
LogicObjects: Enabling Logic Programming
in Java through Linguistic Symbiosis�

Sergio Castro1, Kim Mens1, and Paulo Moura2

1 ICTEAM Institute, Université catholique de Louvain, Belgium
{sergio.castro,kim.mens}@uclouvain.be

2 Center for Research in Advanced Computing Systems, INESC–TEC, Portugal
pmoura@inescporto.pt

Abstract. While object-oriented programming languages are good at
modelling real-world concepts and benefit from rich libraries and devel-
oper tools, logic programming languages are well suited for declaratively
solving computational problems that require knowledge reasoning. Non-
trivial declarative applications could take advantage of the modelling fea-
tures of object-oriented programming and of the rich software ecosystems
surrounding them. Linguistic symbiosis is a common approach to enable
complementary use of languages of different paradigms. However, the
problem of concepts leaking from one paradigm to another often hinders
the applicability of such approaches. This issue has mainly been reported
for object-oriented languages participating in a symbiotic relation with
a logic language. To address this issue, we present LogicObjects, a lin-
guistic symbiosis framework for transparently and (semi-) automatically
enabling logic programming in Java, that aims to solve most of the prob-
lems of paradigm leaking reported in other works.

Keywords: Linguistic Symbiosis, Object-Oriented Programming, Logic
Programming, Multi-Paradigm Programming.

1 Introduction

Object-oriented languages like Java have demonstrated their usefulness for mod-
elling real-world concepts. In addition, the availability of continuously growing
software ecosystems around them, including advanced IDEs and extensive li-
braries, has contributed to their success. Declarative languages like Prolog are
more convenient for expressing problems of declarative nature, such as expert
systems [1,2]. Linguistic symbiosis [3] has been used in the past to solve the
problem of integrating programs written in different languages [1]. Some limi-
tations and issues when implementing such symbiosis, mainly from the point of
view of the object-oriented language, have been highlighted in [4] and referred
to as paradigm leaking. Building upon an earlier position paper [5], this work
� Work partially supported by the LEAP project (PTDC/EIA-CCO/112158/ 2009),

the ERDF/COMPETE Program and by the FCT project FCOMP-01-0124-FEDER-
022701.

K. Sagonas (Ed.): PADL 2013, LNCS 7752, pp. 26–42, 2013.
© Springer-Verlag Berlin Heidelberg 2013

LogicObjects: Logic Programming in Java through Linguistic Symbiosis 27

presents a framework that overcomes most of these limitations, while providing
a transparent, (semi-)automatic and customisable integration from the perspec-
tive of the object-oriented language. New in this paper are the introduction of
improved mechanisms for automatic adaptation of logic routine results in the
object-oriented world, a context dependent mapping of Java objects to multiple
representations in Prolog, and a general mechanism for expressing Java objects
in a convenient logic representation even in pure object-oriented programs. We
validate our technique by comparing it to the well-known JPL library [6] for
invoking logic routines from Java and illustrate the reduction in programming
effort.

This paper is structured as follows. Section 2 presents our running example
and a logic programming solution. Sections 3 and 4 present our framework and
how it enables a transparent and automated access from Java to our implemen-
tation in logic. Section 5 discusses related work and Section 6 concludes and
presents future work.

2 Case Study: The London Underground

Our running example addresses a typical problem that can be implemented easily
with a logic language: a querying system about subway lines and stations. But
public transportation systems also require a user-friendly interface, which can be
developed more easily in an object-oriented language. Therefore, this is a typical
case where we can profit from a symbiotic integration between Prolog and Java.
In this section, we present a straightforward implementation of our example
application in a logic language, discuss how common approaches typically would
integrate its logic routines in an object-oriented language, and give an intuitive
introduction to our approach and its advantages over current techniques.

Implementation in Logic. The first stage of the problem consists in expressing
our knowledge about the London Underground as a set of logic statements. Most
of the code in this section has been adapted from [7], with an interesting variation:
instead of implementing it in plain Prolog, we use Logtalk [8], a portable object-
oriented layer on top of Prolog, facilitating in this way the mapping that needs to
be made between objects belonging to each of the two worlds.

1 :− object (metro) .
2 :− publ i c ([connected /3 , nearby /2 , reachable /3 , l i n e /1]) .
3
4 connected (s t a t i on (green_park) , s t a t i o n (char ing_cros s) , l i n e (j u b i l e e)) .
5 connected (s t a t i on (bond_street) , s ta t i o n (green_park) , l i n e (j u b i l e e)) .
6 connected (s t a t i on (bond_street) , s ta t i o n (ox ford_ci rcus) , l i n e (c e n t r a l)) .
7 . . .
8
9 nearby (S1 , S2) :− connected (S1 , S2 , _) .

10 nearby (S1 , S2) :− connected (S1 , S3 , L) , connected (S3 , S2 , L) .
11
12 reachable (S1 , S2 , []) :− connected (S1 , S2 , _) .
13 r eachable (S1 , S2 , [S3 | Ss]) :− connected (S1 , S3 , L) , reachable (S3 , S2 , Ss) .
14
15 l i n e (Name) :− s e t o f (L , S1^S2^connected (S1 , S2 ,L) , Ls) , l i s t : : member (l i n e (Name) ,

Ls) .
16 :− end_object .

