2"Y Symposium on Languages,
Applications and Technologies

SLATE’13, June 20-21, 2013, Porto, Portugal

Edited by
José Paulo Leal
Ricardo Rocha

Alberto Simoes

\\v OASICS

OASlcs — Vol. 29 — SLATE’13 www.dagstuhl.de/oasics

Editors

José Paulo Leal Ricardo Rocha Alberto Simdes

CRACS & INESC TEC CRACS & INESC TEC CCTC & CEHUM

Faculdade de Ciéncias Faculdade de Ciéncias Instituto de Letras e Ciéncias Humanas
Universidade do Porto Universidade do Porto Universidade do Minho
zp@fcc.fc.up.pt ricroc@fc.up.pt ambs@ilch.uminho.pt

ACM Classification 1998
D.3 Programming Languages; D.2.12 Interoperability; 1.2.7 Natural Language Processing;

ISBN 978-3-939897-52-1

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-52-1.

Publication date
June, 2013

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License

This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.

In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: OASIlcs.SLATE.2013.i

ISBN 978-3-939897-52-1 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-52-1
http://www.dagstuhl.de/dagpub/978-3-939897-52-1
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.SLATE.2013
http://www.dagstuhl.de/dagpub/978-3-939897-52-1
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

OASlcs — OpenAccess Series in Informatics

OASlcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASlIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU Miinchen, Germany)
Barbara Hammer (Universitat Bielefeld, Germany)
Marc Langheinrich (Universita della Svizzera ltaliana — Lugano, Switzerland)

Dorothea Wagner (Editor-in-Chief, Karlsruher Institut fiir Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

SLATE 2013

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Preface
José Paulo Leal, Ricardo Rocha, and Alberto Simoesc.ccuiiiiiiin. i

Keynotes

Software Languages: The Lingusitic Continuum (Invited talk)
Jean-Marie FQureo 3

Picat: A Scalable Logic-based Language and System (Invited talk)
NENG-Fa ZROUooii e e 5

Software Development Tools

Or-Parallel Prolog Execution on Clusters of Multicores
Jodo Santos and Ricardo Rocha i, 9

NESSy: a New Evaluator for Software Development Tools
Enrigue Miranda, Mario Beron, German Montejano, Maria Jodo Varanda Pereira,
and Pedro Rangel HEnriquest 21

Supporting Separate Compilation in a Defunctionalizing Compiler
Georgios Fourtounis and Nikolaos S. Papaspyrouc...ccouieiiieaiin.n. 39

Towards Automated Program Abstraction and Language Enrichment
Sergej Chodarev, Emilia Pietrikovd, and Jan Kolldr 51

XML and Applications

Publishing Linked Data with DaPress
Teresa Costa and José Paulo Leal i 67

Seqins — A Sequencing Tool for Educational Resources
Ricardo Queirds, José Paulo Leal, and José Camposccceeuiiiineannn. 83

XML to Annotations Mapping Patterns
Milan Nosdl and Jaroslav Porubdn 97

Retreading Dictionaries for the 21st Century
Xavier Gomez Guinovart and Alberto Simoes 115

Learning Environment Languages

A Flexible Dynamic System for Automatic Grading of Programming Exercises
Daniela Fonte, Daniela da Cruz, Alda Lopes Gangarski,
and Pedro Rangel Henriques 129

CodeSkelGen — A Program Skeleton Generator
Ricardo QUEITOS ... e e e 145

2% Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simdes

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

vi

Contents

Choosing Grammars to Support Language Processing Courses
Maria Joao Varanda Pereira, Nuno Oliveira, Daniela da Cruz,
and Pedro Rangel HEnriquest 155

Domain Specific Languages

Role of Patterns in Automated Task-Driven Grammar Refactoring

Jdn Kolldr and ITvan Halupka e 171
Defining Domain Language of Graphical User Interfaces

Michaela Bacikovd, Jaroslav Porubdn, and Dominik Lakatos 187
ABC with a UNIX Flavor

Bruno M. Azevedo and José Jodo Almeida 203

Specifying Adaptations through a DSL with an Application to
Mobile Robot Navigation
André C. Santos, Joago M. P. Cardoso, Pedro C. Diniz, and Diogo R. Ferreira ... 219

Natural Language Processing

Dictionary Alignment by Rewrite-based Entry Translation
Alberto Simoes and Xavier Gomez Guinovartcccooiiiiii... 237

Combining Language Independent Part-of-Speech Tagging Tools
Gyorgy Orosz, Laszlé Janos Laki, Attila Novdk, and Borbdla Siklési 249

Comparing Different Machine Learning Approaches for Disfluency Structure Detection in
a Corpus of University Lectures
Henrique Medeiros, Fernando Batista, Helena Moniz, Isabel Trancoso,
and Luis NUNES ... 259

Syntactic REAP.PT: Exercises on Clitic Pronouning
Tiago Freitas, Jorge Baptista, and Nuno Mamedeccooiiiii... 271

Preface

The success of the humankind relies on our ability to communicate and transform the world.
For ages we developed tools and technologies that allowed us to thrive and prosper. As we
expanded to every corner of the planet we created languages that enabled us to communicate
and record knowledge, even if they also become barriers to communication in themselves.

Technology and language have always been interconnected. Technologies to record
language gave birth to history and the written language allowed us to preserve knowledge,
including knowledge on technologies. Technology reshaped language as books, radio shows
or motion pictures made us aware of how other people communicate. But technologies and
language were not completely blend together until computers and networks become our
favourite tool to communicate and transform the world.

The goal of the Symposium on Languages, Applications and Technologies (SLATE) is
to be a forum to discuss the different ways in which language and technology interplay in
computer science, and they are many. The symposium is divided into three main tracks,
each one focusing a specific aspect of languages, from natural languages to compilers.

The HHL (Human-Human Languages) track is dedicated to the discussion of research
projects and ideas involving natural language processing and their industrial application.

The HCL (Human-Computer Languages) track is where researchers, developers and
educators exchange ideas and information on the latest academic or industrial work on
language design, processing, assessment and applications.

The CCL (Computer-Computer Languages) track main goal is to provide a broad space
for discussion about the XML markup language, examples of usage and associated
technologies.

SLATE follows the footsteps of two former conferences: CoRTA, the Conference on
Compilers, Related Technologies and Applications; and XATA, the conference on XML,
Applications and Applied Technologies, both with more than a decade of history.

This volume contains the proceedings of the 2nd edition of SLATE, held in the De-
partment of Computer Science, Faculty of Sciences, University of Porto, Portugal, during
June 20-21, 2013.

This year, SLATE received a total of 26 paper submissions for the three tracks. Each
submission was reviewed by at least three Program Committee members, which included 55
researchers (counting sub-reviewers). At the end, 19 papers were selected for publication
and presentation at the symposium, resulting in a 27% rejection rate. The set of accepted
papers present a variety of contributions and were divided into the following five sessions for
presentation at the symposium:

Software Development Tools, includes four articles on programming languages compilation
and analysis;

XML and Applications, includes four articles on the usage of XML in different areas, ranging
from the annotation of documents to its use on the semantic web;

Languages on Learning Environments, includes three articles that focus the automation
on exercises generation and evaluation;

2% Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simdes

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

viii

Preface

Domain Specific Languages, includes four articles on languages for specific languages, from
music, robots or graphical user interfaces;

Natural Language Processing, includes four articles related to processing and teaching
natural languages.

In addition to these sessions, the program also included two keynote presentations, one on
the PICAT system, a scalable logic-based language, by Neng-Fa Zhou (Brooklyn College, New
York), and another on software languages and their history, by Jean-Marie Favre (University
of Grenoble, France).

The organizers of SLATE 2013 are in debt to many people without whom this event
would never been possible. We wish to thank to our sponsors for making this event possible
and to the EasyChair conference management system for simplifying our task. Thanks
must go also to the authors of all submitted papers for their contribution and interest in
the symposium and to the participants for making the event a meeting point for a fruitful
exchange of ideas and feedback on recent developments. Finally, we want to express our
gratitude to the Program Committee members and sub-reviewers, as the symposium would
not have been possible without their dedicated time and knowledge in evaluating and ranking
so many submissions from so many different topics.

To all, our deepest thanks!

José Paulo Leal
Ricardo Rocha
Alberto Simoes

List of Authors

José Joao Almeida
Departamento de Informatica
Universidade do Minho
Braga, Portugal
jj@Qdi.uminho.pt

Bruno Azevedo
Departamento de Informatica
Universidade do Minho
Braga, Portugal
azevedo.252@gmail.com

Michaela Bacikova

Department of Computers and Informatics
Technical University of Kosice

Kosice, Slovakia
michaela.bacikova@tuke.sk

Jorge Baptista
Universidade do Algarve
FCHS/CECL

Faro, Portugal
jbaptis@Qualg.pt

Fernando Batista

Laboratério de Sistemas de Lingua Falada
INESC-ID, and ISCTE,

Instituto Universitario de Lisboa, Portugal
fernando.batista@iscte.pt

Mario Berén

Department of Informatics
Universidad Nacional de San Luis
Ejército de los Andes, Argentina
mberon@unsl.edu.ar

José Campos

Lusiada University
Vila Nova de Famalicao
Portugal
jjscampos@eu.ipp.pt

Jodo M. P. Cardoso

Faculty of Engineering
University of Porto, Portugal
jmpc@acm.org

Sergej Chodarev

Department of Computers and Informatics
Technical University of Kosice

Kosice, Slovakia

sergej.chodarev@tuke.sk

Teresa Costa

CRACS & INESC-Porto LA
Faculty of Sciences

University of Porto, Portugal
up200101764@alunos.dcc.fc.up.pt

Daniela da Cruz
Departamento de Informatica
Universidade do Minho
Braga, Portugal
danieladacruz@di.uminho.pt

Pedro C. Diniz
INESC-ID, Lisbon, Portugal
pedro@esda.inesc-id.pt

Jean-Marie Favre

Université Joseph Fourier
Grenoble, France
jean-marie.favre@megaplanet.org

Diogo R. Ferreira

Instituto Superior Técnico
Universidade Técnica de Lisboa
Lisboa, Portugal
diogo.ferreira@ist.utl.pt

Daniela Fonte

Departamento de Informética
Universidade do Minho

Braga, Portugal
danielamoraisfonte@gmail.com

Georgios Fourtounis
School of Electrical & Computer Engineering
National Technical University of Athens
Athens, Greece

gfour@softlab.ntua.gr

Tiago Freitas

IST — Instituto Superior Técnico
L2F — Spoken Language Systems Laboratory
INESC ID, Lisboa, Portugal
tiago.freitas@ist.utl.pl

2% Symposium on Languages, Applications and Technologies (SLATE’13).

