
Verification of system-wide safety properties of ROS applications

Renato Carvalho, Alcino Cunha, Nuno Macedo, André Santos

Abstract— Robots are currently deployed in safety-critical
domains but proper techniques to assess the functional safety
of their software are yet to be adopted. This is particularly
critical in ROS, where highly configurable robots are built
by composing third-party modules. To promote adoption, we
advocate the use of lightweight formal methods, automatic
techniques with minimal user input and intuitive feedback.

This paper proposes a technique to automatically verify
system-wide safety properties of ROS-based applications at
static time. It is based in the formalization of ROS architec-
tural models and node behaviour in Electrum, over which
system-wide specifications are subsequently model checked. To
automate the analysis, it is deployed as a plug-in for HAROS,
a framework for the assessment of ROS software quality aimed
at the ROS community. The technique is evaluated in a real
robot, AgRob V16, with positive results.

I. INTRODUCTION

Safety certification for robotics software is increasingly
vital with the ever-closer robot-human interaction, but suitable
safety verification techniques are scarce. ROS (ros.org) is one
of the most popular robotics middlewares but despite recent
attempts to integrate quality assurance mechanisms in its
development cycle1, the extensive and dynamic community,
allied to the complexity of modern robotics software systems
built modularly from third-party packages, renders classic
formal approaches infeasible. Although we believe in promot-
ing reliable software engineering methods transversal to the
ROS development cycle, in the short term already developed
ROS robots need be addressed. Thus, we advocate the use
of lightweight formal approaches that can i) automatically
analyse ROS applications from source code as they are
developed, ii) be deployed by typical ROS developers, and iii)
quickly report feedback understandable by all stakeholders.

When verifying modular systems such as ROS applications
– comprised by nodes developed in general-purpose program-
ming languages and organized in heterogeneous architectures,
dubbed the ROS computation graph – it is common to split
the analysis in two stages: one analysing the behaviour of the
individual components, and the other the end-to-end system
behaviour, assuming the correctness of the components. The
latter sees components (here, ROS nodes) as black-boxes,
acting only on the interface level (here, message-passing), and

The authors are with Universidade do Minho and INESC TEC, Portugal.
The first author was supported by the ERDF – European Regional Devel-
opment Fund through the Operational Programme for Competitiveness and
Internationalisation – COMPETE 2020 and by National Funds through the
Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia,
within project POCI-01-0145-FEDER-016826. The remaining were financed
by the ERDF through COMPETE 2020 and by National Funds through the
FCT within project POCI-01-0145-FEDER-029583. They would like to thank
Filipe Santos and Luı́s Santos for supporting the analysis of AgRob V16.

1https://discourse.ros.org/c/quality

Fig. 1: Architecture of the HAROS safety plug-in for ROS.

has been shown to be prone to lightweight formal analyses [1].
These are particularly useful in middlewares that promote
highly-configurable applications, such as ROS where launch
configurations determine which nodes run and under which
parameters, and may remap communication links.

This paper presents the first technique to automatically
verify at static time system-wide safety properties based
on message-passing for ROS applications, given a loose
specification of the expected behaviour of the individual nodes.
The backend relies on Electrum [2], a formal specification
language based on first-order linear temporal logic that
extends Alloy [3] and is accompanied by an automatic
Analyzer. As depicted in Fig. 1, to integrate the ROS
development process we rely on HAROS, a framework for
the continuous quality assessment of ROS software developed
by our team [4]. HAROS automatically extracts computation
graphs from ROS source code, and provides a user-friendly
behavioural specification language and a unified reporting
interface. The main contributions of this work are thus: i)
the formalization of the architecture and behaviour of ROS
applications in Electrum, and ii) a HAROS plug-in that
translates HAROS artefacts into Electrum and reports model
checking counter-examples back as ROS-flavoured issues.

Section II presents the developed HAROS plug-in. The
underlying Electrum architectural and behavioural formal-
ization is presented in Section III. Section IV reports on its
application to a real ROS-based robot, AgRob V16. Section V
discusses related work on ROS analysis, and lastly Section VI
presents conclusions and future research lines.

II. HAROS SAFETY PLUG-IN

HAROS (github.com/git-afsantos/haros) is a plug-in-based
framework for the quality assessment of ROS software,

https://www.ros.org/
https://discourse.ros.org/c/quality
https://github.com/git-afsantos/haros

Fig. 2: HAROS meta-model (unsupported features in grey).