Listing 2.1. The metro object in Logtalk

28 S. Castro, K. Mens, and P. Moura

In our example, stations are connected to other stations by underground lines.
A station is nearby another one if there is at most one station in between them.
A station A is reachable from another station B if there exists a list of stations L
that form a path going from B to A. Listing 2.1 shows the Logtalk definition of
the metro object.1 The metro object encapsulates the knowledge about how sta-
tions are connected, plus the rules for the logic predicates nearby/2, reachable/3
and line/1. The messages (queries) that the metro object can respond to are
specified by the public/1 directive in line 2. Messages in Logtalk are sent using
the ::/2 operator, as illustrated on line 15 for the member/2 method.

1 :− object (l i n e (_Name)) .
2 :− pub l i c ([connects /2]) .
3
4 connects (S1 , S2) :− s e l f (S e l f) , metro : : connected (S1 , S2 , S e l f) .
5 :− end_object .

Listing 2.2. The line object in Logtalk

Listing 2.2 shows the definition of a parametric object [9], line/1, which en-
capsulates the operations of an object representing an underground line. The
object parameter denotes the name of the line. A connects/2 predicate (line 4)
answers stations directly connected by the line object receiving the message.
The method implementation is delegated to the metro prototype object.

1 :− object (s ta t i on (_Name)) .
2 :− pub l i c ([connected /2 , nearby /1 , reachable /2]) .
3
4 connected (S , L) :− s e l f (S e l f) , metro : : connected (Se l f , S , L) .
5
6 nearby (S) :− s e l f (S e l f) , metro : : nearby (Se l f , S) .
7
8 r eachable (S , I S t a t io n s) :− s e l f (S e l f) , metro : : r eachable (Se l f , S , I S t a t i on s) .
9 :− end_object .

Listing 2.3. The station object in Logtalk

Our last object is the station object (Listing 2.3). As for the line object it
is also a parametric object having as sole parameter the name of a station. It
defines a method connected/2 that unifies its first parameter with a station that
is connected to this station object, through the underground line unified with
the second parameter. The method nearby/1 answers if this station is nearby
another station received as a parameter. The method reachable/2 unifies its
first parameter with a station that is reachable from this station object, through
a list of intermediate stations unified with the second parameter. As with the
line object, methods in this station object delegate to the metro object.

Integration of Logic Routines in an Object-Oriented Language. Most
approaches for integrating logic routines in an object-oriented language rely on
an explicit mapping between the artefacts of the two worlds. Notions such as a
logic engine, logic terms, queries, and query results are explicitly represented in
1 Note that we are defining a prototype instead of a class as we would do in Java.

Although Logtalk also supports classes, using a prototype is simpler in this case.

LogicObjects: Logic Programming in Java through Linguistic Symbiosis 29

the object-oriented programs. In the best case, the mappings of these artefacts
are simple to implement, but tend to clutter the object-oriented applications
that use them with significant boilerplate code that is not related to the core
functionality of the application, obscuring in this way its understanding and
further evolution. As a representative example of such approaches, we show how
a logic routine can be invoked from within Java using the JPL library.

Listing 2.4 shows a partial implementation of a Java class Station that uses
this library. We include the connected(Line) method (lines 14–27) together with
required mapping methods. This Java method delegates to the connected/2
method of the station/1 Logtalk object (Listing 2.3, line 4). For brevity, we
do not discuss here all the details of this JPL-based implementation but we
highlight that it contains no less than 14 lines of code just for dealing with map-
ping tasks. Furthermore, these mapping tasks rely on the existence of auxiliary
adapter methods like asTerm() and create(Term) that are required everywhere
we need to adapt a Java object to the logic world and back. In more complex
examples, the required boilerplate code can be even more significant.

1 public c lass Stat ion {
2 St r ing name ;
3 . . .
4 //mapping an ins tance o f S ta t ion to a l o g i c Term
5 public Term asTerm () {
6 return new Compound(" s t a t i on " , new Term [] {new Atom(name) }) ;
7 }
8 //mapping a l o g i c Term to an ins tance o f S ta t i on
9 public s tat i c Stat ion c r ea t e (Term stationTerm) {

10 St r ing lineName = ((Compound) stationTerm) . arg (1) . name () ;
11 return new Stat ion (lineName) ;
12 }
13 //mapping a Java method to a Log ta lk method
14 public Stat ion connected (Line l i n e) {
15 S ta t ion connectedStat ion = null ;
16 St r ing stationVarName = " Stat ion " ;
17 Term [] arguments = new Term [] {new Variab l e (stationVarName) ,

l i n e . asTerm () } ;
18 Term message = new Compound(" connected " , arguments) ;
19 Term objectMessage = new Compound(" : : " , new Term [] {asTerm () , message }) ;
20 Query query = new Query (objectMessage) ;
21 Hashtable<String , Term> so l u t i o n = query . oneSolut ion () ;
22 i f (s o lu t i o n != null) {
23 Term connectedStationTerm = so l u t i o n . get (stationVarName) ;
24 connectedStat ion = crea t e (connectedStationTerm) ;
25 }
26 return connectedStat ion ;
27 }
28 . . . // o ther methods mapped to l o g i c rout ines
29 }

Listing 2.4. The Station class in Java using JPL

Towards a Conceptual Mapping with LogicObjects. Our framework pro-
vides an alternative to avoid such explicit boilerplate mapping code. As a first
example, lines 7–8 of Listing 2.5 show how the connected(Line) Java method
gets reduced to two lines of code: the method declaration and one annotation.