Editors: José Paulo Leal, Ricardo Rocha, Alberto Simdes

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Authors

Alda Lopes Gancarski

Institute Telecom

Telecom SudParis

Paris, France
alda.gancarski@telecom-sudparis.eu

Xavier Gomez Guinovart
TALG Group
Universidade de Vigo
Galiza, Spain
xgg@uvigo.es

Ivan Halupka

Department of Computers and Informatics
Technical University of Kosice

Kosice, Slovakia

ivan.halupka@tuke.sk

Pedro Rangel Henriques
Departamento de Informatica
Universidade do Minho
Braga, Portugal
prh@di.uminho.pt

Jan Kollar

Department of Computers and Informatics
Technical University of Kosice

Kosice, Slovakia

jan.kollar@tuke.sk

Dominik Lakatos

Department of Computers and Informatics
Technical University of KosSice

Kosice, Slovakia

dominik.lakatos@tuke.sk

Laszl6 Janos Laki

MTA-PPKE Lang. Techn. Research Group
Pazmany Péter Catholic University

Faculty of Information Technology, Hungary
laki.laszlo@itk.ppke.hu

José Paulo Leal

CRACS & INESC-Porto LA
Faculty of Sciences
University of Porto, Portugal
zp@dcc.fc.up.pt

Nuno Mamede

IST — Instituto Superior Técnico

L2F — Spoken Language Systems Laboratory
INESC ID, Lisboa, Portugal
nuno.mamede@ist.utl.pl

Henrique Medeiros

Laboratério de Sistemas de Lingua Falada
INESC-ID, and ISCTE

Instituto Universitario de Lisboa, Portugal
hrbmedeiros@hotmail.com

Enrique Miranda

Department of Informatics
Universidad Nacional de San Luis
Ejército de los Andes, Argentina
eamiranda@unsl.edu.ar

Helena Moniz

Laboratério de Sistemas de Lingua Falada
INESC-ID, and FLUL/CLUL
Universidade de Lisboa, Portugal
helena.moniz@inesc-id.pt

German Montejano

Department of Informatics
Universidad Nacional de San Luis
Ejército de los Andes, Argentina
gmonte@unsl.edu.ar

Milan Nosal

Department of Computers and Informatics,
Technical University of Kosice

Kosice, Slovakia

milan.nosal@tuke.sk

Attila Novak

MTA-PPKE Lang. Techn. Research Group
Pazmany Péter Catholic University

Faculty of Information Technology, Hungary
novak.attilaQitk.ppke.hu

Luis Nunes

Instituto de Telecomunicagoes, and
ISCTE - Instituto Universitario de Lisboa
Lisboa, Portugal

luis.nunes@iscte.pt

Nuno Oliveira

Departamento de Informatica
Universidade do Minho
Braga, Portugal
nunooliveira@di.uminho.pt

Gyorgy Orosz

MTA-PPKE Lang. Techn. Research Group
Pazmany Péter Catholic University

Faculty of Information Technology, Hungary
oroszgy@itk.ppke.hu

Authors

Nikolaos S. Papaspyrou

School of Electrical & Computer Engineering
National Technical University of Athens
Athens, Greece

nickie@softlab.ntua.gr

Maria Joao Varanda Pereira
Polytechnic Institute of Braganca
Bragancga, Portugal

mjpQ@ipb.pt

Emilia Pietrikova

Department of Computers and Informatics
Technical University of Kosice

Kosice, Slovakia

emilia.pietrikova@tuke.sk

Jaroslav Poruban

Department of Computers and Informatics
Technical University of KoSice

Kosice, Slovakia

jaroslav.poruban@tuke.sk

Ricardo Queirés

CRACS & INESC-Porto LA, and
DI-ESEIG/IPP

Porto, Portugal
ricardo.queiros@eu.ipp.pt

Ricardo Rocha

CRACS & INESC TEC, and

Faculty of Sciences, University of Porto
Porto, Portugal

ricroc@dcc.fc.up.pt

André C. Santos

INESC-ID, and

IST, Technical University of Lisbon,
Lisbon, Portugal
acoelhosantos@ist.utl.pt

Jodo Santos

CRACS & INESC TEC, and
Faculty of Sciences
University of Porto, Portugal
jsantos@dcc.fc.up.pt

Borbala Siklési

Pazmany Péter Catholic University
Faculty of Information Technology
Budapest, Hungary
siklosi.borbala@itk.ppke.hu

xi

Alberto Simoes

Centro de Estudos Humanisticos
Universidade do Minho

Campus de Gualtar, Braga, Portugal
ambs@ilch.uminho.pt

Isabel Trancoso

Laboratério de Sistemas de Lingua Falada
INESC-ID, and Instituto Superior Técnico
Lisboa, Portugal
isabel.trancoso@inesc-id.pt

Neng-Fa Zhou

Brooklyn College

The City University of New York
United States of America
zhou@sci.brooklyn.cuny.edu

SLATE 2013

Committees

Program Chairs

José Paulo Leal
Universidade do Porto, Portugal

Ricardo Rocha
Universidade do Porto, Portugal

Alberto Simoes
Universidade do Minho, Portugal

Publication Chair

Alberto Simdes
Universidade do Minho, Portugal

Program Committee

Salvador Abreu
Universidade de Evora, Portugal

Ademar Aguiar
Universidade do Porto, Portugal

José Jodo Almeida
Universidade do Minho, Portugal

Jorge Baptista
Universidade do Algarve, Portugal

Maria Inés Torres Baranano
Universidad del Pais Vasco, Spain

Fernando Batista
ISCTE-IUL & INESC-ID, Portugal

Mario Berén
Universidad Nacional de San Luis, Argentina

Joao Paiva Cardoso
Universidade do Porto, Portugal

Nuno Ramos Carvalho
Universidade do Minho, Portugal

Bastian Cramer
Universitat Paderborn, Germany

Matej Crepinsek
Univerza v Mariboru, Slovenia

Daniela da Cruz
Universidade do Minho, Portugal

Gabriel David
Universidade do Porto & INESC TEC,
Portugal

Ricardo Dias

Universidade Nova de Lisboa, Portugal

Brett Drury
Universidade do Porto, Portugal

Jean-Marie Favre
Université Joseph Fourier, Grenoble, France

Luis Ferreira
Instituto Politécnico do Cévado e Ave,
Portugal

Miguel Ferreira
Universidade do Minho, Portugal

Jean-Cristophe Filliatre
CNRS & Université Paris Sud, France

Mikel Forcada
Universitat d’Alacant, Spain

Pablo Gamallo
Universidade de Santiago de Compostela,
Spain

Alda Lopes Gangarski
Institut Mines-Télécom/Télécom SudParis,
France

Marcos Garcia
Universidade de Santiago de Compostela,
Spain

Xavier Gémez Guinovart
Universidade de Vigo, Spain

Pedro Rangel Henriques
Universidade do Minho, Portugal

David Insa
Universitat Politecnica de Valencia, Spain

Mirjana Ivanovic
University of Novi Sad, Serbia

Tomaz Kosar
Univerza v Mariboru, Slovenia

2% Symposium on Languages, Applications and Technologies (SLATE’13).

