


as proposed in AODV-DR [7]. Furthermore, reactive protocols

introduce route discovery delays, which may be harmful

namely for real-time applications. Proactive routing solutions,

such as OLSR [2], enable shortest routes and have them

immediately available. However, this is achieved at the cost

of more signaling overhead and complexity; routes between

any pair of nodes are configured independently of those

routes being needed or not, leading to a waste of bandwidth,

memory space, and processing time. In [6] a hybrid rout-

ing approach combining reactive (AODV-like) and proactive

routing (OLSR-like) is proposed for a mobile PAN. Reactive

routing is used to discover new routes when a PAN topology

change occurs and proactive routing is used to maintain the

routes; still, the solution inherits the problems referred above.

Either reactive, proactive, or hybrid, state of the art routing

approaches are not fully backwards compatible, precluding

the plug & play integration of legacy devices in the PAN

and making deployment hard [2]. Herein, we propose a novel

routing approach towards simple, efficient, and backwards

compatible PAN routing.

Our contribution is three-fold: (1) a centralized spanning

tree mechanism based on Campos’s algorithm [2], which

enables the computation of a tree with lower routing cost

than the obtained using the standard Rapid Spanning Tree

Protocol [2]; (2) a simple and backwards compatible PAN

routing approach, based on the centralized spanning tree

mechanism and the well-known learning bridge algorithm,

which reduces in one order of magnitude the route config-

uration delay, achieves good performance in terms of data

throughput and delay, when compared with state of the art

solutions, and enables the establishment of a single Layer-2

network on top of multiple communications technologies; 3)

the demonstration that state of the art reactive routing

approaches do not ensure shortest routes, regardless of the

routing metric used.

The rest of the paper is organized as follows. Section II pro-

vides background information. Section III presents our routing

approach. Section IV and Section V refer to the simulation

and experimental evaluation. Finally, Section VI discusses the

proposed solution overall and Section VII concludes the paper.

II. BACKGROUND

Existing PAN routing approaches are mostly based on

reactive ad-hoc routing protocols, in particular AODV. Thus,

in what follows we describe AODV and AODV-DR, an AODV

evolution using data rate as the routing metric.

A. AODV

The Ad-hoc On-demand Distance Vector (AODV) [2] pro-

tocol is a reactive routing protocol. A source S broadcasts

a Route Request including the source and target addresses,

a sequence number that uniquely identifies the request, a

destination sequence number, which is used by intermediate

nodes to know whether they have fresh enough information

to reply on behalf of the destination, and a Time-To-Live

(TTL) value, which controls the maximum number of hops

the message can traverse. An AODV node receiving the Route

Request for the first time creates a new routing table entry

for S or updates an existing entry with the fresh routing

information. If the current node has recently received the

Route Request, or the TTL value is 0, the message is silently

discarded. In practice, this leads to the establishment of a route

between S and D that corresponds to the route taken by the

first Route Request reaching D.

If the current node is the final destination D, or an inter-

mediate node which has a route to D, after updating the local

routing table, it sends back to S a Route Reply; otherwise,

the current node increments the Hop Count field in the Route

Request and retransmits the message. The Route Reply is

then forwarded back to S along the route taken by the first

Route Request. Each intermediate node is able to forward the

Route Reply based on the routing table entries created while

processing the Route Request.

Regarding route maintenance, each node involved in an

active route sends out periodically a Hello message through all

local network interfaces involved in active routes. By default,

one Hello is sent per second per active network interface.

Theoretically, link layer feedback could be used instead. Still,

this is not available in practice [2]. After three Hello intervals,

if the current node did not receive any Hello from the next

node in the route towards D, it assumes that the link has

failed. The current node may then decide to make a local

repair by issuing a Route Request towards D. If a Route

Reply is received, the route is re-established without involving

S. Otherwise, the current node sends a Route Error to its

precursors, which in turn forward the Route Error to their

own precursors until eventually the message reaches S 3. After

receiving the Route Error, S triggers a new route discovery

to find a new route to D.