1 @LObject (args = {"name" })
2 public abstract c lass Stat ion {
3 S t r i ng name ;
4 public Sta t ion (St r ing name) { th is . name = name ; }
5
6 //answers a s ta t i on connected to t h i s s t a t i on by means o f a l i n e
7 @LMethod(args = {" LSolution " , "$1" })
8 public abstract Sta t ion connected (Line l i n e) ;
9

30 S. Castro, K. Mens, and P. Moura

10 //answers the l i s t o f nearby s ta t i on s
11 @LComposition @LMethod(args = {"LSolution "})
12 public abstract Li s t<Station > nearby () ;
13
14 //answers the l i s t o f intermed ia te s t a t i ons between t h i s and another s ta t i on
15 @LMethod(name = " reachable " , args = {"$1" , " LSolution " })
16 public abstract Li s t<Station > in te rmedi a t eS ta t i on s (Stat ion s ta t io n) ;
17 }

Listing 2.5. The Station class in Java using LogicObjects

The Station class is the Java counterpart of the station/1 Logtalk object defined
in Listing 2.3. It declares a name member variable (line 3) denoting the name of
the underground station. The Line class (Listing 2.6) is the Java counterpart
of the line/1 Logtalk object defined in Listing 2.2. It declares a name member
variable denoting the name of the underground line.

1 @LObject (args = {"name" })
2 public abstract c lass Line {
3 S t r i ng name ;
4 public Line (S tr ing name) { th is . name = name ; }
5
6 //answers i f two s t a t i ons are connected by t h i s l i n e
7 public abstract boolean connects (Stat ion s1 , S ta t ion s2) ;
8
9 //answers the number o f s t a t i on s connected by t h i s l i n e

10 @LMethod(name = " connects " , args = {"_" , "_"})
11 public abstract int segments () ;
12 }

Listing 2.6. The Line class in Java using LogicObjects

Finally, the Metro class (Listing 2.7) is the Java counterpart of the metro Logtalk
object defined in Listing 2.1.

1 public abstract c lass Metro {
2 //answers a l i s t with a l l l i n e s
3 @LComposition @LMethod(name=" l i n e " , args={"L"})
4 public abstract Li s t<Line> l i n e s () ;
5
6 //answers an e x i s t i n g l i n e with a g iven name
7 public abstract Line l i n e (St r ing s) ;
8 }

Listing 2.7. The Metro class in Java using LogicObjects

3 LogicObjects

In this section we describe the linguistic symbiosis techniques employed by our
LogicObjects framework. Figure 1 lists all the annotations currently supported.
Our current implementation focusses on a symbiosis from the Java point of view.
We decided to design and implement our symbiosis from the perspective of the
object-oriented language, since this is the direction that has been reported [1,4]
as the most difficult to achieve transparently and automatically. We start our
discussion by describing the linguistic symbiosis problems we are going to solve
in the remainder of this section.

LogicObjects: Logic Programming in Java through Linguistic Symbiosis 31

Fig. 1. Annotations currently supported by LogicObjects

3.1 Linguistic Symbiosis

Linguistic symbiosis [3] is the ability of a program to transparently invoke rou-
tines defined in another language as if they were defined in its own language [4].
Wuyts and Ducasse [10] add that, to achieve real symbiosis, objects from one lan-
guage must be understood in the other. In our particular context, these generic
symbiosis requirements could be rephrased as being able to:
– Translate Java objects to logic terms, and back.
– Map Java methods to logic queries.

In addition, several problems specific to symbiosis between object-oriented and
logic programming languages have been presented in [1,4]. We repeat the most
significative from the object-oriented language perspective below:
Unbound Variables: Unlike most object-oriented languages, it is common in

logic programming to call a predicate with unbound variables.
Return Values: In object-oriented languages, methods often return objects as

a result of their execution. In logic programming, there are no such return
values: results are returned by binding values to unbound variables. More
than one value can be returned in this way.

Managing Multiplicity: In object-oriented languages there is a difference
(e.g., return type) between methods that return a single value or a col-
lection of values. Logic languages make no distinction between predicates
that produce a single solution or many solutions.

The expression “paradigm leak” [4] has been used in the past to refer to such map-
ping problems, suggesting a leakage of concepts from one paradigm to another.
Let us now discuss how our framework deals with these issues.

3.2 Translating Java Objects to Logic Terms

In the context of symbiosis between Java and Prolog, Java objects should have
a representation as logic terms and logic terms should be manipulatable as Java
objects [10,11]. Since in our technique the first step to map an object to a logic
term is to find a mapping between its class and a predicate name, we start by
explaining how our framework achieves such a mapping.

Mapping Class Names to Predicate Names. Brichau et al. [11] defined a
mapping between class names and predicate names for the specific problem of

32 S. Castro, K. Mens, and P. Moura

transforming objects representing parse tree nodes to logic terms and vice-versa.
In their work, there is an implicit direct mapping between a logic predicate
name and a class name. The arguments of logic predicates are mapped to the
children of the parse tree nodes by means of the same recursive algorithm. We
generalize their mapping solution by providing, using Java annotations, a gen-
eral customizable mapping between logic predicate names and Java classes and
between predicate arguments and Java object properties.