Editors: José Paulo Leal, Ricardo Rocha, Alberto Simdes

OpenAccess Series in Informatics

\\v OASICS

Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Xiv

Committees

José Paulo Leal
Universidade do Porto, Portugal

Anténio Menezes Leitao
Universidade Técnica de Lisboa, Portugal

Giovani Librelotto
Universidade Federal Santa Maria, Brazil

Joao Correia Lopes
Universidade do Porto & INESC TEC,
Portugal

Joao Lourenco
Universidade Nova de Lisboa, Portugal

Ivan Lukovic
University of Novi Sad, Serbia

Claude Marché
Inria & Université Paris-Sud, France

Marjan Mernik
Univerza v Mariboru, Slovenia

Hugo Gongalo Oliveira
Universidade de Coimbra, Portugal

Nuno Oliveira
Universidade do Minho, Portugal

Alexander Paar
TWT GmbH Science and Innovation,
Germany

Lluis Padré
Universitat Politécnica de Catalunya, Spain

Maria Joao Varanda Pereira
Instituto Politécnico de Braganca, Portugal

Alberto Proenca
Universidade do Minho, Portugal

Ricardo Queirés
Instituto Politécnico do Porto, Portugal

José Carlos Ramalho
Universidade do Minho, Portugal

Cristina Ribeiro
Universidade do Porto & INESC TEC,
Portugal

Ricardo Ribeiro
ISCTE-IUL & INESC-ID, Portugal

Ricardo Rocha
Universidade do Porto, Portugal

Casiano Rodriguez-Leon
Universidad de La Laguna, Spain

Josep Silva
Universitat Politecnica de Valencia, Spain

Alberto Simoes
Universidade do Minho, Portugal

Bostjan Slivnik
Univerza v Ljubljani, Slovenia

Siméao Melo de Sousa
Universidade da Beira Interior, Portugal

Anténio Teixeira
Universidade de Aveiro, Portugal

Jorg Tiedemann
Uppsala University, Sweeden

Pedro Vasconcelos
Universidade do Porto, Portugal

Organization Committee

Miguel Areias
Universidade do Porto, Portugal

Nuno Ramos Carvalho
Universidade do Minho, Portugal

José Paulo Leal
Universidade do Porto, Portugal

Ricardo Queirds
Instituto Politécnico do Porto, Portugal

Ricardo Rocha
Universidade do Porto, Portugal

Joao Santos
Universidade do Porto, Portugal

Alberto Simdes
Universidade do Minho, Portugal

Part 1

Keynotes

2% Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simdes

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

Software Languages: The Lingusitic Continuum
(Invited talk)

Jean-Marie Favre

University of Grenoble, SIGMA-LIG, France
jean-marie.favre@megaplanet.org

—— Abstract

While computers are linguistic machines moving symbols around, Informatics is BY and FOR
people. I claim here that the gap between Computer Languages and Human Languages is, as

a matter of fact, filled by a wide spectrum of Software Languages. My point is that the notion
of Software Language goes far beyond Programming Languages; just like Informatics is indeed
much more than Computer Science. After a very brief retrospective on the history of languages
and Information Technologies, I show that nowadays nearly all kinds of languages are indeed
amenable to be represented as software; at least to some certain extent. Software Languages
include not only the languages used typically in Software Engineering (e.g. Modeling Languages,
Specification Languages, Architecture Description Languages, Query Languages, and so on), but
also all kinds of Domain Specific Languages that originate from all other areas of human activ-
ities. As a matter of fact, although Scientific Languages, Engineering Languages and Business
Languages existed long before Computers we all witness today the progressive transformation
of these languages into their counterpart as Software Languages. Software Languages can take
many different incarnations such as grammars, ontologies, schemas or metamodels. Moreover,
these descriptions are often missing as many languages remain "implicit" or just exist in the form
of proto-languages. I do not claim here that the notion of "Software Language" is clear cut or
well understood. I just advocate that since these languages could reveal to be fundamental in the
context of the Information Age they should be (1) studied from a scientific point of view in an
integrative approach, and (2) developed and evolved in principled ways. This leads the emerging
fields of Software Linguistics and Software Language Engineering respectively.

1998 ACM Subject Classification D.3.2 Language Classifications, F.4.3 Formal Languages, H3.2
Languages, K.2 History of Computing

Keywords and phrases Software Languages, Software Linguistics, Software Language Engineer-
ing

Digital Object Identifier 10.4230/0OASIcs.SLATE.2013.3

© Jean-Marie Favre;
37 licensed under Creative Commons License CC-BY

274 Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simdes; pp. 3—3

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Picat: A Scalable Logic-based Language and
System (Invited talk)

Neng-Fa Zhou

Brooklyn College, The City University of New York
2900 Bedford Avenue, Brooklyn, New York, USA
zhou@sci.brooklyn.cuny.edu

—— Abstract

This talk will give the design principles of the Picat language (http://www.picat-lang.org),
highlight the high-level and intuitive abstractions provided by Picat for easy programming, and

contemplate why Picat is more robust and scalable than Prolog and could be more accessible
than Prolog to ordinary programmers for scripting and modeling tasks.

1998 ACM Subject Classification D.1.6 Logic Programming
Keywords and phrases Functions, Relations, Loops, Constraints, Tabling

Digital Object Identifier 10.4230/OASIcs.SLATE.2013.5

Despite the elegant concepts, new extensions (e.g., tabling and constraints), and successful
applications (e.g., knowledge engineering, NLP, and search problems), Prolog has a bad
reputation for being old and difficult. Many ordinary programmers find the implicit non-
directionality and non-determinism of Prolog to be hard to follow, and the non-logical
features, such as cuts and dynamic predicates, are prone to misuses, leading to absurd codes.
The lack of language constructs (e.g., loops) and libraries for programming everyday things
is also considered a big weakness of Prolog. The backward compatibility requirement has
made it hopeless to remedy the language issues in current Prolog systems, and there are
urgent calls for a new language.

Several successors of Prolog have been designed, including Mercury, Erlang, Oz, and
Curry. The requirement of many kinds of declarations in Mercury has made the language
difficult to use; Erlang’s abandonment of non-determinism in favor of concurrency has made
the language unsuited for many applications despite its success in the telecom industry; Oz
has never attained the popularity that the designers sought, probably due to its unfamiliar
syntax and implicit laziness; Curry is considered too close to Haskell. All of these successors
were designed in the 1990s, and now the time is ripe for a new logic-based language.

Picat aims to be a simple, and yet powerful, logic-based programming language for a
variety of applications. Picat incorporates many declarative language features for better
productivity of software development, including explicit non-determinism, explicit unification,
functions, constraints, and tabling. Picat lacks Prolog’s non-logical features, such as the
cut operator and dynamic predicates, making Picat more reliable than Prolog. Picat also
provides imperative language constructs for programming everyday things. The resulting
system will be used for not only symbolic computations, which is a traditional application
domain of declarative languages, but also for scripting and modeling tasks.

Picat is a general-purpose language that incorporates features from logic programming,
functional programming, and scripting languages. The letters in the name summarize Picat’s
features:

© Neng-Fa Zhou;
37 licensed under Creative Commons License CC-BY

274 Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simdes; pp. 5—6

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.picat-lang.org
http://dx.doi.org/10.4230/OASIcs.SLATE.2013.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Picat: A Scalable Logic-based Language and System (Invited talk)

Pattern-matching: A predicate defines a relation, and can have zero, one, or multiple
answers. A function is a special kind of a predicate that always succeeds with one answer.
Picat is a rule-based language. Predicates and functions are defined with pattern-matching
rules.

Imperative: Picat provides assignment and loop statements for programming everyday
things. An assignable variable mimics multiple logic variables, each of which holds a value
at a different stage of computation. Assignments are useful for computing aggregates and
are used with the foreach loop for implementing list comprehensions.

Constraints: Picat supports constraint programming. Given a set of variables, each of
which has a domain of possible values, and a set of constraints that limit the acceptable
set of assignments of values to variables, the goal is to find an assignment of values to
the variables that satisfies all of the constraints.

Actors: Actors are event-driven calls. Picat provides action rules for describing event-
driven behaviors of actors. Events are posted through channels. An actor can be attached
to a channel in order to watch and to process its events. Picat treats threads as channels,
and allows the use of action rules to program concurrent threads.

Tabling: Tabling can be used to store the results of certain calculations in memory,
allowing the program to do a quick table lookup instead of repeatedly calculating a value.
As computer memory grows, tabling is becoming increasingly important for offering
dynamic programming solutions for many problems.

Picat is more expressive than Prolog for scripting and modeling. With arrays, loops,
and list comprehensions, it is not rare to find problems for which Picat requires an order of
magnitude fewer lines of code to describe than Prolog. Picat is more scalable than Prolog.
The use of pattern-matching rather than unification facilitates indexing of rules. Picat is
more reliable than Prolog. In addition to explicit non-determinism, explicit unification,
and a simple static module system, the lack of cuts, dynamic predicates, and operator
overloading also improve the reliability of the language. Picat is not as powerful as Prolog
for metaprogramming and it’s impossible to write a meta-interpreter for Picat in Picat
itself. Nevertheless, this weakness can be remedied with library modules for implementing
domain-specific languages.

Part 11

Software Development Tools

2% Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simdes

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

Or-Parallel Prolog Execution on Clusters of
Multicores

Joao Santos and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{jsantos,ricroc}@dcc.fc.up.pt

—— Abstract

Logic Programming languages, such as Prolog, provide an excellent framework for the parallel
execution of logic programs. In particular, the inherent non-determinism in the way logic pro-
grams are structured makes Prolog very attractive for the exploitation of implicit parallelism.
One of the most noticeable sources of implicit parallelism in Prolog programs is or-parallelism.
Or-parallelism arises from the simultaneous evaluation of a subgoal call against the clauses that
match that call. Arguably, the most successful model for or-parallelism is environment copying,
that has been efficiently used in the implementation of or-parallel Prolog systems both on shared
memory and distributed memory architectures. Nowadays, multicores and clusters of multicores
are becoming the norm and, although, many parallel Prolog systems have been developed in the
past, to the best of our knowledge, none of them was specially designed to explore the combin-
ation of shared with distributed memory architectures. Motivated by our past experience, in
designing and developing parallel Prolog systems based on environment copying, we propose a
novel computational model to efficiently exploit implicit parallelism from large scale real-world
applications specialized for the novel architectures based on clusters of multicores.

1998 ACM Subject Classification D.1.3 Concurrent Programming
Keywords and phrases Logic Programming, Or-Parallelism, Environment Copying, Scheduling

Digital Object Identifier 10.4230/0OASIcs.SLATE.2013.9

1 Introduction

Logic Programming languages, such as Prolog, provide a high-level, declarative approach
to programming. In general, logic programs can be seen as executable specifications that
despite their simple declarative and procedural semantics allow for designing very complex
and efficient applications. The inherent non-determinism in the way logic programs are
structured as simple collections of alternative logic clauses makes Prolog very attractive for
the exploitation of implicit parallelism.