Fig. 3: HAROS architectural model for Controller.

property ····= scope : pattern
scope ····= globally | after activator [until terminator]
pattern ····= some events | events causes events

| no events | events requires events
events ····= event (|| event)∗

event ····= name [predicate] [as ident]
predicate ····= { condition (, condition)∗ }
condition ····= param binop value-expr
value-expr ····= [value (, value)∗] | int to int | value
value ····= int | string | [$ident .] param
binop ····= = | != | in | not in
param ····= field [. field]
field ····= ident [[n-zero]]

Fig. 4: Supported subset of the HPL language.

automating code retrieval, analysis and reporting for ROS
repositories in continuous integration.

As a running example, consider a simplistic ROS Con-
troller, where a Controller node publishes commands in
a topic cmd at a certain rate, according to data provided by a
Teleop node through topic tel. A Base node subscribes to
cmd and publishes back data from sensors through dat, that
is either value 1 (everything ok) or 0 (dangerous situation).
When Controller receives a danger message, it publishes
a cmd message with value 0 and a “stop” warning.

HAROS provides two plug-in entry points for analysing
ROS repositories: one for packages and source files, and
another for architectural models per launch configuration, au-
tomatically extracted from the source code [5]. The proposed
technique is deployed as a plug-in for the latter. The HAROS
architectural meta-model is depicted in Fig. 2, highlighting
the elements relevant for this technique, essentially the ROS
computation graph. Support for services and parameters is left
as future work. Fig. 3 presents the architectural model for a
simple configuration of Controller under this meta-model.

HAROS supports behavioural specifications for maintained
repositories to be used by the plug-ins. These must be defined
by domain experts for each configuration and node, but
the latter can be re-used between applications. Figure 4
presents the supported subset of this domain-specific language,
HPL, which acts at the message-passing level, treating nodes

Teleop:
globally: no /tel{val not in 0 to 100}

Base:
globally: no /dat{val not in [0,1]}

Controller:
after /dat{val=0} until /dat{val!=1}: no /cmd{val!=0}
globally: /cmd{val=0} requires /tel{val=0} || /dat{val=0}
globally: /cmd{val!=0} as m requires /tel{val=$m.val}
globally: /dat{val=0} causes /cmd{val=0, msg="stop"}

Fig. 5: Behaviour of Controller nodes in HPL.

simple:
globally: no /cmd{val not in 0 to 100}
globally: /cmd{msg="stop"} requires /dat{val=0}

Fig. 6: Controller system-wide properties in HPL.

Fig. 7: Safety issue for Controller in HAROS.

Fig. 8: Safety issue for Controller in HAROS architecture
visualizer (involved elements in red).

as black-boxes. Its semantics is formalized in first-order
linear temporal logic over ROS event traces based on well-
known property patterns [6], supporting both safety – absence
and precedence – and liveness – existence and response –
properties. Events amount to messages occurring in topics,
which may be tested according to certain conditions over their
fields. Scopes may also be assigned to properties through
bounding events. Due to the nature of Electrum the real-time
features of HPL are not supported, so the plug-in translates
HPL to first-order linear temporal logic.

Part of the behaviour of Controller nodes is specified in
Fig. 5. Teleop and Base must publish messages within
the expected value ranges. For Controller, three safety
properties are enforced: while danger messages are received
from dat only 0s may be published at cmd; 0s published at
cmd are propagated from tel or originate from danger dat
messages; and 6= 0 cmd messages are propagated from tel.
Note that these do not force the actual publication of messages,
but specify safe behaviour. A liveness property forces danger
dat messages to produce a “stop”. Two system-wide safety
properties, expected to arise from the node behaviour under
the simple configuration, are shown in Fig. 6: no value
other than those published in tel ever reaches cmd and that
“stop” cmd messages arise from 0s at dat.

Any issue detected by a plug-in is reported in the unified
HAROS interface, which for architectural plug-ins are
associated with a specific launch configuration. Plug-ins
may be provided additional parameters, which in this case
are the model checking scopes (explained in Section III).
The plug-in keeps a mapping between ROS and Electrum
artefacts, so that the abstract execution traces found by
the Analyzer can be converted back into the ROS domain.
One such issue is depicted in Fig. 7 for Controller: the
second specified property does not actually hold, since we
are forcing Controller to publish “stop” messages after
receiving 0 values, but not forbidding their occurrences in
other circumstances. Alternatively, the counter-example may
be inspected in the architecture visualizer, as shown in Fig. 11.