To illustrate our technique, let us consider the implementation of the Line
class in Java, shown in Listing 2.6. We refer to this class as a symbiotic class
since part of its implementation is transparently managed by an object on the
logic side. The @LObject annotation on line 1 provides custom mapping data for
our framework. For example, its optional name attribute maps instances of this
class to a Logtalk object implementing on the logic side the symbiotic methods
of the class. In this case, given that no predicate name is explicitly specified,
the name of the corresponding Logtalk object is automatically derived from the
class name Line. This default mapping is a transformation from Java camel-
case naming convention to Prolog names with lowercase tokens separated by
underscores. E.g., the Java class FooBar would be translated to the Logtalk object
foo_bar.

This is an example of how, by providing smart default mappings, we reach a
complete automation in common cases. At the same time, a programmer can opt
for explicitly specifying custom mappings when the defaults are not convenient.

Mapping Java Objects to Logic Terms. When the object on the logic
side is a parametric object, its parameters need to be declared on the Java
side by means of an args attribute in the @LObject annotation. In the Line
class example, this attribute is present in the @LObject annotation. It maps the
instance variable name to the single parameter of the parametric object line on
the logic side. An instance of the Java class Line with its name set to “central” is
thus automatically translated to the logic term line(central). In this example,
the transformation of the object property name to a term is straightforward, as it
is just a string. If the property had been a symbiotic object (e.g., when its class or
a superclass includes an @LObject annotation) the transformation process would
continue recursively, as the property object could also have properties that are
symbiotic objects. When the object on the logic side is not a parametric object,
the @LObject annotation can be omitted (e.g., the Metro class in Listing 2.7).

Mapping Logic Terms to Java Objects. Translating a logic term to an
object is the inverse process. However, in this case we need to consider the
translation context, which encapsulates the translation objective and environ-
ment. With this context, we can answer questions such as: Is the translated
object going to be assigned to a field? Or is it the result of a symbiotic method
(a Java method implemented in Prolog)? Are there relevant annotations in the
context (e.g., a field or method) that should influence the translation? What is
the expected type of the object in the Java world?

LogicObjects: Logic Programming in Java through Linguistic Symbiosis 33

The procedure of transforming a logic term into a Java object starts by at-
tempting to find a symbiotic class whose name and number of parameters corre-
spond to the logic predicate’s name and arity. Once we have located and instan-
tiated the logic class, the conversion algorithm continues recursively for mapping
each of the term arguments to the object properties. The context provides valu-
able guidance to choose the right class to instantiate. For example, different
Java types could be mapped to a Prolog list representation (e.g., classes imple-
menting the List or Map interfaces). Therefore, when translating a list term to a
Java object, the expected type will influence the selection of the best mapping
(e.g., symbiotic classes incompatible with the expected type will be ignored).
If many symbiotic classes are compatible with the expected type, by default
the framework returns the first match. This can be customized by means of a
preferedClass attribute in the LSolution annotation.

3.3 Mapping Java Methods to Logic Queries

As in [4], methods are mapped by default to logic predicates with the same name
and arity. An example of this mapping is found in the connects(Station, Station)
method (Listing 2.6, line 7). Since this Java method has two parameters, it is
mapped to the Logtalk method connects/2 in Listing 2.2, line 4.

However, a programmer can always customize this mapping by adding a
@LMethod annotation. The Java method segments() illustrates this (Listing 2.6,
lines 10–11). As specified by the name and args annotation attributes, this method
will also be mapped to the logic predicate connects/2. With this technique, we
are thus able to map a single Logtalk predicate, connects/2, to different Java
methods: int segments() and boolean connects(Station, Station), according to
our needs. The semantics of these mappings is explained in section 3.6.

3.4 Dealing with Unbound Variables

In Prolog, it is common to write queries with unbound variables. In Java, how-
ever, all variables must be bound to a value. Consider the segments() method
mentioned before. Its arguments are explicitly specified by means of the args
attribute of the @LMethod annotation. These arguments are interpreted as Prolog
terms. In this case, both parameters are the symbol “_”, which is interpreted
as an anonymous logic variable.The class Station (Listing 2.5) provides exam-
ples of methods having as arguments non-anonymous variables. For instance, the
predicate to which the method connected (lines 7–8) is mapped, takes as first
argument a logic variable LSolution and as second argument the first parameter
received by the Java method (referred to with the macro expression $1).

3.5 Return Values

The result of a logic query can be seen as a set of frames binding logic variables
to terms, where each frame corresponds to one logic solution. The solution of a

34 S. Castro, K. Mens, and P. Moura

symbiotic method is a transformation from this set of frames to a Java object.
By default, a Java object representation of the first logic solution (the first
frame) is considered by our framework as the symbiotic method return value.
This section discusses techniques for instantiating such Java object from a single
logic solution. The composition of a set of solutions is discussed in Section 3.6.

Inferring Return Values from a Logic Variable Name. Our first heuristic
is based on a naming convention: If one of the logic variables in a query has as
name LSolution, its binding in the frame of the first solution will be considered
as the term representation of the Java object to return. As an example, reconsider
the implementation of the method connected(Line) in the Station class (List-
ing 2.5, lines 7–8). This method is mapped to the Logtalk method connected/2
(Listing 2.3, line 4). As specified by the args attribute of the @LMethod annota-
tion, the query’s first parameter is a Prolog variable LSolution and the second
parameter is the term representation of the first parameter of the Java method.
Upon evaluation of the query, the LSolution variable will be bound to a com-
pound term of the form station(nameStation). Given the convention introduced
above, the return value of the symbiotic method will be the transformation of
this term to a Java object according to the algorithm discussed in section 3.2.