Prolog offers two major forms of implicit parallelism: and-parallelism and or-parallel-
ism [5]. And-Parallelism stems from the parallel evaluation of subgoals in a clause, while
or-parallelism results from the parallel evaluation of a subgoal call against the clauses that
match that call. Arguably, or-parallel systems, such as Aurora [7] and Muse [3], have
been the most successful parallel logic programming systems so far. Intuitively, the least
complexity of or-parallelism makes it more attractive as a first step. However, practice
has shown that a main difficulty, when implementing or-parallelism, is how to efficiently
represent the multiple bindings for the same variable produced by the parallel execution
of alternative matching clauses. One of the most successful or-parallel models that solves
the multiple bindings problem is environment copying, that has been efficiently used in the
? Jodo Santos and Ricardo Rocha; .

5v icensed under Creative Commons License CC-BY
24 Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simdes; pp. 9-20

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

10

Or-Parallel Prolog Execution on Clusters of Multicores

implementation of or-parallel Prolog systems both on shared memory [3, 10] and distributed
memory [16, 9] architectures.

Another major difficulty in the implementation of any parallel system is the design of
scheduling strategies to efficiently assign computing tasks to idle workers. A parallel Prolog
system is no exception as the parallelism that Prolog programs exhibit is usually highly
irregular. Achieving the necessary cooperation, synchronization and concurrent access to
shared data among several workers during execution is a difficult task. For environment
copying, scheduling strategies based on dynamic scheduling of work have proved to be very
efficient [2]. Stack splitting [4, 8] is an alternative scheduling strategy for environment
copying that provides a simple and clean method to accomplish work splitting among workers
in which all available work is statically divided beforehand in complementary sets between
the sharing workers. Due to its static nature, stack splitting was thus first introduced aiming
at distributed memory architectures [16, 9] but, recent work, also showed good results for
shared memory architectures [15, 14].

The increasing availability and popularity of multicore processors have made our personal
computers parallel with multiple cores sharing the main memory. Multicores and clusters
of multicores are now the norm and, although, many parallel Prolog systems have been
developed in the past, most of them are no longer available, maintained or supported.
Moreover, to the best of our knowledge, none of them was specially designed to explore the
combination of shared with distributed memory architectures. On one hand, the shared
memory based models take advantage of synchronization mechanisms that cannot be easily
extended to distributed environments and, on the other hand, the distributed memory based
models use specialized communication mechanisms that do not take advantage of the fact
that some workers can be sharing memory resources.

Motivated by the intrinsic and strong potential that Prolog has for implicit parallelism
and by our past experience in designing and developing parallel systems based on environ-
ment copying [10, 9, 15, 14], we propose a novel computational model to efficiently exploit
parallelism from large scale real-world applications specialized for clusters of low cost mul-
ticore architectures. In this new model, we will have two levels of computational units, single
workers and teams of workers, and the ability to exploit different scheduling strategies, for
distributing work among teams and among the workers inside a team. Our approach re-
sembles the concept of teams used by some of the models combining and-parallelism with
or-parallelism, like the Andorra-I [13] or ACE [6] systems, where a layered approach imple-
ments different schedulers to deal with each level of parallelism.

In our model, a team of workers is formed by workers sharing the same memory address
space, i.e., two workers executing in different computer nodes cannot belong to the same
team, but we can have more than a team executing in the same computer node. For
(shared memory) multicores, we can thus have any combination of strategies, teams and
workers inside a team can distribute work using both dynamic or static scheduling of work.
For (distributed memory) clusters of multicores, we can only have (static) stack splitting
for distributing work among teams, but we can still have dynamic or static scheduling of
work for distributing work among the workers inside a team. This idea is similar to the
MPI/OpenMP hybrid programming pattern, where MPI is usually used to communicate
work among workers in different computer nodes and OpenMP is used to communicate
work among workers in the same node.

The remainder of the paper is organized as follows. First, we introduce some background
about environment copying, stack splitting and work scheduling. Next, we introduce our
new model and discuss the major design issues, algorithms and challenges. Last, we ad-

J. Santos and R. Rocha

vance directions for further work. Throughout the text, we assume the reader will have
good familiarity with the general principles of Prolog implementation, and namely with the
WAM [18, 1]. When discussing some technical details, we will take as reference the state-
of-the-art Yap Prolog system [12], that integrates or-parallelism based on the environment
copying model and supports both dynamic and static scheduling of work.

2 Environment Copying

In the environment copying model, each worker keeps a separate copy of its own environment,
thus the bindings to shared variables are done as usual (i.e., stored in the private execution
stacks of the worker doing the binding) and without conflicts. Every time a worker shares
work with another worker, all the execution stacks are copied to ensure that the requesting
worker has the same environment state down to the search tree node where the sharing
occurs. At the engine level, a search tree node corresponds to a choice point in the local
stack [18, 1].

As a result of environment copying, each worker can proceed with the execution exactly as
a sequential engine, with just minimal synchronization with other workers. Synchronization
is mostly needed when updating scheduling data and when accessing shared nodes in order
to ensure that unexplored alternatives are only exploited by one worker. All other WAM
data structures, such as the environment frames, the heap, and the trail do not require
synchronization.

2.1 Incremental Copying

To reduce the overhead of stack copying, an optimized copy mechanism called incremental
copy [3] takes advantage of the fact that the requesting worker may already have traversed
part of the path being shared. Therefore, it does not need to copy the stacks referring to
the whole path from root, but only the stacks starting from the youngest node common to
both workers.

For example, consider that worker () asks worker P for sharing and that worker P
decides to share its private nodes with (. To implement incremental copying, @} should
start by backtracking to the youngest common node with P, therefore becoming partially
consistent with part of P. Then, if) receives a positive answer from P, it only needs to copy
the differences between P and). These differences can be easily calculated through the
information stored in the common node found by @ and in the top registers of the execution
stacks of P. Care must be taken about variables older than the youngest common node
that were instantiated by P, as incremental copying does not copy these bindings. Worker
@ thus needs to explicitly install the bindings for such variables. This process, called the
adjustment of cells outside the increments, is implemented by searching the trail stack for
bindings to variables older than the youngest common node [3].

2.2 Or-Frames

Deciding which workers to ask for work and how much work should be shared is a function
of the scheduler. A fundamental task when sharing work is to turn public the private choice
points, so that backtracking to these choice points can be synchronized between different
workers. Public choice points are treated differently because we need to synchronize workers
in such a way that we avoid executing twice the same alternative.

11

SLATE 2013

12

Or-Parallel Prolog Execution on Clusters of Multicores

Strategies based on dynamic scheduling of work, use or-frames to implement such syn-
chronization [3]. A worker sharing work adds an or-frame data structure to each private
choice point made public. Each or-frame stores the pointer to the next available alternative,
as previously stored in the corresponding private choice point, and supports a mutual ex-
clusion mechanism that guarantees atomic updates to the or-frame data. Shared nodes thus
become represented by or-frames, a data structure that workers must access, with mutual
exclusion, to obtain the unexplored alternatives. The set of all or-frames form a tree that
represents the public search tree.

2.3 Stack Splitting

Stack splitting was first introduced to target distributed memory architectures, thus aiming
to reduce the mutual exclusion requirements of the or-frames when accessing shared nodes of
the search tree. It accomplishes this by defining simple and clean work splitting strategies in
which all available work is statically divided beforehand in two complementary sets between
the sharing workers. In practice, with stack splitting the synchronization requirement is
removed by the preemptive split of all unexplored alternatives at the moment of sharing. The
splitting is such that both workers will proceed, each executing its branch of the computation,
without any need for further synchronization when accessing shared nodes.

The original stack splitting proposal [4] introduced two strategies for dividing work: wver-
tical splitting, in which the available choice points are alternately divided between the two
sharing workers, and horizontal splitting, which alternately divides the unexplored altern-
atives in each available choice point. Diagonal splitting [9] is a more elaborated strategy
that achieves a precise partitioning of the set of unexplored alternatives. It is a kind of
mix between horizontal and vertical splitting, where the set of all unexplored alternatives in
the available choice points is alternately divided between the two sharing workers. Another
splitting strategy [17], which we named half splitting, splits the available choice points in
two halves. Figure 1 illustrates the effect of these strategies in a work sharing operation
between a busy worker P and an idle worker Q).

Figure 1(a) shows the initial configuration with the idle worker @ requesting work from
a busy worker P with 7 unexplored alternatives in 4 choice points. Figure 1(b) shows the
effect of vertical splitting, in which P keeps its current choice point and alternately divides
with @ the remaining choice points up to the root choice point. Figure 1(c) illustrates the
effect of half splitting, where the bottom half is for worker P and the half closest to the root
is for worker Q. Figure 1(d) details the effect of horizontal splitting, in which the unexplored
alternatives in each choice point are alternately split between both workers, with workers P
and @ owning the first unexplored alternative in the even and odd choice points, respectively.
Figure 1(e) describes the diagonal splitting strategy, where the unexplored alternatives in
all choice points are alternately split between both workers in such a way that, in the worst
case, (Q may stay with one more alternative than P. For all strategies, the corresponding
execution stacks are first copied to @), next both P and @ perform splitting, according to
the splitting strategy at hand, and then P and @ are set to continue execution.

