likes a music track less or more given the number of times it is played. These are
called implicit ratings.

3 Baseline collaborative filtering algorithms

Most state-of-the-art Collaborative Filtering (CF) algorithms are based on either neighborhood
methods or matrix factorization. Fundamentally, these differ on the strategy used to process user
feedback. This user feedback can be conceptually seen as a user-item matrix, known in most
literature as the ratings matrix, in which cells contain information about user preferences over
items.
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3.1 Neighborhood-based algorithms

Neighborhood-based algorithms essentially compute user or item neighborhoods using a user
defined similarity measure. Typical measures include the cosine and Pearson correlation [28].
If the rows of the user-item matrix R represent users, and the columns correspond to items,
similarity between two users u and v is obtained by measuring the similarity between the rows
corresponding to those users, Ru and Rv. Similarity between two items i and j can be obtained
between the columns corresponding to those items Ri and Rj . Recommendations are computed
by searching and aggregating through the user’s or item’s k nearest neighbors. The optimal
value of k is data dependent and can be obtained using cross-validation. The main advantages
of neighborhood methods are their simplicity and ease of implementation, as well as the trivial
explainability of recommendations – user and item similarities are intuitive concepts.

User-based CF exploits similarities between users to form user neighborhoods. For example,
given two users u and v, the cosine similarity between them takes the rows of the ratings matrix
Ru and Rv as vectors in a space with dimension equal to the number of items rated by both u
and v:

sim(u, v) = cos(Ru, Rv) =
Ru ·Rv

||Ru|| × ||Rv||
=

∑
i∈Iuv

RuiRvi√∑
i∈Iu R

2
ui

√∑
i∈Iv R

2
vi

(1)

where Ru ·Rv represents the dot product between Ru and Rv, Iu and Iv are the sets of items
rated by u and v respectively and Iuv = Iu ∩ Iv is the set of items rated by both users u and v.
Other similarity measures can be used, such as the Pearson Correlation. Euclidean measures are
typically not used, given the very high dimensionality of the problem.

To compute the rating prediction R̂ui given by the user u to item i, an aggregating function
is used that combines the ratings given to i by the subset Ku ⊆ U of the k nearest neighbors of
u – e.g. (2).

R̂ui =

∑
v∈Ku

sim(u, v)Rvi∑
v∈Ku

sim(u, v)
(2)

Similarity between items can also be explored to provide recommendations [28, 14]. One
practical way of looking at it is simply to transpose the user-item ratings matrix and then apply
the exact same method. The result of the training algorithm will be an item-item similarity
matrix.

Neighborhood-based CF for binary data

The methods in Section 3.1 are designed to work with numerical ratings. Neighborhood-based
CF for binary data can actually be seen as a special case of neighborhood-based CF for ratings,
by simply considering Rui = 1 for all observed (u, i) user-item pairs and Rui = 0 for all other
cells in the feedback matrix R. Both notation and implementation can be simplified with this.
For example, the cosine for binary ratings can be written as:

sim(u, v) = cos(Ru, Rv) =

∑
i∈Iuv

RuiRvi√∑
i∈Iu R

2
ui

√∑
i∈Iv R

2
vi

=
|(Iu ∩ Iv)|√
|Iu| ×

√
|Iv|

(3)

where Iu and Iv the set of items that are observed with u and j, respectively.
The cosine formulation in (3) reveals that it is possible to calculate user-user similarities using

simple occurrence and co-occurrence counts. A user u is said to co-occur with user v for every
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item i they both occur with. Similarly, in the item-based case, an item i is said to co-occur with
item j every time they both occur with a user u.

Rating predictions can be as well made using (2). The value of R̂ui will be a score between 0
and 1, by which a list of candidate items for recommendation can be sorted in descending order
for every user.