Inferring Return Values from Method Signatures. If no variable with
name LSolution is found in the query, the framework will attempt to infer its
return value from its signature. The term representation of this value has as name
the method name (adapted to Prolog naming conventions) and as arguments the
parameters of the method. The implementation of the Metro class illustrates this.
The line method (Listing 2.7, line 7) is mapped to a method with the same name
on the logic side. In case that the Logtalk method succeeds, the framework will
consider as the solution to the method the logic term line having as argument
the only string parameter of the method. This term will be converted to an
instance of the Line class according to the algorithm discussed in Section 3.2.
In case a line with the name given as a parameter of the Java method does not
exist in the logic world, the method will return null.

Explicit Specification of Return Values. The previous heuristics reduce
the amount of explicit mappings that need to be specified by a programmer.
However, we do provide a @LSolution annotation to let a programmer specify
explicitly the term representation of the Java object to return, overriding the
heuristics presented above. This term can be of arbitrary complexity and refer
to as many logic variables as required. For instance, if we had wanted to encode
explicitly the heuristics for returning the logic variable LSolution as the return
value of the connected(Line) method (Listing 2.5, lines 7–8), we could have
done so by annotating it with @LSolution("LSolution"). Since this is the default
mapping for the solution, it can be omitted, but if an alternative or more complex
solution is desired, this can be defined explicitly with the @LSolution annotation
as well. An example of this is shown in listing 3.1, line 4.

LogicObjects: Logic Programming in Java through Linguistic Symbiosis 35

Inferring Return Values from Non-symbiotic Methods. The previous
techniques for specifying the return value of a method from a term represen-
tation of its result can be generalized to non-symbiotic methods. Methods that
should not be mapped to logic routines, but that still want to express their return
value as a term expression, can do this by means of the @LExpression annotation.
For example, Listing 3.1 shows the implementation of a factory class. It provides
methods to instantiate certain symbiotic objects that are part of our problem
domain. The first method (lines 4–5) creates a new Station object by specifying
the term representation of its return value with a @LSolution annotation. This
logic term has the form station($1), where $1 gets substituted by the first pa-
rameter of the method. The second factory method (lines 8–9) does something
equivalent to the first one. In this case, no explicit return value is specified with
a @LSolution annotation, implying that the framework will infer its result from
the method signature as discussed before. The term representation of the value
to return will be a functor with the same name as the method and having as
arguments the method parameters (i.e., line(String)).

1 @LObject
2 public abstract c lass MetroFactory {
3 // crea te s a s ta t i on with a g iven name
4 @LExpression @LSolution (" s t a t i on ($1) ")
5 public abstract Stat ion s t a t i on (St r ing name) ;
6
7 // crea te s a l i n e with a g iven name
8 @LExpression
9 public abstract Line l i n e (S t r ing name) ;

10 }

Listing 3.1. The MetroFactory class in Java

3.6 Managing Multiplicity

The previous section illustrated how the framework infers the return value of a
symbiotic method from the first solution of a logic routine. This section discusses
how to compose a value from multiple solutions, or from properties of the logic
solution set.

It is not trivial to infer that a method should return a composition of mul-
tiple solutions (e.g., as a list) instead of a single solution. Initially, we tried to
infer this from the method return type. For example, if the method returns a
collection class, then with certain probability its intention is to return the col-
lection of results rather than a single result. This assumption is not always valid,
however. Consider, for example, the method intermediateStations(Station) in
the Station class (Listing 2.5, lines 15–16). This method is mapped to the pred-
icate reachable/2 in the station Logtalk object (Listing 2.3, line 8). The args
attribute in the @LMethod annotation indicates that the first parameter of the
Logtalk method will be the logic term representation of the first parameter of
the Java method (indicated by the macro-expression $1). The second parame-
ter is the Prolog variable LSolution. As explained in Section 2, upon execution
of the Logtalk method, the LSolution variable is bound to a list with the in-
termediate stations between the receiver station object and the station object

36 S. Castro, K. Mens, and P. Moura

passed as first parameter. The method return value is the value bound to that
variable in the first solution, according to the heuristics discussed in section 3.5.
The Java method thus returns a list of objects that corresponds to the binding
of one variable in one solution (the first) answered by the Logtalk query. This
is an example where a method returning a collection of objects is not intended
to answer a single collection of different solutions, but rather a single solution
consisting of a collection of objects. In order to resolve ambiguities between both
ways of interpreting collections, LogicObjects provides the @LComposition anno-
tation. The Java method nearby() (Listing 2.5, lines 11–12) in class Station is
an example of the usage of the @LComposition annotation (line 11). This method
is mapped to the Logtalk method nearby/1 which takes as argument an unbound
logic variable LSolution. On the logic side, the unbound variable passed as argu-
ment will be bound to a station nearby the receiver station object. On the Java
side, as in the previous example, a binding of the LSolution variable corresponds
to the term representation of an individual solution. Given the @LComposition
annotation, the framework considers the type of the method (a List class) as a
container of all its solutions.

Another example is the lines() method in the Metro class (Listing 2.7, lines
3–4). In this case, the arguments of the method do not include a LSolution
variable, neither a @LSolution annotation. Therefore, the term representation of
each solution is given by the name and arguments of the Logtalk method (given
explicitly by the name and args attributes of the @LMethod annotation). As in the
previous example, the @LComposition annotation will instruct the framework to
collect all these individual results in a collection. In both cases, the framework
will choose a collection class implementing the Java List interface, given that
this is the return type of the method.