2.4 The Yap Prolog System

The Yap Prolog system implements or-parallelism based on the environment copying model
and supports both dynamic and static scheduling of work. To implement dynamic schedul-
ing, Yap follows the original Muse approach which uses or-frames to synchronize the access
to the open alternatives. To implement static scheduling, two different approaches were

J. Santos and R. Rocha

a2

idle

(c) half splitting

a2

b3

(d) horizontal splitting (e) diagonal splitting

Figure 1 Alternative stack splitting strategies.

followed. In the first approach, the engine was designed to run in Beowulf clusters [9]. More
recently, a second approach was designed to run in multicores and it has shown to be very
competitive when compared with the original or-frames approach [15, 14].

When running in shared memory architectures, Yap’s workers can be either processes
(the engine using processes is called YapOr [10]) or POSIX threads (the engine using threads
is called ThOr [11]). The memory organization for YapOr/ThOr is quite similar for all the
approaches (see Fig. 2(a)). The memory of the system is divided into two major address
spaces: the global space and a collection of local spaces. The global space contains the code
area inherited from Yap and all data structures necessary to support parallelism. Among
these structures is static information about the execution, such as the number of workers,
and dynamic information responsible for determining the end of the execution. Each local
space represents one worker and contains the execution stacks inherited form Yap (heap,
local, trail and auxiliary stack) and information related to the execution of that worker such
as the top shared choice point, share and prune requests or the load of that worker [10, 11].

When running in distributed memory architectures, Yap’s workers are processes, each
with independent global and local spaces (see Fig. 2(b)). Despite not specially designed for
it, this approach also fits in shared memory architectures, i.e., we can have some workers
running on the same computer node, but as fully independent processes.

13

SLATE 2013

14

Or-Parallel Prolog Execution on Clusters of Multicores

d obal Space d obal Space
Wor ker 0 Wor ker (A1, 0) | G obal Space
R Team
i Al
Wor ker (Z1,0)
Q@ obal Space verker (AL N [| : e
i Z1
Wor ker (Z1, N1)
d obal Space N J_
Vor ker 0 @ obal Space Wor ker (A, 0) | Worker (Zj,0) |
: . Team : Team
: . A : Zi
Worker N Wor ker N Worker (A, N) | Worker (Zj,N) i

(a) (b) (¢)

Figure 2 Memory layout for: (a) workers in shared memory; (b) workers in distributed memory;
and (c) teams of workers in clusters of multicores.

3 Our Proposal

The goal behind our proposal is to implement the concept of teams trying to reuse, as much
as possible, Yap’s existing infrastructure. We define a team as a set of workers (processes or
threads) who share the same memory address space and cooperate to solve a certain part
of the main problem. By demanding that all workers inside a team share the same address
space implies that all workers should be in the same computer node. On the other hand, we
also want to be possible to have several teams in a computer node or distributed by other
nodes.

3.1 Memory Organization

In order to support teams, there are several changes that need to be made, being one of the
first, the memory organization. Figure 2(c) shows the new memory layout to support teams
of workers. Each team of workers mimics the previous memory layout for a set of workers
in shared memory (see Fig. 2(a)), where the memory of the system is divided into a global
space, shared among all workers, and a collection of local spaces, each representing one
worker’s team. In this new memory layout, we can also have several teams sharing the same
memory address space and, in particular, sharing the global space. To accomplish that, the
information stored in the global space is now related with teams instead of being related
with single workers. Moreover, the global space now includes an extra area, named team
space, where each team stores static information about the team and dynamic information
about the execution of the team, such as, to determine if the team is out of work or if it has
finished execution. The collection of local spaces maintains its functionality, i.e., it stores
the execution stacks and information about the state of the corresponding worker.

Since our aim is to target clusters of multicores, the complete layout for the new memory
organization can be seem as a generalization of the previous approach for distributed memory
architectures (see Fig. 2(b)), but now instead of single workers with independent global and
local spaces, we may have teams, individual teams or collection of teams as described above,
sharing the same memory address space.

J. Santos and R. Rocha

3.2 Mixed Scheduling

One of the main advantages of using teams is that we can combine the scheduling strategies
mentioned before. Therefore we may have teams using static scheduling while others, at
the same time, use dynamic scheduling. Figure 3 shows a schematic representation of what
we want to achieve with our proposal. In this example, we have a cluster composed by two
computers nodes, N1 and N2. The computer node N1 has two teams, team A and team B
with 4 workers each. The computer node N2 has only one team, team C with 8 workers.

Node N1 Node N2
Team A

A O AL Team C
or-frames w W
A 2 A 3 W W

st_ack_ C 2
st ack splltt|ng

tsp”“ing or-franes
Team B W W
B, 0 B, 1 w w
C, 6 C 7

stack splitting

w w
B, 2 B, 3

Figure 3 Work scheduling within and among teams.

Regarding the scheduling strategy adopted to distribute work inside the teams, teams A
and C' are using dynamic scheduling with or-frames, while team B is using stack splitting.
To distribute work among teams, we only use stack splitting. This is mandatory since we
want to have a single scheduling protocol to distribute work between teams (being they in
the same or in different computer nodes) and we want to fully avoid having synchronization
data structures, such as the or-frames, being shared between teams. Note that having the
access to the open alternatives in data structures shared between teams, not only would
have a great impact in the communication overhead required to keep them up-to-date, but
would also not clarify the notion of being a team. If two teams are synchronizing the access
to the open alternatives, in fact they are not two different teams but only one, because no
decision regarding the shared open alternatives can be made without involving both teams.

Independently of the scheduling strategy, teams will have to communicate among them
when sharing work or when sending requests to perform a cut or to ensure the termination
of the computation. To implement the communication layer, we can use a message passing
protocol, for teams physically located in the same or in different computer nodes, or a
shared memory synchronization mechanism, for teams in the same computer node. Note
that, in this latter case, synchronization is being use to implement communication and not
for scheduling purposes, as discussed before.

3.3 Work Sharing

To distribute work inside a team, we can use, with minor adaptations, any of Yap’s current
dynamic or static schedulers for shared memory. Since these schedulers were developed to
deal with workers that are sharing the same memory address space, they can thus be easily

15

SLATE 2013

16

Or-Parallel Prolog Execution on Clusters of Multicores

extended to support work sharing inside a team. As discussed before, this is not the case for
work sharing among teams. To deal with that, our approach is thus to implement a layered
approach, similar to the one used by some of the models combining and-parallelism with
or-parallelism [13, 6], and for that a second-level scheduler will be used.

Since the concept of a team implies that we must give priority to the exploitation of the
work available inside the team, we will only ask for work to other teams when no more work
exists in a team. However, even though that it is the entire team that is out of work, the
sharing process will still be done between two workers, being the selected worker of the idle
team then the responsible for sharing the new work with its teammates.

Figure 4 shows a schematic representation of the sharing process between teams. Con-
sider the cluster configuration in Fig. 3 and assume that team C' has run out of work and
that team A was selected by C’s scheduler to share work with it. Figure 4(a) shows the state
of team A before the sharing request from C. The four workers in team A are executing
in the private region of the search tree and all share the top three choice points. The top
shared choice point is already dead, i.e., without open alternatives, but the second and third
shared choice points have two (b2 and b3) and one (¢3) open alternatives, respectively.

Team A or-frames Team A or-frames Team C
nutl nutl nul |
b2 nul | b2
T~ b3 b3
* b2 b2
shar ed c3 shared c3 nul |
region "~ c3 region ~~c3
private w private w 42
i regi on
regi on e d3 (A 3) 9 (A 3) ~~d3
*d2 w w
w (A2 W (A2 w
(A1) (A1) (C 0)
PRI Vel
. . . .
A} .
w w
(A 0) (A 0)

(a) (b) (c)

Figure 4 Schematic representation of the sharing process between workers of different teams:
in (a) we can see the configuration of team A when team C asks for work and in (b) we can see
the configuration of both teams after the sharing process, considering that worker W (A, 0) used
vertical splitting to share its available work (in (c) we can see the array of open alternatives being
shared) with worker W (C,0).

When team A receives the sharing request from team C', one of the workers from A
will be selected to share part of its available (private and/or shared) work and manage
the sharing process with the requesting worker from C. For the sake of simplicity, here
we are considering that this is done by the workers 0 of each team, workers W(A,0) and
W(C,0). Since this is a sharing operation between teams, static scheduling is then the
strategy adopted to split work. In particular, in this example, we are using the vertical
splitting strategy.

To implement vertical splitting, W (A, 0) thus needs to alternately divide its choice points
with W(C,0). However, since team A is using or-frames to implement dynamic scheduling
of work inside the team, we cannot apply the original stack splitting algorithm [15, 14] to
split the available work in the shared region of the search tree (please remember that stack
splitting avoids the use of or-frames). To solve that problem, W (A, 0) constructs an array

J. Santos and R. Rocha

with the open alternatives per choice point that it will hand over to W(C,0). This array
is illustrated in Fig. 4(c). The motivation for using this array is the isolation between the
alternatives being shared and the scheduling strategy being used, therefore allowing that
two teams can share work, independently of their scheduling strategies. Note that, when
splitting work in a shared choice point, first W(A,0) needs to gain (lock) access to the
corresponding or-frame, then it moves the next unexplored alternative from the or-frame to
the array of open alternatives, updates the or-frame to null and unlocks it.

At the end, the array with the open alternatives and the execution stacks of W (A4, 0)
are copied to W(C,0). Figure 4(b) shows the configuration of both teams after the sharing
process. In team A, we can see the effect of vertical splitting by observing the new dead
nodes in the branch of W(A,0). In team C, we can see that W(C,0) instantiated the work
received from W (A, 0) as fully private work. W (C,0) will only share its work, and allocate
the corresponding or-frames if team C' is also using dynamic scheduling, when the scheduler
inside the team notifies it to share work with its teammates.

3.4 Algorithms

In this section, we present in more detail the two algorithms that implement the key aspects
of our new model.