3.2 Matrix factorization

Matrix Factorization recommendation algorithms are inspired by Latent Semantic Indexing (LSI)
[3], an information retrieval technique to index large collections of text documents. LSI performs
the Singular Value Decomposition (SVD) of large document-term matrices. In a recommendation
problem, the same technique can be used in the user-item matrix, uncovering a latent feature
space that is common to both users and items. The problem with SVD is that classic factorization
algorithms, such as Lanczos methods, are not defined for sparse matrices, which raises problems
on how to compute the factorization.

As an alternative to classic SVD, optimization methods have been proposed to decompose
(very) sparse user-item matrices.

Fig. 1: Matrix factorization: R = UV T .

Figure 1 illustrates the factorization problem. Supposing we have a user-item matrix Rm×n
with m users and n items, the algorithm decomposes R in two full factor matrices Um×k and
Vn×k that, similarly to SVD, cover a common k-dimensional latent feature space, such that R
is approximated by R̂ = UV T . Matrix U spans the user space, while V spans the item space.
The k latent features describe users and items in a common space. Given this formulation, the
predicted rating by user u to item i is given by a simple dot product:

R̂ui = Uu · Vi (4)

The number of latent features k is a user given parameter that controls the model size.
The model consists of U and V , so the training task consists of estimating the values in U and

V that minimize the prediction error on the known ratings. Training is performed by minimizing
the L2-regularized squared error for known values in R:

min
U.,V.

∑
(u,i)∈D

(Rui − Uu · Vi)2 + λu||Uu||2 + λi||Vi||2 (5)
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In the above equation, D is the set of user-item pairs for which ratings are known and λ
is a parameter that controls the amount of regularization. The regularization terms λ||Uu||2
and λi||Vi||2 are used to avoid overfitting. These terms penalize parameters with high magni-
tudes, that typically lead to overly complex models with low generalization power. For the sake
of simplicity, it is common to use λ = λu = λi, which results in a single regularization term
λ(||Uu||2 + ||Vi||2). Stochastic Gradient Descent (SGD) is an efficient method to solve the opti-
mization problem above. It has been informally proposed in [9] and many extensions have been
proposed ever since [22, 11, 30, 27]. One obvious advantage of SGD is that complexity grows lin-
early with the number of known ratings in the training set, actually taking advantage of the high
sparsity of R.

The algorithm starts by initializing matrices U and V with random numbers close to 0 –
typically following a gaussian N (µ, σ) with µ = 0 and and small σ. Then, given a training set
with tuples in the form (u, i, r) – the rating r of user u to item i –, SGD performs several passes
through the dataset, known as iterations or epochs, until a stopping criterion is met – typically
a convergence bound and/or a maximum number of iterations. At each iteration, SGD updates
the corresponding rows Uu and Vi, correcting them in the opposite direction of the gradient of
the error, by a factor of η ≤ 1 – known as step size or learn rate. For each known rating, the
corresponding error is calculated as errui = Rui − R̂ui, and the following update operations are
performed:

Uu ← Uu + η(erruiVi − λUu)

Vi ← Vi + η(erruiUu − λVi)
(6)

3.3 Matrix factorization for binary data

The above method is designed to work with ratings. The input of the algorithm is a set of triples
in the form (u, i, r), each corresponding to a rating r given by a user u to an item i. It is possible
to use the same method with binary data by simply assuming that r = 1 for all cases [33]. This
results in the following optimization problem:

min
U.,V.

∑
(u,i)∈D

(1− Uu · Vi)2 + λu||Uu||2 + λi||Vi||2 (7)

In the end, the predicted “ratings” R̂ui = Uu ·Vi will be a value indicating a user’s preference
level for an item. This value can be used in a sorting function f to order a list of items:

fui = |1− R̂ui| (8)

In (8), fui measures the proximity of a predicted rating to 1. Uu and Vi are always adjusted
to minimize the error with respect to 1, so it is natural to assume that the most relevant items
for a user u are the ones that minimize f . Note that since we are not imposing non-negativity
on the model, we need to use the absolute value of the difference in (8).