Finally, the return value of a method could be inferred from properties of the
complete logic solution set. For example, in case when none of the heuristics
discussed in this section can be applied, the framework will inspect the return
type of the method. If this is a numeric type, the return value will be the number
of results of the query (e.g., the segments() method in class Line). If it is a
boolean, the method answers whether the query produces at least one solution
(e.g., the connects(Station, Station) method in class Line).

3.7 Delegation Objects

We have found cases where the logic representation of a Java object depends on
the context where such logic representation is required. To illustrate this, con-
sider a list in Prolog, which is represented as a comma separated list of members
as in this example: [a,b,c]. In order for the query [a,b,c]::length(X) to be valid,
two Logtalk objects are required (one object for the empty list, which is an atom,
and a parametric object for the non-empty lists, which are compound terms). To
maintain a one-to-one mapping, the list methods can be encapsulated in a list
Logtalk object instead. This allows us to write e.g. list::length([a,b,c], L).
On the Java side the best logic representation for a list of objects (e.g., an im-
plementation of Iterable) is a logic list term (e.g., [a,b,c]). Then this is the

LogicObjects: Logic Programming in Java through Linguistic Symbiosis 37

default mapping assumed by the framework if nothing else is specified. How-
ever, the Logtalk object that knows how to deal with list operations does not
correspond to this default logic representation, but rather to the Logtalk object
list. Therefore, it can be convenient to use this representation in the context
of a method invocation. To deal with this kind of situations, our framework
provides a @LDelegationObject annotation. This annotation allows a program-
mer to specify mapping data that will be considered in the context of a logic
method invocation, and will be ignored in any other context. The class MyList
(Listing 3.2) shows an example. This class extends the ArrayList class, which is
translated by default to a logic list term (as all implementations of Iterable).

1 @LDelegationObject (name=" l i s t " , imports=" l i b r a r y (types_loader) ")
2 public abstract c lass MyList extends ArrayList<String > {
3 @LMethod(args={"$0" , "LSolution " })
4 public abstract int l ength () ;
5 }

Listing 3.2. A list class declaring a delegation object

The @LDelegationObject annotation has the same attributes, with equivalent
semantics, as the @LObject annotation. In our example, the name attribute spec-
ifies that the list object on the logic side will receive the logic messages sent
to instances of this Java class. As we mentioned before, this will not affect the
default logic representation of objects that are instances of this class.

The length() Java method is mapped to a Logtalk method with the same
name. Its first argument is the term representation of an instance of MyList
receiving the message (referred by the macro $0). To build this representation,
the framework ignores the @LDelegationObject annotation and prefers the default
logic representation for lists. The second argument is an unbound logic variable
LSolution. Upon execution of the logic method, the value bound to this variable
in the first solution to the query will become the Java method return value. Given
the @LDelegationObject annotation, the receiver of the method on the logic side
will be the list Logtalk object, which provides the method length/2, which will
bind the second parameter to the length of the list sent as the first parameter.

3.8 Instantiating Symbiotic Classes

To use our framework, a programmer simply needs to instantiate logic classes us-
ing a provided factory method. Everything else, including the transparent import
of dependencies on the logic side, is automatically managed using runtime code
generation and byte code instrumentation techniques. As an example, Listing 3.3
shows an instantiation of a logic class and the invocation of a logic method. The
first argument of the factory method corresponds to the logic class to instanti-
ate. The other arguments correspond to the logic class constructor parameters.
In this code snippet, the output corresponds to the number of segments on the
line central, as specified on the logic side (Listing 2.1).

38 S. Castro, K. Mens, and P. Moura

1 Line l i n e = LogicObjectFactory . g etDef au lt () . c r ea t e (Line . class , " c e n t r a l ") ;
2 System . out . p r i n t l n ("Number of segments : " + l i n e . segments ()) ;

Listing 3.3. Instantiating a symbiotic class

4 Validation

To validate our approach, we re-implemented with LogicObjects the JPL exam-
ple of Section 2 (Listing 2.4). This implementation required a significant amount
of boilerplate code. Figure 2 shows the notable reduction in code size, and thus
in programming effort, that can be gained by using our LogicObjects framework.

The figure also compares the result of a stress test. We show the difference in
execution time required by each pair of corresponding methods in the two imple-
mentations.2 Since currently LogicObjects employs JPL to invoke logic routines,
the differences in processing time can serve as a measure of the adaptation effort
(i.e., a measure of the complexity of adaptation heuristics in different scenarios).

There are many factors that influence such an effort. For example, methods
that do not require an adaptation of their parameters (i.e., not including an args
attribute in a @LObject annotation) are the ones with less impact on execution
time (e.g., the connects method in class Line and the line method in class Metro).
On the other hand, methods using macro expressions are among the ones with
greater increase in execution time (e.g., the connected and intermediateStations
methods in class Station). In addition, the adaptation effort is greater in methods
manipulating collection of objects (e.g., the connected method in class Station
and the lines method in class Metro), since it grows proportional to the amount
of objects (also requiring adaptation) in such collections.