Algorithm 1 shows the pseudo-code for the WorkerGetW ork() procedure that, given an
idle worker W belonging to a team 7', searches for a new piece of work for W. In a nutshell,
we can resume the algorithm as follows. Initially, W starts by selecting a busy worker B
from its teammates to potentially share work with (line 3). Next, it sends a share request
to B (line 4) and if the request gets accepted, then both workers perform the work sharing
procedure, according to the scheduling strategy (dynamic or static) being used in T' (line
5). After sharing, W returns to Prolog execution (line 6). Otherwise, if the sharing request
gets refused, then W should try another busy worker from 7', while there are teammates
with available work (line 2).

Algorithm 1 WorkerGetWork(W,T).

1: while TeamNotFinished(T) do

2: while TeamWithWork(T) do

3 B + Select BusyWorker(T)

4 if SendShareRequest(W, B) = ACCEPTED then
5: ShareW ork(W, B)
6

7
8

9

return true
if W = SelectMasterWorker(T) then {W will search for work from the other teams}
if TeamGetWork(W,T) then {worker W has obtained work from another team}
return true
10: else {all teams should finish execution}
11: SetTeamAsFinished(T)
12: return false

On the other hand, if all workers in T run out of work (i.e., if all workers are executing
the WorkerGetWork() procedure), then one of the workers from T, named the master
worker W, will be selected to search for work from the other teams (line 7), and for that it
executes the TeamGetWork() procedure (line 8), as explained next in Algorithm 2. If the
call to TeamGetW ork() succeeds, this means that W has obtained a new piece of work from
another team and, in such case, W returns to Prolog execution to start exploiting the new

17

SLATE 2013

18

Or-Parallel Prolog Execution on Clusters of Multicores

available work (line 9). Otherwise, if the call to TeamGetWork() fails, this means that all
teams are out of work and, in such case, team T is set as finished (line 11) and all workers
in T then finish execution by returning false (line 12).

Next, Algorithm 2 shows the pseudo-code for the TeamGetW ork() procedure that, given
the master worker W of an idle team T, searches for a new piece of work from the other
teams. Initially, W starts by selecting a busy team U from the available set of teams to
potentially share work with (line 2). Next, it sends a share request to team U (line 3) and if
the request gets accepted, then W performs the work sharing procedure, with the selected
sharing worker S from U (lines 4-5), and returns successfully (line 6). Otherwise, if the
sharing request gets refused, then W should try another busy team, while there teams with
available work (line 1). On the other hand, if all teams run out of work (i.e., if all master
workers are executing the TeamGetWork() procedure), then W returns failure (line 7).

Algorithm 2 TeamGetWork(W,T).

1: while not AllTeamsWithoutWork() do

2: U « SelectBusyTeam()

3. if SendShareRequest(T,U) = ACCEPTED then
4: S + GetSharingWorker(U)
5

6
T

ShareWork(W, S)
return true
return false

4 Conclusions

We have proposed a novel computational model to efficiently exploit implicit or-parallelism
from large scale real-world applications specialized for the novel architectures based on
clusters of multicores. The main goal behind our proposal is to implement the concept of
teams in order to decouple the scheduling of work from the architecture of the system. In
particular, we are most interested in the ability of exploiting different scheduling strategies
for distributing work among workers and among teams in the same or in different computer
nodes.

Currently, we have already started the implementation of the new model in the Yap Pro-
log system, trying to reuse, as much as possible, the existing infrastructure that supports
both dynamic and static scheduling of work for or-parallelism based on the environment
copying model. Beyond the implementation of the initial prototype, further work will in-
clude: (i) studying load balancing, i.e., how to better distribute work across teams and
across workers in a team; (ii) avoid speculative work, i.e., avoid work which would not be
done in a sequential system; and (iii) support sequential semantics, i.e., predicate side-effects
must be executed by leftmost workers, as otherwise we may change the sequential behavior
of the program.

Acknowledgments This work is partially funded by the ERDF (European Regional De-
velopment Fund) through the COMPETE Programme and by FCT (Portuguese Founda-
tion for Science and Technology) within projects LEAP (FCOMP-01-0124-FEDER-015008)
and PEst (FCOMP-01-0124-FEDER-022701). Joao Santos is funded by the FCT grant
SFRH/BD/76307/2011.

J. Santos and R. Rocha

—— References

1

10

11

12

13

14

15

16

17

H. Ait-Kaci. Warren’s Abstract Machine — A Tutorial Reconstruction. The MIT Press,
1991.

K. Ali and R. Karlsson. Full Prolog and Scheduling OR-Parallelism in Muse. International
Journal of Parallel Programming, 19(6):445-475, 1990.

K. Ali and R. Karlsson. The Muse Approach to OR-Parallel Prolog. International Journal
of Parallel Programming, 19(2):129-162, 1990.

G. Gupta and E. Pontelli. Stack Splitting: A Simple Technique for Implementing Or-
parallelism on Distributed Machines. In International Conference on Logic Programming,
pages 290-304. The MIT Press, 1999.

G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. V. Hermenegildo. Parallel Execution of
Prolog Programs: A Survey. ACM Transactions on Programming Languages and Systems,
23(4):472-602, 2001.

G. Gupta, E. Pontelli, M. V. Hermenegildo, and V. Santos Costa. ACE: And/Or-parallel
Copying-based Execution of Logic Programs. In International Conference on Logic Pro-
gramming, pages 93-109. The MIT Press, 1994.

E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. H. D. Warren, A. Calder-
wood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski, and B. Hausman. The
Aurora Or-Parallel Prolog System. In International Conference on Fifth Generation Com-
puter Systems, pages 819-830. Institute for New Generation Computer Technology, 1988.
E. Pontelli, K. Villaverde, Hai-Feng Guo, and G. Gupta. Stack splitting: A technique for
efficient exploitation of search parallelism on share-nothing platforms. Journal of Parallel
and Distributed Computing, 66(10):1267-1293, 2006.

R. Rocha, F. Silva, and R. Martins. YapDss: an Or-Parallel Prolog System for Scalable
Beowulf Clusters. In Portuguese Conference on Artificial Intelligence, number 2902 in
LNAI, pages 136-150. Springer-Verlag, 2003.

R. Rocha, F. Silva, and V. Santos Costa. YapOr: an Or-Parallel Prolog System Based on
Environment Copying. In Portuguese Conference on Artificial Intelligence, number 1695
in LNAI, pages 178-192. Springer-Verlag, 1999.

V. Santos Costa, I. Dutra, and R. Rocha. Threads and Or-Parallelism Unified. Journal of
Theory and Practice of Logic Programming, International Conference on Logic Program-
ming, Special Issue, 10(4-6):417-432, 2010.

V. Santos Costa, R. Rocha, and L. Damas. The YAP Prolog System. Journal of Theory
and Practice of Logic Programming, 12(1 & 2):5-34, 2012.

V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that
Transparently Exploits both And- and Or-Parallelism. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 83-93. ACM, 1991.

R. Vieira, R. Rocha, and F. Silva. On Comparing Alternative Splitting Strategies for Or-
Parallel Prolog Execution on Multicores. In Colloquium on Implementation of Constraint
and LOgic Programming Systems, pages 71-85, 2012.

R. Vieira, R. Rocha, and F. Silva. Or-Parallel Prolog Execution on Multicores Based on
Stack Splitting. In International Workshop on Declarative Aspects and Applications of
Multicore Programming. ACM Digital Library, 2012.

K. Villaverde, E. Pontelli, H. Guo, and G. Gupta. PALS: An Or-Parallel Implementation
of Prolog on Beowulf Architectures. In International Conference on Logic Programming,
number 2237 in LNCS, pages 27-42. Springer-Verlag, 2001.

K. Villaverde, E. Pontelli, H. Guo, and G. Gupta. A Methodology for Order-Sensitive
Execution of Non-deterministic Languages on Beowulf Platforms. In International FEuro-
Par Conference, number 2790 in LNCS, pages 694-703. Springer-Verlag, 2003.

19

SLATE 2013

20 Or-Parallel Prolog Execution on Clusters of Multicores

18 D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI Interna-
tional, 1983.

NESSy: a New Evaluator for Software
Development Tools*

Enrique Miranda!, Mario Berén!, German Montejano!, Maria Joao
Varanda Pereira?, and Pedro Rangel Henriques®

1 Department of Informatics, Universidad Nacional de San Luis
Ejército de los Andes 950, Argentina
{eamiranda,mberon,gmonte}@unsl.edu.ar

2 Department of Informatics, Instituto Politécnico de Braganga
Quinta de St. Apoldnia, Braganca, Portugal
mjoao@ipb.pt

3 Department of Informatics, Universidade do Minho
Campus de Gualtar, Braga, Portugal
prh@di.uminho.pt

—— Abstract

Select the best tool for developing a system is a complex process. There must be considered

several aspects corresponding to the domain where the system is going to run. Generally, the
domain characteristics only are comprehended by experts. They know very well which are the
main characteristics, how they can be combined and which should not be considered. This
knowledge is fundamental to select the most appropriate tool for implementing a system that
solves problems or automates processes in a specific domain. For this reason, it is difficult to get
a tool that allows to establish a ranking of development tools for a particular case. In this paper,
NESSy, a system to evaluate software development tools, is presented. This tool implements
a multi-criteria evaluation method named LSP (Logic Scoring of Preference). Furthermore, it
presents a user-friendly environment for carrying out the evaluation process. LSP uses a set of
structures aimed at describing software development tools with the goal of select the best one
for a specific problem. The features previously mentioned make NESSy a relevant application to
help the software engineer to select the best tool for solving specific problems related to particular
domains.