4 Incrementality

In real world systems, user feedback is generated continuously, at unpredictable rates, and is
potentially unbounded – i.e. it is not assumed to stop coming. Moreover, the rate at which user
activity data is generated can be very fast. Building predictive models on these continuous flows
of data is a problem actively studied in the field of data stream mining [5].
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One efficient way to deal with data streams is to maintain incremental models and per-
form on-line updates as new data points become available. This simultaneously addresses the
problem of learning non-stationary concepts and computational complexity issues. However, this
requires algorithms able to process data at least as fast as it is generated. Incremental algorithms
for recommendation are not frequently addressed in the recommender systems literature, when
compared to batch-learning algorithms for recommendation, which are much more thoroughly
studied.

User feedback data in recommender systems shares all the characteristics of a data stream.
It is continuously generated online, at unpredictable rates and the length of the data is po-
tentially unbounded. Having this in consideration, it becomes clear that the batch approach to
recommender systems has fundamental limitations.

Stream mining algorithms should be able to timely process streams, at the risk of not being
able to keep up with the arrival rate of data elements. To apply this principle to recommender
systems, we simply have to look at the recommendation problem as a data stream problem. This
approach has several implications in the algorithms’ design and evaluation – see Sec. 7. Regarding
the algorithms’ design and implementation, one practical way to deal with data streams is to use
algorithms that are able to update models incrementally.

4.1 Incremental neighborhood methods

Classic neighborhood-based CF algorithms – user- and item-based – have been adapted to work
incrementally. The main idea in both cases is to maintain the factors of the similarity function in
memory, and update them with simple increments each time a new user-item interaction occurs.

In [21], Papagelis et al. propose an algorithm that incrementally updates the values in the
user-user similarity matrix. When a user u rates an item, the similarity values between u and
other users are obtained with increments to previous values. Using the Pearson Correlation, the
factors of the similarity calculation between user u and another user v are split in the following
way:

A =
B√
C
√
D

(9)

Given the set I of items co-rated by both u and v, factors A, B and C correspond to the
following terms:

A = sim(u, v),
B =

∑
i∈I(ru,i − r̄u)(rv,i − r̄v),

C =
∑

i∈I(ru,i − r̄u)2 ,
D =

∑
i∈I(rv,i − r̄v)2

It is intended to obtain the new similarity A′ from B, C and D, and the new incoming rating:

A′ =
B′√
C ′
√
D′
⇔ A′ =

B + e√
C + f

√
D + g

(10)

where e, f and g are increments that are easy to calculate after a rating arrives. The actual
definitions of e, f and g depend on whether we are adding a new rating or updating an existing
one, and we omit them here for the sake of clarity and space. Note that to incrementally update
the similarities, the values of B, C and D for all pairs of users must be always available, which
requires additional memory. Nevertheless, this simple technique allows fast online updates of the
similarity values between the active user and all others.

Miranda and Jorge [18] study incremental algorithms using binary data. The incremental
calculation of item-item cosine similarities can be based on user occurrence and co-occurrence
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counts. A user-user co-occurrence matrix F containing the number of items common to each pair
of users can be kept. The diagonal of F contains the number of independent occurrences of each
user – i.e. the number of items the user occurs with. Every time a new user-item pair (u, i) is
observed in the dataset, the corresponding counts are incrementally updated. Using these counts,
the similarities of user u with any other user v can be easily (re)calculated and stored.

Suv = sim(u, v) =
Fuv√

Fuu ×
√
Fvv

(11)

Alternatively, we can use this incremental approach in item-based algorithms.

4.2 Incremental matrix factorization

Early work on incremental matrix factorization for recommender systems is presented in [29],
where Sarwar et al. propose a method to perform incremental updates of the Singular Value
Decomposition (SVD) of the ratings matrix. This is a direct application of the Fold-in method
[3], that essentially enables the calculation of new latent vectors (corresponding to new users or
new items) based on the current decomposition and by appending them to the corresponding
matrices. One shortcoming of this method is that it is applicable only to pure SVD, and it
requires an initial batch-trained model.