In spite of the reduction in program size, the increase in execution time is
considerable. However, we regard these results as promising, since there are
many optimisation paths to follow in order to reach an acceptable performance
in a production setting, such as caching certain mappings so they do not have to
be calculated every time, or the usage of a Prolog engine embedded in the JVM.
In addition, our framework does not impose any overhead in the execution of a
logic routine per se, which is often the real bottleneck performance wise, but on
the adaptation of its arguments and the interpretation of its results as objects.
For this reason we have preferred to avoid any premature optimisation.

5 Related Work

Several aspects of this work are inspired by SOUL [12], a Prolog dialect that is
implemented in and symbiotic with the object-oriented language Smalltalk. Par-
ticularly, we improve on the open questions and limitations reported in experi-
ments implementing symbiosis from the object-oriented language perspective. [4]
2 Tests accomplished with a 2.8 GHz Intel Core 2 Duo processor and 4 GB of RAM.

LogicObjects: Logic Programming in Java through Linguistic Symbiosis 39

Fig. 2. A comparison between LogicObjects and JPL

E.g., the reported approach in SOUL for dealing with the problem of returning
multiple vs. just a single solution to a query, consists of always returning a collec-
tion. When a query has just one solution, its solution is wrapped in a collection
wrapper. In order to provide an automatic adaptation, such a wrapper delegates
to its wrapped object any message it cannot understand. Unfortunately, this can
create subtle problems if the wrapped object is also a collection, as explained
in Section 3.6. We have therefore preferred the choice of making logic methods
return by default their first solution, and to explicitly use a @LComposition anno-
tation whenever the expected return value should be a composition of solutions
instead, thus sacrificing a bit on automation to gain on soundness. Concerning
how to return values from methods implemented as logic predicates, SOUL lim-
its this answer to the value of a logic variable or an expression written in the
object-oriented language. Our approach supports this and in addition allows a
programmer to express the value to return as a logic term of arbitrary complex-
ity. We also consider that our technique for mapping method names and their
arguments to their logic counterparts is as automatic as the SOUL technique
(when relying on the default mappings offered by our framework), without ex-
cluding the possibility for other customizations when the defaults do not fit one’s
needs. Furthermore, our technique for dealing with unbound variables (expressed
as annotation arguments) is simpler than the proposal of SOUL of extending the
syntax and semantics of the object-oriented language to support the notion of
unbound variables on the object-oriented side.

In addition to SOUL, other techniques exist that use advanced linguistic sym-
biosis for analyzing object-oriented programs (e.g., [13,14]). However, the focus
of these techniques is on querying (or transforming) object-oriented program-
ming artefacts from the logic side, rather than achieving an automatic and
transparent linguistic symbiosis from the object-oriented language perspective.

There are a number of other works attempting to provide a symbiotic integra-
tion between object-oriented languages and Prolog. Most of them do this from
the perspective of the logic language, mainly by offering a set of built-in Prolog
predicates that enable easy access to the object-oriented language [15,16,17]. In
the best cases, libraries for communication from the object-oriented language
back to the logic world are provided, but they fail to abstract the programmer
from low level mappings, requiring an explicit representation of logic concepts
(logic engine, queries, logic terms) in the object-oriented program (as was the
case with the JPL example). The same problem occurs for rule engines embedded
in Java, like [18], that use a declarative language other than Prolog.

40 S. Castro, K. Mens, and P. Moura

An interesting mapping technique from methods to logic predicates using
method type parameters and annotations is presented in [19]. The main short-
coming of this approach is that the types participating in the declaration of
symbiotic methods have to be logic term types. Therefore, there is no implicit
mapping between objects and their term representations, but term objects must
be explicitly created every time a method is invoked.

Another interesting approach that integrates Java with a logic constraint
solver is presented in [20]. That work relies on a symbolic virtual machine and
the syntax of Java programs is left unmodified. Methods evaluated as logic com-
putations are identified with an annotation. Logic variables are also identified
with annotations and are limited to Java primitive types. A limitation is the
lack of adaptation of the result of a logic method as in our approach; instead all
logic methods must return an object instance of class Solutions.

6 Conclusions and Future Work

In this work we presented a framework based on linguistic symbiosis to facilitate
the invocation of logic routines from an object-oriented program. The framework
focusses in particular on providing a solution from the object-oriented language
perspective, since for this direction many difficulties and issues have been re-
ported in the past [4]. Our framework proposes an elegant and customizable
solution to each of these previously reported problems. In essence our approach
relies on extending the Java language with annotations expressing the declarative
nature of certain artefacts, having a counterpart in the logic world.

Although our current implementation is based on Java, most of the ideas
presented in this work can be extrapolated to other object-oriented languages.
However, we have found that a statically-typed language on the object-oriented
side offers considerable advantages for attaining an automatic and transparent
symbiosis with a logic language, since valuable information can be extracted from
the types of objects belonging to each of the two worlds. This additional type
information helps to guide the automatic and transparent conversion of objects
from or to the object-oriented world. Nevertheless, in a dynamically-typed lan-
guage our approach could be reproduced by annotating relevant artefacts (e.g.,
symbiotic classes and methods) with type data.

Finally, we believe that achieving a complete automatic symbiosis is only
possible under the assumption that there is a single valid mapping between
artefacts belonging to two different languages. As we have demonstrated, this
is not always the case and it is often desirable to let a programmer specify
explicitly the desired mapping between artefacts. We have thus opted to provide
a “good enough” automation that provides typical default mappings for the most
common cases (thus providing a high degree of automation), while at the same
time leaving enough flexibility to the programmer to provide more information on
the nature and semantics of the desired mapping when required by the problem.