1998 ACM Subject Classification D.2.7. Distribution, Maintenance, and Enhancement
Keywords and phrases Evaluation Method, Elementary Criteria, Aggregation Structure, LSP.

Digital Object ldentifier 10.4230/0OASIcs.SLATE.2013.21

1 Introduction

During the software development process, the engineer faces several problems. In this context,
a common challenge is to select the most appropriate tool to develop software [23, 25, 24, 26].
This problem is not trivial, because the selection is highly dependent on the context and
on the application domain [27, 28]. For example, an Integrated Development Environment
(IDE) helps the engineer to develop systems when the computer used is powerful.

* This work was partially supported by Universidade do Minho and Universidad Nacional de San Luis.

© Enrique Miranda, Mario Berén, German Montejano, Maria Jodo V. Pereira and Pedro R. Henriques;
BY licensed under Creative Commons License BY

274 Symposium on Languages, Applications and Technologies (SLATE’13).

Editors: José Paulo Leal, Ricardo Rocha, Alberto Simdes; pp. 21-37

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

22

NESSy: a New Evaluator for Software Development Tools

However, it is not true when this last requirement is not met. It is possible to find
thousand of examples like the previous one. Unfortunately, the process used by the engineers
to select the tools is ad-hoc. This process is based on the engineer’s experience and the
problem complexity. Both aspects are relevant, nevertheless many other features have to
be taken into consideration. In this context, we realized that there is a lack of tools that
implement a flexible and configurable evaluation method.

NESSy aims at solving the problem mentioned in the precedent paragraph by implementing
LSP (Logic Scoring of Preferences), a multi-criteria evaluation method. In order to simplify
the method application, NESSy implements and defines a visual domain specific language.
This language is based on graphs and it has several operations to do insert, delete and modify
the specification components (nodes and arcs and their corresponding attributes).

To evaluate a development tool using LSP, the following items must be defined: a list
of attributes, an aggregation structure and a set of elementary criteria functions [10, 11].
The first component describes all the characteristics that the product must have to simplify
the implementation of the problem solution. The second is defined using logical operators
and functions that combine the criteria specified. The third maps an attribute value into
an elementary preference, i.e. a value into the range [0,100]. This value represents the
attribute satisfaction level. Once defined the characteristics, the aggregation structure, and
the functions of elementary criterion, an evaluation process is applied to obtain a number
that represents a global preference. This preference indicates the satisfaction level of the
engineer regarding the Software Development Tool under evaluation. When many tools are
evaluated using LSP, it is possible to establish a ranking by sorting the global preference.
NESSy implements LSP providing a practical, functional and complete graphical interface
This peculiarity makes the selection process easier.

The article is organized as follow. Section 2 explains the Logic Scoring of Preference
method. Section 3 describes all the NESSy characteristics, i.e: architecture, environment, the
evaluation process, functionalities of its graphical interfaces, etc. Section 4 presents a case
study to validate the approach. This case study is concerned with the selection of the best
graphical library to build software views using software visualization techniques [29]. Finally,
section 5 summarizes the proposal and concludes this article with trends for future work.

2 Logic Scoring Preference

Logic Scoring of Preference (LSP) is a multicriteria evaluation method based in the definition
of: a criteria tree, elementary criteria functions and an aggregation structure. LSP is useful
to analyze, compare and select, the best alternative from a set of objects being graded
and ranked (in our case we are interested in software development tools). In the following
subsections, all the LSP components will be explained.

2.1 Criteria Tree

The criteria tree has the characteristics that the tools under evaluation must have. With the
goal of developing a complete criteria list, a hierarchical decomposition process is applied. At
the end of this process a list of measurable attributes is obtained. In the first instance, the
high level characteristics are defined. Then, they are decomposed in sub-characteristics and
so on. This process is repeated until obtain the atomic attributes. The result of this task is
a tree that describes the main characteristics that the objects under evaluation must meet.

E. Miranda, M. Ber6n, G. Montejano, M. J. V. Pereira and P. R. Henriques

2.2 Elementary Criteria

LSP requires the normalization of the measurable attributes. This normalization is necessary
because: 1) in several decision contexts the measurement units are different; ii) the values of
different attributes may be incomparable.

The LSP attribute normalization is accomplished through the definition of Elementary
Criterion Functions. An elementary criterion function maps a value taken by the performance
variable in other contained in the interval [0,1] or [0,100]. This value represents the satisfaction
level of the performance variable under observation. So, 0 represents a situation where the
performance variable does not satisfy the requirements at all, and 1 (or 100) means that
the requirement is totally satisfied. The elementary criteria can be classified as: Absolute or
Relative.

An Absolute elementary criterion is used to determine the absolute preference of some
attribute. A Relative elementary criterion is employed to establish the relative indicators of
the tools under comparison.

Relative elementary criteria are not frequently used for this kind of evaluation. So NESSy
only supports the Absolute type of elementary criteria and the Relative one will no more be
discussed in this context.

Absolute elementary criteria can belong to different types, as defined below.

Continuous Variable

Multivariable: The performance variable is computed by a function. This function

receives parameters as its input and returns the value corresponding to the attribute
under evaluation. For example, the attribute Supported Paradigms can be evaluated
by formula 1.

ParadigmsLG
ParadigmsM ax

(1)

SupportedParadigms = 100 X

In this case, both the ParadigmsLG and ParadigmsMax are the parameters and the
value stored in the variable SupportedParadigms is the attribute value.

Direct: The performance variable has a value that is directly inserted by the evaluator.

Discrete Variable

Multilevel: The performance variable can take one value from a set of discrete values.

These values are established by the evaluator in the stage of elementary preference
definition; they correspond to different preference levels. The engineer in the evaluation
stage must choose a value from that set.

2.3 Aggregation Structure

The elemental preferences, that result from the application of the elementary criteria to

the measurable attributes, must be aggregated in order to obtain the global preference.

This global preference represents the satisfaction of all the requirements, by the tool under
evaluation.

In order to reach the global preference, some aggregation preference functions are used.

These functions receive a set of elementary preferences and their corresponding weights as
input. The weights represents the relative importance for each preference. The functions
return aggregated preferences as their output. All the outputs are aggregated in the next
level of the structure. This process is repeated until the global preference is reached. The
aggregation function proposed by LSP is presented in formula 2.

23

SLATE 2013

24

NESSy: a New Evaluator for Software Development Tools

E = (wie] +wael + ... + wkeZ)%

where:

—o0o <r <400
O0<w;<landi=1.k

E is a general instantiation scheme which produces a continuous spectrum of aggregation
functions, depending on the value of r. Table 1 shows the most relevant values for r, taking
into account the number, n, of function input values. For example, if the operator under
consideration is D- and it receives three input values, then the value of r in the precedent
formula is 2.19. To be clearer, r represents the conjunction-disjunction degree of each
operator. We say that r generates several functions known as Conjunctive Disjunctive
Generalized functions (CDG). These functions are the operators used to aggregate the
elementary preferences. The formula employed to compute the values in table 1 is explained
in [11].

2.4 The Evaluation Process

The evaluation process is carried out defining the values of all performance variables for each
tool under evaluation. In this way, for each system, a global preference will be computed
and this value is used to elaborate the ranking. Figure 1 shows a representation of the LSP
Evaluation Method.

The global preference is obtained from the computation (represented in figure 1 by
L(E;..En)) of all the elementary preferences.

And these elementary preferences are the result of applying the elementary criteria to
the performance variables. Finally, the elementary criteria can be computed because the
engineer provides the required values.

2.5 Related Work

Multiple Criteria Decision Methods (MCDMs) are used to evaluate and make decisions
regarding some problems that admit a finite number of solutions [23]. Nowadays there

Table 1 Values of r corresponding to each CDG.

Operation Name Symbol

n=2 n=3 n=4 n=>5
Disjunction D 400 400 +o00 400
Strong Cuasi Disjunction D+ 9.52 11.09 12.28 13.16
Cuasi Disjunction DA 3.83 4.45 4.82 5.09
Weak Cuasi Disjunction D- 2.02 2.19 2.30 2.38
Arithmetic Media A 1.00 1.00 1.00 1.00
Weak Cuasi Conjunction C- 0.26 0.20 0.17 0.16
Cuasi Conjunction CA -0.72 -0.73 -0.71 -0.67

Strong Cuasi Conjunction C+ -3.51 -3.51 -2.18 -2.61

Conjuction C -0 -0 —00 -00

E. Miranda, M. Ber6n, G. Montejano, M. J. V. Pereira and P. R. Henriques

Elementary
Criteria Agregation

X, _> Structure

% (G0 |2

I N L(Ey, .y E)) >,
Global

X, Preference
T— Attributes | Elementary

Preference

Figure 1 LSP Method Representation.

are a considerable number of MCDMs that are used in decision making in various topics.
However, it was difficult to find, in the literature, systems that implement this kind of
methods. The MCDMs most recently used and implemented are ELECTRE (ELimination
Et Choix Traduisant la REalité) and PROMETHEE (Preference Ranking Organization
METHod for Enrichment Evaluations). Both methods use a similar approach than LSP.
ELECTRE was proposed by Bernard Roy in 1971 [24]. The tools that implement different
versions of ELECTRE [19, 1, 20], generally have some drawbacks, for example: they employ
traditional interaction strategies, they do not define a Domain Specific Language (DSL)
to be used during the evaluation process (even when it would be very functional), they
use complex fuzzy logic that user must deal with, etc. PROMETHEE was developed by
Brans and further extended by Vincke and Brans [9]. PROMETHEE is quite simple in
conception and application compared with the other MCDMs. Therefore, it is widely used in
research and practical contexts. Two of the most used implementations of PROMETHEE are
Decision LAB and PROCALC [8]. Nevertheless, both have similar drawbacks comparing to
ELECTRE implementations. Other MCDM implementations such as AHP [27], MAUT [17],
etc., were studied. However we could not find those implementations available for a deeper
comparative analysis. In the case of LSP (Logic Scoring of Preference), there are some tools
based on this method, as the one presented in this article. However, these tools have the
following drawbacks: i) they frequently are developed for specific cases (e.g. LSPmed [13],
webQEM [21]); ii) they do not provide a DSL (even when this kind of language might be
clearly useful); iii) some present a poor user interface (e.g ISEE [12]); iv) they do not offer
complete documentation; v) most of them are not available to be used or analyzed.