Takács et al. address the problem of incremental model updates in [30] in a matrix factoriza-
tion algorithm for ratings data. The idea is to retrain user features every time new ratings are
available, but only for the active user(s), leaving item features unmodified, avoiding the whole
process of batch-retraining the model. This method is a step forward in incremental learning,
however it has the following limitations:

– The algorithm requires initial batch training;
– The whole ratings history R is required to update user features;
– Item features are not updated, and new items are not accounted for.

Both the above contributions still require batch learning at some point, that consists of
performing several iterations over a learning dataset. While this may be an acceptable overhead
in a static environment, it is not straightforwardly applicable with streaming data. As the number
of observations increases and is potentially unbounded, repeatedly revisiting all available data
eventually becomes too expensive to be performed online.

Fortunately, SGD is not a batch algorithm [12]. The only reason why several passes are made
over a (repeatedly shuffled) set of data is because there is a finite number of examples. Iterating
over the examples in different order several times is basically a trick to improve the learning
process in the absence of fresh examples. If we assume – as we have to, in a data stream scenario
– that there is a continuous flow of examples, this trick is no longer necessary. By this reasoning,
SGD can – and should – be used online if enough data is available [2].

In [33], we propose ISGD, an algorithm designed to work as an online process, that updates
factor matrices U and V based solely on the current observation. This algorithm, despite its for-
mal similarity with the batch approach, has two practical differences. First, the learning process
requires a single pass over the available data – i.e. it is essentially a memoryless algorithm, since
there is no fundamental need to revisit past observations. Second, no data shuffling – or any
other data pre-processing – is performed. Given that we are dealing with binary feedback we
approach the boolean matrix R by assuming the numerical value 1 for true values. Accordingly,
we measure the error as errui = 1 − R̂ui, and update the rows in A and BT using the update
operations in (6). Since we are mainly interested in top-N recommendation, we need to retrieve
an ordered list of items for each user. We do this by sorting candidate items i for each user u
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using the function fui = |1 − R̂ui|, where R̂ui is the non-boolean predicted score. In plain text,
we order candidate items by descending proximity to value 1.

One problem of ISGD is that the absence of negative examples leads to a model that converges
globally to the positive class. Take the extreme trivial solution of making R̂ui = 1 for all u and i. In
this case, errui = 0 in all cases, and no learning would be performed. In a more practical scenario,
we would initialize U and V with values close to 0, which would enforce learning. Nevertheless,
predictions will accumulate closer and closer around the target positive value. Eventually, the
algorithm loses discriminative power, causing accuracy degradation.

We propose a solution for this problem in [34], using recency-based negative feedback im-
putation. The strategy is to introduce a mechanism that automatically selects likely negative
examples. The intuition is that the items that have occurred the longest ago in the data stream
are better candidates to be taken as negative examples for any user. These are items that no
users have interacted with in the longest possible period of activity in the system. We maintain
a global priority queue of items occurring in the stream, independently of the user. For every
new positive user-item pair (u, i) in the data stream, we introduce a set {(u, j1), . . . , (u, jl)} of
negative feedback consisting of the active – currently observed – user u and the l items j that
are in the tail of the global item queue.

Incremental learn-to-rank

Learning to rank encompasses a set of methods that use machine learning to model the precedence
of some entities over others, assuming that there is at natural ordering between them. The top-N
recommendation task consist of retrieving the best ranked items for a particular user, so it is
natural to approach the task as a learn-to-rank problem.

This is the approached followed by Rendle et al. in [25] with their Bayesian Personalized
Ranking (BPR) framework. One shortcoming of this algorithm is that it is approached as a batch
method. However, although not documented in the literature, the implementation available in
the MyMediaLite5 software library provides an incremental implementation of the algorithm.
Essentially, the incremental version of BPR follows the same principle of ISGD, which is to
process data points sequentially in one pass, enabling the processing of streaming data.