Our future work will focus on implementing a full two-way symbiosis. We plan
to use the reflective mechanisms of Logtalk for transparently and automatically

LogicObjects: Logic Programming in Java through Linguistic Symbiosis 41

referring to Java objects and expressions and invoking their methods in a similar
way as has already been accomplished from the Java side. In addition, we will
explore techniques for establishing a causal connection between objects belonging
to our two different worlds, thus completing a full two-way symbiosis framework.

References

1. D’Hondt, M., Gybels, K., Jonckers, V.: Seamless Integration of Rule-Based Knowl-
edge and Object-Oriented Functionality with Linguistic Symbiosis. In: Proceedings
of the 2004 Symposium on Applied Computing (SAC), pp. 1328–1335. ACM (2004)

2. Russel, S., Norvig, P.: Artificial Intelligence, A Modern Approach. Prentice Hall
(1995)

3. Ichisugi, Y., Matsuoka, S., Yonezawa, A.: RbCl: A Reflective Object-Oriented Con-
current Language without a Run-time Kernel. In: International Workshop on New
Models for Software Architecture (IMSA): Reflection And Meta-Level Architec-
ture, pp. 24–35 (1992)

4. Gybels, K.: SOUL and Smalltalk - Just Married: Evolution of the Interaction
Between a Logic and an Object-Oriented Language Towards Symbiosis. In: Pro-
ceedings of the Workshop on Declarative Programming in the Context of Object-
Oriented Languages (2003)

5. Castro, S., Mens, K., Moura, P.: LogicObjects: A Linguistic Symbiosis Approach
to Bring the Declarative Power of Prolog to Java. In: Proceedings of the Workshop
on Reflection, AOP and Meta-Data for Software Evolution, RAM-SE (June 2012)

6. Singleton, P.: JPL: A Java Interface to Prolog (September 2012),
http://www.swi-prolog.org/packages/jpl/java_api/index.html

7. Flach, P.: Simply Logical: Intelligent Reasoning by Example. John Wiley & Sons,
Inc., New York (1994)

8. Moura, P.: Logtalk - Design of an Object-Oriented Logic Programming Language.
PhD thesis, Department of Computer Science, University of Beira Interior, Portu-
gal (September 2003)

9. Moura, P.: Programming Patterns for Logtalk Parametric Objects. In: Abreu,
S., Seipel, D. (eds.) INAP 2009. LNCS (LNAI), vol. 6547, pp. 52–69. Springer,
Heidelberg (2011)

10. Wuyts, R., Ducasse, S.: Symbiotic Reflection between an Object-Oriented and
a Logic Programming Language. In: International Workshop on MultiParadigm
Programming with Object-Oriented Languages (2001)

11. Brichau, J., De Roover, C., Mens, K.: Open Unification for Program Query Lan-
guages. In: Proceedings of the XXVI International Conference of the Chilean Com-
puter Science Society, SCCC 2007 (2007)

12. Wuyts, R.: Declarative Reasoning about the Structure of Object-Oriented Systems.
In: Proceedings of the TOOLS USA 1998 Conference, pp. 112–124. IEEE Computer
Society Press (1998)

13. De Volder, K.: JQuery: A generic code browser with a declarative configuration
language. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 88–102.
Springer, Heidelberg (2005)

14. Semmle Ltd.: SemmleCode (2010), http://semmle.com/
15. Boulanger, D., Geske, U.: Using Logic Programming in Java Environment (Ex-

tended Abstract). Technical Report 10, Knowledge-Based Systems Group, Vienna
University of Technology, Austria (1998)

http://www.swi-prolog.org/packages/jpl/java_api/index.html
http://semmle.com/

42 S. Castro, K. Mens, and P. Moura

16. Friedrich Bolz, C.: Pyrolog: A Prolog interpreter written in Python using the PyPy
translator toolchain, https://bitbucket.org/cfbolz/pyrolog/

17. Paul Tarau, P.: Styla: a lightweight Scala-based Prolog interpreter based on a pure
object oriented term hierarchy, http://code.google.com/p/styla/

18. Friedman-Hill, E.: Jess in Action: Java Rule-based Systems. Manning, Greenwich
(2003)

19. Cimadamore, M., Viroli, M.: Integrating Java and Prolog Through Generic Meth-
ods and Type Inference. In: Proceedings of the 2008 ACM Symposium on Applied
Computing (SAC), pp. 198–205. ACM (2008)

20. Majchrzak, T.A., Kuchen, H.: Logic java: combining object-oriented and logic
programming. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 122–137.
Springer, Heidelberg (2011)

https://bitbucket.org/cfbolz/pyrolog/
http://code.google.com/p/styla/

	LogicObjects: Enabling Logic Programming in Java through Linguistic Symbiosis
	1 Introduction
	2 Case Study:
	3 LogicObjects
	3.1 Linguistic Symbiosis
	3.2 Translating Java Objects to Logic Terms
	3.3 Mapping Java Methods to Logic Queries
	3.4 Dealing with Unbound Variables
	3.5 Return Values
	3.6 Managing Multiplicity
	3.7 Delegation Objects
	3.8 Instantiating Symbiotic Classes

	4 Validation
	5 Related Work
	6 Conclusions and Future Work
	References