III. FORMALIZATION OF ROS CONFIGURATIONS

Safety verification is performed by an Electrum backend2,
launched by the plug-in for ROS applications maintained by
HAROS, as depicted in Fig. 1 and described in this section.

A. Architectural model

In Electrum, much like in Alloy, structure is defined
through the declaration of signatures (sig) – which introduce
sets of uninterpreted atoms – and fields – which introduce
relations between atoms. A hierarchy may be imposed over
signatures, either through extension (extends) – guaranteeing
the disjointedness of the sub-signatures – or through inclusion
(in) – allowing for overlapping sub-signatures. A signature
may be declared as abstract – so that its atoms must belong
to a sub-signature – and assigned a simple multiplicity (some,
no, one, lone) – restricting the number of atoms assigned
to it. Fields are associated to a parent signature, may be of
arbitrary arity, and can also be restricted by multiplicities.
In Electrum, unlike in Alloy, signatures and fields may be
declared as mutable (var), allowing them to change in time.

Formalized ROS configurations share a structural header,
depicted in the first part of Fig. 9. Signatures Node and
Topic represent the elements of the configuration; they
will be extended exactly by the specific elements of each
configuration. For each node, static fields subs and advs

represent the set of subscribed and advertised topics, respec-
tively, while variable fields inbox and outbox represent at
each instant the set of messages waiting to be processed
and propagated, respectively. Signature Field represents
message fields. Lastly, signature Message denotes the set of
available messages in each trace and Value abstracts possible
message field values, with sub-signatures representing the
supported primitive types, IntVal and StrVal. Messages
are assigned exactly one topic, and may have at most one
value assigned to each message field (val, multiplicity lone).
For simplicity purposes, message types are not explicitly
modelled, but are inferred from the assigned topics to enforce
the mandatory fields for each message, as will be shown
briefly. Unlike the fixed configuration signatures, an arbitrary

2The tool, documentation and guides are available at http://haslab.
github.io/Electrum/.

1 abstract sig Topic,Field,Value {}
2 sig IntVal,StrVal extends Value {}
3 abstract sig Node {
4 subs,advs : set Topic,
5 var inbox,outbox: set Message }
6 sig Message {
7 topic: one Topic,
8 val : Field→lone Value }
9 -- Application-specific architecture

10 one sig tel,dat,cmd extends Topic {}
11 one sig Teleop,Base,Controller extends Node {}
12 fact Links {
13 advs = Teleop→tel + Base→dat + Controller→cmd
14 subs = Controller→(tel+dat) + Base→cmd }
15

16 one sig tel_val,dat_val,cmd_val,cmd_msg extends Field {}
17 fact Fields {
18 all m: topic.tel {
19 m.val in tel_val→IntVal
20 m.val in tel_val→one IntVal }
21 . . .
22 all m: topic.cmd {
23 m.val in cmd_val→IntVal + cmd_msg→StrVal
24 m.val in (cmd_val+cmd_msg)→one (IntVal+StrVal) } }
25

26 lone sig Int_0,Int_1 in IntVal {}
27 sig Int_0_10,Int_0_100 in IntVal {}
28 lone sig Str_stop in StrVal {}
29 fact Values {
30 Int_0+Int_1 in Int_0_10 and Int_0_10 in Int_0_100
31 no Int_0&Int_1 }

Fig. 9: Encoding of the Controller architecture in Electrum.

number of messages and values will be considered in the
analysis, within predefined bounds.

The second part of Fig. 9 instantiates the simple config-
uration of Controller. The translation of nodes and topics is
straightforward, and results in the declaration of singleton
(one) signatures for topics (e.g., dat) and nodes (e.g., Base)
and the enforcement of subscriptions and advertisements
through fact Links, which in Electrum impose model
axioms. Here, → is the Cartesian product and +/& set
union/intersection. Fields are then declared (e.g., dat_val).
To avoid encumbering the analysis, fields not mentioned in
the specifications are ignored. Fact Fields guarantees that
i) each field value is correctly typed (e.g., l. 19), and ii) each
message has exactly one value assigned per relevant field
(e.g., l. 20). all, some and no are first-order quantifications,
and . relational composition, thus topic.tel, e.g., denotes
all messages with topic tel assigned.