Another incremental algorithm for ranking that uses a selective sampling strategy is proposed
by Diaz-Aviles et al. in [4]. The algorithm maintains a reservoir with a fixed number of observa-
tions taken randomly from a stream of positive-only user-item pairs. Every nth pair in the stream
is sampled to the reservoir with probability |R|/n, with |R| being the number of examples in the
reservoir. Model updates are performed by iterating through this reservoir rather than the entire
dataset. The strategy is to try to always rely on the most informative examples to update the
model.

5 Forgetting

One of the problems of learning from data streams is that the concepts being captured may
not be stationary. In recommender systems, users preferences usually change over time. This
means that an algorithm that correctly models user preferences in a certain time frame may not
accurately represent the same users’ preferences some time later. Incremental algorithms benefit
from being constantly updated with fresh data, therefore capturing these changes immediately,
however the model still retains the concepts learned from past data. One complementary way

5 http://www.mymedialite.net/
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to deal with this is to forget this outdated information, i.e. data that no longer represent the
concept(s) being learned by the algorithm.

5.1 Forgetting for neighborhood-based incremental CF

In our past work [32] we have used fading factors to gradually forget user feedback data using
neighborhood-based algorithms. We do this by successively multiplying by a positive scalar factor
α < 1 all cosine similarities between all pairs of users – or items, in an item-based algorithm – at
each incremental step, before updating the similarities with the new observations. If we consider
a symmetric similarity matrix S containing all similarity values between pairs of users – or pairs
of items –, this is achieved using the update S ← αS. The lower the value of α, the faster the
forgetting occurs. In practice, two users – or two items – become less similar as they co-occur
farther apart in time.

Our results show that this type of forgetting is beneficial for the algorithms’ accuracy, espe-
cially in the presence of sudden changes.

5.2 Forgetting with factorization-based incremental CF

We have studied forgetting strategies for incremental matrix factorization algorithms in a col-
laboration with Matuszyk and Spiliopoulou [16]. To achieve forgetting we use a total of eleven
forgetting strategies of two types: rating-based and latent-factor-based. The first performs forget-
ting of certain past ratings for each user, while the latter performs forgetting by readjusting the
latent factors in the user factor matrix, diminishing the impact of past ratings.

Ratings-based forgetting generally consists of forgetting sets of ratings. Formally, it is a
function that operates on the set of ratings Ru of a user u and generates a new set R′u ⊆ Ru:

f : Ru → R′u

We proposed the following six rating-based forgetting methods:

– Sensitivity-based forgetting, based on sensitivity analysis. The idea is to forget the ratings
that cause changes with higher-than-normal magnitude in the user model. The rationale is
that these ratings are typically not representative of the user preferences and should therefore
be forgotten. Practical examples of such ratings are the ones on items that are bought as
gifts, or when some person uses someone else’s account.

– Global sensitivity-based forgetting. Like the previous technique, it also forgets ratings that
have an impact that falls out of the regular one. The difference is that the sensitivity threshold
is measured globally instead of being personalized.

– Last N retention. Here the strategy is to retain the latest N ratings for each user. This acts
as a sliding window over the ratings of each user with at most N ratings.

– Recent N retention. Similar to Last N retention, except that N corresponds to time, instead
of a fixed number of ratings, retaining only the ratings that fall into the previous N time
units.

– Recall-based change detection. This strategy detects sudden drops in the incremental mea-
surement of Recall – i.e. downward variations above a certain threshold, which is maintained
incrementally as well – and forgets all ratings occurring before the detected change. This is
particularly helpful in environments where changes are abrupt.

– Sensitivity-based change detection6. This is similar to Recall-based change detection, except
that the criterion for detecting a change is the impact of new ratings. If a certain rating

6 The term sensitivity is used here with its broader meaning, not as a synonym of recall.
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changes the user profile dramatically, we assume that the change is real – the user has
actually changed preferences – and forget all past ratings.