B. AODV-DR

The route discovery procedure used by AODV does not

ensure the establishment of the shortest route. The “first” route

is not guaranteed to be composed of the best links [7]. The

main reason for this is that the “first” route to be found is

essentially the result of a random process. The simultaneous

retransmission of Route Request messages by neighbor nodes

during a route discovery may result in packet collisions in the

wireless media where they can occur; this is the usual case

for the wireless technologies that can be used in a PAN. The

collision of Route Request messages at intermediate nodes may

lead to a situation where the destination fails to receive some

or even all Route Request messages [2]. To overcome this

problem, it is recommended that the retransmission of Route

Request messages at each intermediate node is randomly de-

layed [2]. Although this solves the packet collision problem, it

has impact on the quality of the route found. The introduction

of random delays at each intermediate node implies that the

first Route Request to reach the destination is not necessarily

the one traveling across the “fastest” links.

3A precursor node is a neighbor of the current node sitting behind it in a
route.





point. Node 1 broadcasts two TR messages, one per interface.

Upon receiving the TR message, Node 2 and Node 3 retransmit

it across interface 1 and interfaces 1 and 2, respectively. In

this example, we assume that the TR message retransmitted

by Node 2 is the first received by Node 4, and that, before

Node 4 retransmits the TR, it receives the TR from Node 3.

The latter is a duplicate TR, so Node 4 immediately sends

an Ack to Node 3. After timeout, Node 4 sends an aggregate

Ack including information about the edge (4, 3). Node 5 is a

single interface slave. When it receives the TR from Node 3,

it immediately sends an Ack. After their timeouts, Node 2 and

Node 3 transmit their aggregate Ack messages to the master.

Node 3’s Ack includes information about the edges (3, 4) and

(3, 5), while Node 2’s Ack includes information about the

edges (4, 3) and (2, 4). Upon receiving these messages, the

master is able to construct the topology graph. The control

tree constructed during the topology discovery procedure is

shown in Fig. 2 using bold lines.

In GLUE, topology maintenance is accomplished by simply

running the topology discovery procedure periodically; by

default, once per second. If some topology change is detected,

a new active topology is configured according to the procedure

described in Section III-A2. The master assumes that a topol-

ogy change has occurred if it does not receive any information

regarding some edge or node after three TR periods. During

the topology discovery procedure, if after the timeout period

an Ack with the sequence number of the current TR is received

by a given slave, the Ack is directly forwarded to the master.

2) Active Topology Configuration: At the PAN master, the

PAN topology is represented by a graph. The graph is then

used as a basis for computing the active network topology

using Campos’s algorithm [2]. After the computation of the

active spanning tree, the required configurations need to be

enforced throughout the PAN. For that purpose, the PAN mas-

ter issues a Config message with the per-slave configurations.

The control tree created during topology discovery is used to

forward a Config message. Config includes a set of tuples of

the form (slave MAC address, set of interfaces to activate).

In order to reduce the size of Config messages, the PAN

master sends different Config messages per network interface;

the Config message sent through a given local interface only

includes configurations for the PAN slaves accessible through

that interface. Upon receiving Config, each PAN slave searches

for its configuration tuple, extracts the tuple from the message,

so that it is not unnecessarily propagated downwards, and

forwards the message to its children, if it is not a leaf node in

the control tree. The Config message is transmitted in unicast,

so that message delivery is guaranteed over the underlying

wireless technologies.

In order to confirm that the active topology configuration is

complete, upon receiving the Config message and performing

the corresponding local configurations, the leaf slaves in the

control tree send an Ack upwards. As soon as a non-leaf slave

receives the Ack messages from all its children, it knows that

the new active topology ordered by the PAN master is fully

configured. It then notifies its parent in the control tree by

means of an Ack too. This process is repeated until the master

is finally notified.