Being SAT-based, Electrum is not well-suited to deal with
numerical values. Thus, message values are discretized by
imposing a hierarchy on uninterpreted Value atoms so that
message content can still be considered without explicitly
representing numerical values. This process must consider the
behavioural specifications, since different values are relevant
for different message conditions (which may test the equality
with constant values or message fields, or the membership in
sets or numeric ranges), and works as follows:

• for each constant value in a condition test, create a lone
signature (e.g., Int_0 or Str_stop);

• for each range test in a condition, create a signature
without any multiplicity imposed (e.g., Int_0_10);

• identify which numeric values/ranges are completely
contained in one another and force the containment of

http://haslab.github.io/Electrum/
http://haslab.github.io/Electrum/

1 fact Messages {
2 no outbox+inbox
3 always {
4 all n: Node |
5 n.inbox.topic in n.subs and n.outbox.topic in n.advs
6 all m: Node.outbox {
7 all n: subs.(m.topic) | eventually m in n.inbox
8 eventually m not in Node.outbox }
9 all m: Node.inbox |

10 before once m in advs.(m.topic).outbox } }
11 -- Application-specific behaviour
12 fact NodeBehavior { always {
13 no m: Teleop.outbox&topic.tel |
14 tel_val.(m.val) not in Int_0_100
15 . . .
16 all m: Controller.outbox&topic.cmd |
17 cmd_val.(m.val) != Int_0 implies before once
18 some m0: Controller.inbox&topic.tel |
19 tel_val.(m0.val) = cmd_val.(m.val)
20 all m: Controller.inbox&topic.dat |
21 dat_val.(m.val) = Int_0 implies after eventually
22 some m0: Controller.outbox&topic.cmd {
23 cmd_val.(m0.val) = Int_0
24 cmd_msg.(m0.val) = Str_stop } } }
25

26 assert simple0 { always {
27 no m: Node.outbox&topic.cmd |
28 cmd_val.(m.val) not in Int_0_100 } }
29 assert simple1 { always {
30 all m: Node.outbox&topic.cmd |
31 cmd_msg.(m.val) = Str_stop implies before once
32 some m0: Node.outbox&topic.dat |
33 dat_val.(m0.val) = Int_0 } }

Fig. 10: Encoding of the Controller behaviour in Electrum.

the respective signatures (e.g., l. 30);
• identify which numeric values/ranges are completely

disjoint with one another and force the disjointedness
of the respective signatures (e.g., l. 31).

Acting on a finite universe, the set of values considered during
model checking will necessarily be finite, but the procedure
will check every possible valuation within that scope.

B. Behavioural specifications

Electrum supports linear temporal logic, including future
operators after, eventually and always, and their past
counter-parts before, once and historically. Such prop-
erties can be used as an axiom in a fact – restricting the
valid traces that will be considered during model checking –
and as an assertion in an assert – that will be checked over
all valid traces. Thus the same idiom can be used to impose
the behaviour of individual nodes and to check system-wide
properties, which are both specified in HPL in HAROS.

Since nodes are loosely specified at the interface level and
without real-time considerations, our behaviour encoding is
under-specified to allow for alternative behaviours and event
interleavings. Fact Messages in Fig. 10 encodes the message-
passing process shared by all formalized configurations. It
forces inboxes and outboxes to start empty (without temporal
operators, formulas refer to first state, l. 2), and then restricts
message-passing in all states (always) by enforcing that:
• messages in inboxes and outboxes are correctly typed

(l. 5). Note that, e.g., n.inbox.topic retrieves the
topics of all messages in the inbox of n;

• messages in an outbox eventually reach the inboxes of
all subscribing nodes (l. 7) and leave the outbox (l. 8).

Fig. 11: Counter-example for Controller in Electrum.

Notice that no timing constraints are imposed and that
nodes may receive the message at different states;

• messages in an inbox must have previously been in
the outbox of an advertising node (l. 10), so that no
messages spontaneously appear in inboxes.

The second part of Fig. 10 instantiates the specifications
of the Controller nodes and configuration, adapting the LTL
formalization of specification patterns [6] to LTL with past
operators. The former is encoded in fact NodeBehaviour,
which restricts how nodes process messages from the
inbox to the outbox. For instance, the absence pattern
of Teleop (ll. 13–14) states that outbox messages must
have values within the valid integer range (note that, e.g.,
Teleop.outbox&topic.tel denotes all messages in the
outbox of Teleop for topic tel). In precedence patterns
outbox messages require the previous existence of messages
in the inbox, such as the one in ll. 16–19 for Controller,
and dually for response patterns, as in ll. 20–24.