Latent-factor-based forgetting operates directly on the factorization model, adjusting user or
item latent factors in a way that it imposes some type of forgetting. These adjustments to latent
factors are linear transformations in the form:

At+1
u = γ ·At

u + β

Bt+1
i = γ ·Bt

i + β

In the above equations, γ and β are dependent on one of the five strategies below:

– Forget unpopular items. This technique consists of penalizing unpopular items by multiplying
their latent vectors with a factor proportional to their frequency in the stream.

– User factor fading. Here, user latent factors are multiplied by a positive factor γ < 1. This
causes the algorithm to gradually forget user profiles, benefiting recent user activity and
penalizing past activity.

– SD-based user factor fading. This technique also multiplies user factors by a scalar value,
except that this value is not a constant, but rather depends on the volatility of user factors.
Users whose factors are more unstable have a higher forgetting rate than those whose profiles
are more stable.

– Recall-based user factor fading. Similarly to the previous strategy, users have differentiated
forgetting factors. This technique amplifies the forgetting factor for users that have low
Recall.

– Forget popular items. This is the opposite of “Forget unpopular items”. Frequent items are
penalized as opposed to the non-frequent ones.

Using the BRISMF algorithm [30] as baseline, we implement and evaluate the above strategies
on eight datasets, four of which contain positive-only data, while the other four contain numerical
ratings.

Our findings in [16] show that forgetting significantly improves the performance of recom-
mendations in both types of data – positive-only and ratings. Latent-factor-based forgetting
techniques, and particularly “SD-based user factor fading”, have shown to be the most success-
ful ones both on the improvement of recommendations and in terms of computational complexity.

6 Multidimensional recommendation

The data which are most often available for recommender systems are web access data that
represent accesses from users to pages. Therefore, the most common recommender systems focus
on these two dimensions. However, other dimensions, such as time and type of content (e.g.,
type of music that a page concerns in a music portal) of the accesses, can be used as additional
information, capturing the context or background information in which recommendations are
made in order to improve their performance. For instance, the songs recommended by a music web
site (e.g., Last.fm) to a user who likes rock music should be different from the songs recommended
to a user who likes pop music.

We can classify the multidimensional recommender systems into three categories [1]: pre-
filtering, modeling and post-filtering. In pre-filtering, the additional dimensions are used to filter
out irrelevant items before building the recommendation model. Modeling consists in using the
additional dimensions inside the recommendation algorithms. In post-filtering, the additional

10



dimensions are used after building the recommendation model to reorder or filter out recommen-
dations.

One approach that combines pre-filtering and modeling, called DaVI (Dimensions as Virtual
Items), enables the use of multidimensional data in traditional two-dimensional recommender
systems. The idea is to treat additional dimensions as virtual items, using them together with the
regular items in a recommender system [7]. Virtual items are used to build the recommendation
model but they can not be recommended. On the other hand, regular items are used to build the
model and they can also be recommended. This simple approach provides good empirical results
and allows the use of existing recommenders.

The DaVI approach consists in converting each multidimensional session into an extended
two-dimensional session. The values of the additional dimensions, such as “day=monday” are
used as virtual items together with the regular items. The DaVI approach can also be applied
to a subset of dimensions or even to a single dimension.

Once we convert a set of multidimensional sessions S′ into a set of extended two-dimensional
sessions S′′, building/learning a multidimensional recommendation model consists in applying
a two-dimensional recommender algorithm on S′′. We illustrate the learning process using the
DaVI approach in Figure 2, where the values of the additional dimension Hour are used as
virtual items.

Fig. 2: Illustration of the learning process using the DaVI approach.

7 Evaluation

There are two main categories of evaluation procedures: offline and online. In the latter case,
the recommender system is run on real users, and typically an A/B test is conducted [6]. In the
former case the system is evaluated on archived data, where part is saved for training a model
and the rest for testing the result. Offline evaluation is arguably not enough for assessing the
power of recommendations [17]. Moreover, there is no guarantee that an algorithm with good
offline results will have good online performance, from the users’ perspective [24]. However, offline
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evaluation is important to assess the predictive ability and runtime performance of algorithms.
It also has the advantages of being cheaper than online evaluation and of enabling repeatability.