As soon as the active topology is configured, GLUE runs

the topology discovery procedure periodically to keep track of

the PAN topology.

During the PAN lifetime, one or more PAN devices may

leave the network. If the node leaving the PAN is a leaf node in

the active topology, no reconfiguration is needed. If the node

leaving the PAN is a non-leaf node, a new active spanning

tree needs to be configured. In this case, the master computes

the new spanning tree using Campos’s algorithm, disables

frame forwarding, configures its new set of active interfaces,

and informs the slaves about the new set of interfaces they

shall activate by means of a Config message. Upon receiving

the Config message the slaves know that a reconfiguration

procedure is taking place. The slaves configure the new set of

active interfaces included in the Config message and disable

frame forwarding until it is guaranteed that the new loop-

free active topology is configured. This is guaranteed when a

PAN device, a slave, or the master receives the Ack messages

from all its children or if it is the last hop in the control

tree. At that point, the PAN device enables frame forwarding.

When the PAN master has received all Ack messages from its

children, it flushes the local ARP table and sends a Config

message without any per-slave configuration. This message is

transmitted across the control tree to inform the slaves that they

can flush their ARP tables too, so that new address resolutions,

and implicitly path reconfigurations, can safely take place for

the active flows in the PAN.

B. Route Establishment

Every time an IP node wants to communicate with a peer

it needs to know the destination MAC address related to

the destination IP address. The Addresss Resolution Protocol

(ARP) is used for this purpose. When the source does not

know the destination MAC address, it broadcasts an ARP

REQUEST. In GLUE, the ARP REQUEST is sent through the

active spanning tree and enables transparent bridges to learn

the path to the source of the ARP REQUEST; the ARP REPLY

sent back by the destination implicitly establishes the route in

the opposite direction. In order to force the use of the ARP

procedure for route establishment, GLUE sets the lifetime of

the ARP table entries with the same lifetime as the transparent

bridges forwarding table entries.

C. Frame Forwarding using Transparent Bridges

In GLUE, the Transparent Bridge running in each PAN node

may have multiple physical Network Interface Cards (NICs)

associated. However, this is hidden from the upper layers by

means of a logical NIC. The Transparent Bridge selects the

lowest MAC address among its NICs to become the MAC

address of the logical NIC presented to the upper layers4. In

practice, the logical NIC appears to the upper layers as a regu-

lar Ethernet NIC. Upon receiving any frame whose destination

4This is the approach followed in mainstream operating systems, such as
Linux OS and Windows XP/Vista/7, which support Transparent Bridges.



is the MAC address of the logical NIC, the Transparent Bridge

delivers the frame to the upper layers through the logical

NIC. In the reverse direction, any data frame received from

upper layers through the logical NIC is forwarded according

to the standard transparent bridge forwarding procedure [2]

and considering the routes established using ARP signaling.

D. Support of Legacy Devices

In a GLUE-enabled PAN, the integration of a legacy PAN

device is “plug & play”. The legacy device simply attaches

to the PAN through any GLUE-enabled device, either through

a NIC already added to the local Transparent Bridge, or even

through a NIC not yet belonging to it, and can immediately

take advantage of the GLUE features, namely the connectivity

established among the PAN devices and the PAN-to-Internet

connectivity, if available. From the legacy device standpoint,

everything happens as if it was connected to a single Layer-2

network. This level of transparency is not supported by state

of the art PAN routing solutions.

IV. SIMULATION EVALUATION

GLUE was evaluated using ns-2 and considering AODV

and AODV-DR as a basis for comparison. The version 2.31 of

the ns-2 simulator was used as departing point. Yet, since ns-

2.31 did not support several features needed for our simulation

scenarios, it was modified to support (1) multi-interface nodes

running on different nominal data rates, (2) AODV-DR, (3)

Transparent Bridges, and (4) GLUE5; a description on the

extension performed to ns-2.31 can be found in [2]. In what

follows, we detail the simulation setup and the simulation

results obtained.