Lastly, an assertion is created for each configuration spec-
ification. For instance, simple0 checks whether messages
published in cmd may be outside the expected integer range,
and simple1 whether “stop” cmd messages are always
preceded by a 0 dat message. The difference between the
encoding of node and configuration specifications is in the
scope of the message events: the former focuses on the inbox
and outbox of the node being specified; the latter on any
message passing in a topic, abstracted by being in the inbox
of any subscribing node (e.g., Node.inbox&topic.cmd

denotes every message published by any node in topic cmd).
These assertions can be automatically verified by the

Electrum Analyzer once a scope is provided for the non-
exact signatures (Value and Message) and the maximum
trace length, since by default Electrum performs bounded
model checking. Scopes are defined in the plug-in option file
of each ROS repository under analysis, and should depend on
the complexity of the application and on the needed level of
confidence. As expected, simple0 holds but not simple1
(with up to 5 messages/values and maximum trace length of
10). The Analyzer can be used as a stand-alone, in which case
the counter-example could be explored in its visualizer as in
Fig. 11, currently focusing on the transmission of a message
from the outbox of Teleop to the inbox of Controller.
The plug-in translates such traces back into the ROS-domain,

Fig. 12: The AgRob V16 robot monitoring a slope vineyard.

Fig. 13: Simplified HAROS architectural model for
AgRob V16 (elements of the map configuration in red).

resulting in the issue already presented in Fig. 7.

IV. EVALUATION

Our evaluation of the approach had two main goals, namely
to assess i) whether its expressibility is sufficient to address
relevant systems and properties, and ii) whether it scales
to real world robotics software. To that purpose, we have
applied it to a real robot under development, AgRob V16.

A. Case study

AgRob V16 (agrob.inesctec.pt, Fig.12) is a modular robot
for precision farming in slope vineyards developed in C++
ROS. One of its main challenges is the operation in an
unstructured environment shared with human operators, which
also renders it safety-critical. Furthermore, it has been
developed with a focus on modularity and extensibility,
relying on third-party ROS packages, making it prone to
launch configuration errors that may affect safety properties.
For these reasons, safety feedback in continuous integration
would prove valuable to the development team.

The robot follows a typical architecture of sensors, con-
trollers, planners and actuators. Some features are optional,
and multiple launch files are provided with different presets. It
has two main operating modes: one where the robot follows a
path, avoiding possible obstacles, and another where the robot
is controlled by a teleoperation joystick; the operating mode
is also switched through teleoperation. For this evaluation
we focus on two particular configurations: startup for a
minimal configuration, and map that additionally launches
localization and navigation features. In the former, obstacles
are only detected by laser sensors, while in the latter
localization information is also considered.

globally: /current_state{data[0]=6} requires
/joy_teleop/joy{button[0]=1}

globally: no /super/cmd_vel{linear.x not in 0 to 10}
globally: /super/cmd_vel{linear.x in 3.8 to 4.2} requires

/joy_teleop/joy{button[0]=0, button[1]=1} ||
/joy_teleop/joy{button[4]=1, button[5]=0}

Fig. 14: Part of SafetyController behaviour in HPL.

globally: /agrobv16/current_state{data[0]=3} requires
/joy_teleop/joy{button[0]=0, button[1]=1}

globally:
/husky/cmd_vel{linear.x=0, angular.x in -100 to 100}
requires /scan{ranges[0] in 0 to 4} ||

/joy_teleop/joy{button[0]=1}

Fig. 15: Some AgRob V16 system-wide properties in HPL.

A simplified version of the AgRob V16 architec-
ture, as extracted by HAROS, is depicted in Fig. 13,
highlighting the differences between the two configura-
tions SafetyController and Multiplexer are the
core nodes and are responsible for ensuring safe be-
haviour. The controller monitors data from sensors – lasers
HorizontalLRF and VerticalLRF – and the selected
operating mode from the Joystick to issue safe velocity
commands and the current state to be displayed by the GUI
(through data[0]). The multiplexer collects commands
from the controller, the Joystick, and, under the map
configuration, the PathPlanner. Following a set of priori-
ties, commands are passed to the HuskyInterface which
communicates with the hardware actuators. Joystick mode is
switched on through joy messages with button[0] = 1,
and the “follow path” mode through button[0] = 0 and
button[1] = 1, having lower priority; in joystick mode,
buttons[4] and button[5] issue velocity commands.