7.1 Offline evaluation methodologies

Offline evaluation refers to evaluation methodologies using previously collected datasets, and
conducted in a controlled laboratory environment, with no interaction with users. Offline proto-
cols allow researchers to evaluate and compare algorithms by simulating user behavior. In the
recommender systems literature, this typically begins by splitting the dataset in two subsets,
the training set and testing set, picking random data elements from the initial dataset. The
training set is used to train the recommender model. Evaluation is done by comparing the pre-
dictions of the model with the actual data in the test subset. Different protocols can be used.
Generally, these protocols group the test set by user – or user session – and “hide” user-item
interactions randomly chosen from each group. These hidden interactions form the hidden set.
Rating prediction algorithms are usually evaluated by comparing predicted ratings with the hid-
den ratings. Item recommendation algorithms are evaluated performing user-by-user comparison
of the recommended items with the hidden set.

Offline evaluation protocols are usually easy to implement, and enable the reproducibility of
experiments, which is an important factor in peer-reviewed research. However they are typically
designed to work with static models and finite datasets, and are not trivially applicable to
streaming data and incremental models.

Prequential Evaluation

To solve the issue of how to evaluate algorithms that continuously update models, we have
proposed a prequential methodology [10] to evaluate recommender systems. Evaluation is made
treating incoming user feedback as a data stream. Evaluation is continuously performed in a
test-then-learn scheme (Fig. 3): whenever a new rating arrives, the corresponding prediction is
scored according to the actual rating. This new rating is then used to update the model.

Predict with
current model

Evaluate
prediction

Update 
model

Collect online
statistics

Fading factorSliding window

Incoming
observation

Discard / archive
observation

Fig. 3: Prequential evaluation

Take the example of a top-N recommendation task with binary data. In a binary data stream,
observations do not contain actual ratings. Instead, each observation consists of a simple user-
item pair (u, i) that indicates a positive interaction between user u and item i. The following
steps are performed in the prequential evaluation process:
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1. If u is a known user, use the current model to recommend a list of items to u, otherwise go
to step 3;

2. Score the recommendation list given the observed item i;
3. Update the model with (u, i) (optionally);
4. Proceed to – or wait for – the next observation

One important note about this process is that it is entirely applicable to algorithms that learn
either incrementally or in batch mode. This is the reason why step 3 is annotated as optional.
For example, instead of performing this step, the system can store the data to perform batch
retraining periodically.

This protocol provides several benefits over traditional batch evaluation:

– It allows continuous monitoring of the system’s performance over time;
– Several metrics can be captured simultaneously;
– If available, other kinds of user feedback can be included in the loop;
– Real-time statistics can be integrated in the algorithms’ logic – e.g. automatic parameter

adjustment, drift/shift detection, triggering batch retraining;
– In ensembles, relative weights of individual algorithms can be adjusted;
– The protocol is applicable to both positive-only and ratings data;
– Offline experiments are trivially reproducible if the same data is available.

In an offline experimental setting, an overall average of individual scores can be computed at
the end – because offline datasets are finite – and on different time horizons. For a recommender
running in a production system, this process allows us to follow the evolution of the recommender
by keeping online statistics of the metrics (e.g. a moving average of accuracy, or an error rate).
Thereby it is possible to depict how the algorithm’s performance evolves over time.

8 Conclusion

In this paper we presented an overview of recommender systems mostly centered on the work
of our team. The main focus is on incremental approaches for binary data both to neighbour-
hood based and matrix factorization algorithms. We presented an incremental distance based
collaborative algorithm where only an auxiliary co-frequency matrix is cached, besides the simi-
larity matrix. We have also described a Stochastic Gradient Descent algorithm for binary matrix
factorization that exploits negative feedback. A number of forgetting techniques that cope with
the natural dynamics of continuously arriving data were mentioned. Another line of research is
on multidimensional approaches, where we proposed the use of virtual items. Finally, we have
described an offline prequential evaluation methodology adequate to incremental approaches.
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