A. Simulation Setup

We considered the simulation of PANs with random topolo-

gies. Ns-2.31 does not provide the means to generate random

networks when multi-interface nodes are considered. There-

fore, STS6 [2] was used. STS generates random graphs to

simulate spanning tree algorithms; so, it was simply extended

to generate random graphs in the Tcl format accepted by

ns-2. Such random graphs were then used as input to ns-2.

Most of the wireless PAN technologies available are based on

the CSMA/CA access method [2]. Therefore, we considered

IEEE 802.11 as a basis and set up different nominal data rates

to different network interfaces. Table I summarizes the input

parameters considered in the simulations.

The set S = {1, 10, 100}7 was considered to generate

the heterogeneous graphs in STS. Based on the Tcl files

generated by STS, the ns-2 802.11 NICs were configured

with nominal data rates according to the edge weights set

by STS. The base nominal data rate was 11 Mbit/s. Thus,

the generated random PANs included heterogeneous wireless

5The ns-2.31 simulator developed and the Tcl scripts used in the simulations
are available at http://telecom.inescporto.pt/∼rcampos/software.php

6http://telecom.inescporto.pt/∼rcampos/STS.tar.gz
7S denotes the set of edge weights considered for generating random graphs

in STS.

Simulation Input Parameters Values

No. of nodes forming the PAN (n) {10, 20}
Average no. of NICs per node (ANICs) {1.5, 2, 2.5, 3}
Link nominal data rates {11,110,1100} Mbit/s
No. of pairs communicating simultaneously (np) {1, 2, 4}
TCP flow duration 10 seconds
Packet size 1500 bytes

Table I: Summary of the input parameters considered in the

ns-2 simulations.

links with nominal data rates of 11 Mbit/s, 110 Mbit/s, and 1.1

Gbit/s. PANs are envisioned to be small networks. Thereby,

we simulated 10-node and 20-node PANs; for each case, 30

random topologies were generated. The average number of

NICs per node, ANICs, was considered as an input parameter

too, so that we could vary the density of the links between

PAN devices; ANICs is computed for each random graph

generated using STS. PANs are expected to be formed by

nodes supporting up to a few NICs, so the maximum value for

the average number of NICs per node was set to 3; the other

values considered are shown in Table I. Finally, we considered

the number of pairs of nodes communicating simultaneously,

np, as an input parameter, in order to vary the traffic demand

within the PAN; the values simulated are also shown in Table

I. TCP flows between random pairs of nodes were simulated;

the duration of the TCP flows was set to 10 seconds and the

packet size was set to 1500 bytes. TCP was selected for two

reasons. Firstly, it is the most used transport layer protocol

in IP networks. Secondly, it adapts to the available bandwidth

and enables easy measurement of the maximum throughput

possible between two given nodes.

The following output parameters were evaluated: through-

put, delay, route establishment delay, and route configuration

load.

B. Simulation Results

1) Throughput and Delay: The plots in Fig. 3 show the

average TCP throughput for GLUE and AODV, normalized

to the average TCP throughput obtained using AODV-DR,

with the corresponding 95% confidence intervals; additional

simulation results can be found in [2].

In general, the GLUE normalized throughput is around 1,

which means that GLUE and AODV-DR have similar perfor-

mance; as expected, AODV performs worse than both GLUE

and AODV-DR, due to the use of the “first” route found. Still,

interestingly, GLUE can in some cases outperform AODV-

DR. This is explained by the increasing number of Route

Request collisions in AODV-DR, when n, np, and ANICs

increase, as it has been shown in [2]. The higher number

of Route Request collisions has the effect of preventing the

discovery of the best route in terms of the data rate metric. The

consequence of this effect is visible in Fig. 3, with GLUE able

to outperform AODV-DR when n and ANICs increase and, in

general, AODV throughput becoming closer to the AODV-

DR throughput; however, as ANICs increases the limitation

of using a single spanning tree may prevail over the problem