Through discussions with the AgRob V16 developers,
behaviour of nodes and the desirable safety properties were
encoded in HPL. This resulted in 30 specifications over 9
nodes and 4 system-wide properties. Figure 14 presents part
of the SafetyController specification, the node with
richer behaviour, such as how the information published
to current state for the GUI is determined from the
teleoperation buttons; the ranges of linear and angular
velocities published at cmd vel; and how certain velocity
values are restricted to modes or other teloperation commands.

Figure 15 depicts some configuration properties, namely
that current state only contains the “follow path” mode
(data[0] = 3) if the corresponding buttons have once
been pressed; and cmd vel messages to rotate in-place
(linear.x = 0 and angular.x 6= 0) are caused by
a scan message with a range smaller than 40cm (0 ≤
ranges[0] ≤ 4), or the system is in teleoperation mode.

The 4 properties were checked for the two configurations
with increasing scopes for signatures Value and Message for
traces with up to 10 distinct states, in a 2.4 GHZ Intel Core i5
with 8GB memory running Electrum in bounded mode with
SAT4J, as summarized in Table I. One property was actually
shown not to hold for the map configuration: commands to
rotate in-place in “follow path” mode may be caused by the

http://agrob.inesctec.pt/

TABLE I: Evaluation results, in seconds.

Config. Spec. n Value, n Message, 10 max trace length
2 4 6 8 10 12 14

startup

Prop1 3 3.0 3 7.5 3 19.0 3 29.3 3 45.5 3 70.1 3 102.7
Prop1 3 2.9 3 8.8 3 17.4 3 26.9 3 49.3 3 75.8 3 104.8
Prop2 3 3.0 3 7.5 3 15.6 3 32.3 3 44.7 3 63.4 3 90.6
Prop4 3 2.6 3 11.0 3 26.8 3 45.0 3 67.2 3 108.7 3 142.3

map

Prop1 3 3.8 3 10.7 3 23.0 3 37.6 3 59.8 3 93.8 3 121.0
Prop1 3 3.6 3 9.1 3 23.9 3 39.5 3 61.1 3 103.0 3 138.5
Prop2 3 3.6 3 10.6 3 24.4 3 38.9 3 61.9 3 103.1 3 126.3
Prop4 3 3.1 7 8.6 7 20.0 7 36.5 7 54.6 7 85.1 7 128.8

PathPlanner without the lasers detecting obstacles due
to accumulated localization errors. A HAROS issue would
show a message being passed from the PathPlanner to the
SafetyController, which would identify a dangerous
situation and instruct the HuskyInterface to rotate,
without the lasers publishing any message. This counter-
example requires 4 values/messages, but even with scope
10 it is still found under 1min. In fact, all properties were
checked with scope 14 at around 2min., feasible if it is to
be run in continuous integration, although the trace length
may need to be increased for additional confidence.

B. Threats to validity

The assignment of the model checking scope for messages/-
values to a ROS repository must be handled with care, since
small universes may hide potential safety issues. We believe
that with application-specific knowledge of the development
team it is possible to infer sensible scopes, but whether this
applies to more complex applications needs further evaluation.

The loosely specified behaviour of our model may lead to
false positive counter-examples, since no particular scheduling
is imposed on the message-passing process. We did not detect
such cases in our case study, but we expect them to arise
mostly when dealing with desirable liveness properties, which
have not been identified in AgRob V16.

V. RELATED WORK

Static analysis techniques to address specific ROS issues
have been proposed. The initial release of HAROS focused
on internal quality metrics and conformity with coding
standards [4]. Ore et al. propose a technique [7] to detect
inconsistencies between physical units in C++ ROS code,
relying on the a priori annotation of standard libraries.

Some approaches extract intermediary models from ROS
code but not for general-purposes analyses. Purundare et
al. [8] propose a technique that extracts from C++ code a
model of the message flow between components to identify
code changes that may impact message-passing. Sharma et
al. [9] also address the impact of code changes by extracting
a data flow model from C++ code, but focus on the impact to
the rate of message publication. Muscedere et al. [10] focus
on the detection of feature interaction symptoms by extracting
a “factbase” from C++ code, over which user-defined code
queries are executed. These can be used to identify code
patterns but not dynamic behaviour. Our approach builds on
work by our team [5] on formalized ROS configurations and
proposes a technique for their extraction from C++ code for

subsequent analyses. A query language is provided to detect
simple architectural patterns, but not dynamic behaviour.

Some work has been done on the verification of safety
for ROS applications through off-the-shelf model checkers,
namely SPIN by Webster et al. [11] and UPPAAL by Halder
et al. [12]. However, these are mostly exploratory works
based on the ad hoc formalization the of robotic software.

VI. CONCLUSIONS

This paper presented a model checking technique to verify
message-passing system-wide safety properties based on
a formalization of ROS launch configurations and loosely
specified behaviour of individual nodes. It is wrapped in a
HAROS plug-in that automatically creates such Electrum
models – from configurations extracted in continuous inte-
gration and specifications provided by the domain experts
– and translates abstract counter-examples back into ROS-
flavoured HAROS issues. Its application to a real robot
showed it to be sufficiently expressive to check certain classes
of safety properties, and to have a reasonable performance.
The formalization could be applied to other message-passing
middlewares, but the focus on ROS enabled the automatic
extraction of architectures by HAROS.

In the future we plan to explore techniques to support the
user when specifying scopes and techniques to help discard
false positives, possibly relying on run-time analyses to check
whether counter-examples are possible execution traces. We
are also exploring strategies to improve the scalability of the
approach and to support certain classes of timed properties.

REFERENCES

[1] J. P. Near, A. Milicevic, E. Kang, and D. Jackson, “A lightweight code
analysis and its role in evaluation of a dependability case,” in ICSE.
ACM, 2011, pp. 31–40.

[2] N. Macedo, J. Brunel, D. Chemouil, A. Cunha, and D. Kuperberg,
“Lightweight specification and analysis of dynamic systems with rich
configurations,” in SIGSOFT FSE. ACM, 2016, pp. 373–383.

[3] D. Jackson, Software Abstractions: Logic, Language, and Analysis,
revised ed. MIT Press, 2012.

[4] A. Santos, A. Cunha, N. Macedo, and C. Lourenço, “A framework for
quality assessment of ROS repositories,” in IROS. IEEE, 2016, pp.
4491–4496.

[5] A. Santos, A. Cunha, and N. Macedo, “Static-time extraction and
analysis of the ROS computation graph,” in IRC. IEEE, 2019, pp.
62–69.

[6] M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in property specifica-
tions for finite-state verification,” in ICSE. ACM, 1999, pp. 411–420.

[7] J. Ore, C. Detweiler, and S. G. Elbaum, “Lightweight detection of
physical unit inconsistencies without program annotations,” in ISSTA.
ACM, 2017, pp. 341–351.

[8] R. Purandare, J. Darsie, S. G. Elbaum, and M. B. Dwyer, “Extracting
conditional component dependence for distributed robotic systems,” in
IROS. IEEE, 2012, pp. 1533–1540.

[9] N. Sharma, S. G. Elbaum, and C. Detweiler, “Rate impact analysis in
robotic systems,” in ICRA. IEEE, 2017, pp. 2089–2096.

[10] B. J. Muscedere, R. Hackman, D. Anbarnam, J. M. Atlee, I. J.
Davis, and M. W. Godfrey, “Detecting feature-interaction symptoms
in automotive software using lightweight analysis,” in SANER. IEEE,
2019, pp. 175–185.

[11] M. Webster, C. Dixon, M. Fisher, M. Salem, J. Saunders, K. L. Koay,
K. Dautenhahn, and J. Saez-Pons, “Toward reliable autonomous robotic
assistants through formal verification: A case study,” IEEE Trans.
Human-Machine Systems, vol. 46, no. 2, pp. 186–196, 2016.

[12] R. Halder, J. Proença, N. Macedo, and A. Santos, “Formal verifi-
cation of ROS-based robotic applications using timed-automata,” in
FormaliSE@ICSE. IEEE, 2017, pp. 44–50.

	Introduction
	HAROS safety plug-in
	Formalization of ROS configurations
	Architectural model
	Behavioural specifications

	Evaluation
	Case study
	Threats to validity

	Related Work
	Conclusions
	References