NESSy tries to tackle the problems before mentioned by providing a user-friendly interface,
a visual DSL, a simple evaluation process, among other features.

3 NESSy

In this section, NESSy characteristics are described. In first place, and with the goal of
providing an overview of NESSy components, the architecture will be explained. Then the
interface where the engineer carries out the evaluation process will be presented. Finally, the
evaluation process will be in detail explained.

3.1 Architecture

Figure 2 shows NESSy architecture. NESSy is composed of four components: Criteria Tree
Constructor (CTC), Aggregation Structure Constructor (ASC), Elementary Criteria Specifier
(ECS) and Ewaluator.

25

SLATE 2013

26 NESSy: a New Evaluator for Software Development Tools

m Values for each

Criteria Type
Criteri:j\ Aggregation Infonna’fiyopn elemelnt to be
Information Information evaluated
RANKING
N [plubelubutal 1)...
Criteria Tree Aggregation :g N Elementary :?Ei gm: 2.
Constructor Structure [| Criteria P =>| Evaluator [3)..
= Constructor i/.:’//', Specifier :‘_i?_l | .
Criteria Tree Agtg::cgta‘:::n Criteria Y

Figure 2 NESSy Architecture.

CTC receives as its input Criteria Information (CI) and produces as its output the
Criteria Tree (CT). CTC allows to define criteria for characterizing the tools to be evaluated.
Clearly, this component has functionalities like: Add Criterion, Delete Criterion, Modify
Criterion, etc. In this context CI represents the expert’s knowledge. It is important because
the evaluation process depends on the CT. If CT is not well built the results obtained will
not be correct. The CT structure reflects the successive decomposition of the characteristics
into sub-characteristics and so on until obtaining the measurable attributes.

ASC adds the logic needed to carry out the evaluation process.

It is important to mention that the aggregation structure is built bottom-up from the
leaves (attributes) until the last operator is obtained. This particular operator produces the
tool global preference. This component has functionalities such as: Add Logical Operator,
Delete Logical Operator, Add Weight, etc.

ECS receives as its input the CT. Like ASC, this component takes into consideration the
leaves of the CT, i.e. the measurable attributes. For each attribute, this component selects
its type and, according to the type, to define its evaluation function.

Finally, the Evaluator receives as its input both the AS and the refined ECs. Then the
Evaluator traverses the AS and, using the information provided by the engineer, produces a
ranking of the tools under evaluation.

3.2 Interface

NESSy interface is composed of four components: Menu, Top Panel (TP), Central Panel (CP)
and Bottom Panel (BP) (see figure 3). Menu exhibits a classical set of project management
operations. The operations available are: Load, Save, New Project, Exit and Help.

TP contains the buttons Load, Save, Validate and the field Current Stage. The buttons
have the same functionality that the options provided in the Menu component. Current
stage field indicates the process stage undergoing, i.e. the one carried out in the CP.

CP displays all the components needed to carry out the evaluation process. This process
has four stages which are explained in the next subsection. The elements shown in CP
depend on the process stage. In the first two stages, the elements exhibited are concerned
with the construction of structures needed by the evaluation process. In the other stages,
the elements exhibited are related with the presentation of intermediate and final results.

BP has the buttons Previous and Nezt and Conteztualization Figures. The buttons are
employed to proceed to the next stage or go back to the previous one. The Contextualization
Figures are useful to indicate the current phase and to notify the evolution of the evaluation
process (its present level).

E. Miranda, M. Ber6n, G. Montejano, M. J. V. Pereira and P. R. Henriques

NESSy (New Evaluation Software SYstem)

MenuBar > wewo Edtar ayuda

—{lT
Metric Parameters
Computational Charact.
o Qualitative Parameters
o View Construction
Functionalities —
Extras
Central Panel > S ya Supported paradigms nodo terno
literiaNiiee ANN - Integration with porgramming language
- Compatibility — Integration with IDEs
Extensibility
Portability
Documentation Documentation Clarity
- -
[_Bottom Panel [5l ?
o}

S

+J Inicio NESSy (New Evaluati

Figure 3 NESSy Environment Screenshot.

3.3 The Process

The evaluation process provided by NESSy has four stages (the same specified in LSP
section), they are: CT Constructor, AS Constructor, EC Specifier and Evaluator.
The following subsections explain in detail each stage.

3.3.1 CT Constructor

In this stage, the main characteristics used to compare the tools to be evaluated will be

defined. This set of characteristics is represented using a tree. The leaves of this tree are

measurable attributes. It is important to notice that the evaluation process only use the tree
leaves. Nevertheless, the progressive elaboration of the tree from its root until its leaves has
the advantages mentioned below:

1. Makes easier the Criteria Definition: The creation of internal nodes allows to apply a top-
down decomposition process. In this process, the engineer defines high level characteristics
and decomposes them in sub-characteristics until obtain the attributes.

2. Improves the Visualization: At the end of the definition process, it is possible to observe
a tree structure that shows all the criteria defined. This global view permits to do some
reasoning and this particularity helps to improve the structure.

FEach time that a new project is created, NESSy shows, in its central panel, the tree root.
The nodes are created pressing the mouse right button and selecting the option Add Node
from the pop-up menu. In order to improve the visualization, the tree nodes are distinguished
using different shapes and colors. The Internal Nodes (characteristics, sub-characteristics,
etc.) have elliptic shape and their background is green. The leaves (attributes) have square
shape and their background is yellow. The nodes can be edited just pressing the mouse right
button. The following operations are then available:

1. Edit Name: It allows to modify the node name.

2. Delete Node: It is employed to delete a node. This operation is implemented as a cascade
deletion, i.e. all the sub-tree corresponding to the node will be deleted.

3. Add Node: This operation is used to add a new node in the tree. The new node is tagged
as New Node and it is setted as Internal Node.

27

SLATE 2013

28

NESSy: a New Evaluator for Software Development Tools

4. Final Node: It is utilized when the engineer wants to change the node type to Final Node,
i.e. an attribute.

5. Internal Node: It is utilized when the engineer wants to change the node type to Internal
Node, i.e. a characteristic or sub-characteristic.

A larger number of nodes increases the complexity of visualizing and organizing the tree

structure. For this reason, NESSy provides visualization functionalities such as:

1. Zoom in and Zoom out: It is possible to zoom in or zoom out all the structure. Zoom in
is carried out holding pressed the mouse right button and moving it down. To do a zoom
out the same tasks must be done except that the mouse must be moved up.

2. Drag and Drop: It is employed to move all the structure and to focus on the structure
sector under analysis. This functionality is achieved by pressing the mouse left button
and moving it to the position wished.

3. Zoom to fit: It is used when the structure is out of focus. NESSy provides the operation
Zoom to fit to achieve that. This operation puts the structure on the center of the central
panel and executes the operations necessary for its total visualizaton. To accomplish a
zoom to fit the central mouse button must be pressed.

Along this stage, NESSy guarantees that:

It is not possible to delete the root node.

The root can not be a final node.

The final nodes have different names.

The Criteria Tree has at least two final nodes (attributes).

An internal node cannot be converted into a final node if it is the root of a sub-tree.

arpebdE

Figure 3 shows a fragment of the Criteria Tree used to compare graphical libraries. Notice
that among the four characteristics presented at the first level of the CT, only Compatibility
is decomposed into its elementary components, the attributes (tree leaves).

3.3.2 AS Constructor

In this stage, the attributes defined in the previous one (the CT leaves) are shown. They are
placed in the central panel following the order established in the CT.

The objective of this stage is to build a DAG (Directed Acyclic Graph), such that the
initial nodes (the DAG source nodes) are the attributes; these nodes are then aggregated until
obtaining just one node (the DAG sink node). The resulting value of this node represents
Global Preference. Each node, except those that represent attributes, must be associated
to a LSP operator. Furthermore, the arcs must be labeled with a number. This number
represents a weight. The elements of the DAG are differentiated through their shape and
color. In this case, we use a square shape with yellow color for the attributes. The operators,
i.e the internal nodes, have elliptic shape with gray color. The arcs are represented by arrows
with gray lines and yellow heads.

The aggregation structure is built using four pop up menus.

The first, Add Node, is employed to add an LSP operator node. When the left button
is pressed on the menu another pop up menu appears. It presents the following options:
i) Select Operator, this option permits to assign the corresponding logical operator to the
node. ii) Delete, it is utilized to delete the current node.

The second, Add Arc, is used to connect the nodes. This connection can be carried out
between an attribute and one operator or between two operators. When an arc is pressed
another sub-menu is displayed; it offers several options to modify the node label, and to
delete the arc.

E. Miranda, M. Ber6n, G. Montejano, M. J. V. Pereira and P. R. Henriques 29

Applying the operations described above, it is possible to build any graph. However, LSP
method does not work with any graph, some conditions must be fulfilled. They are listed
below:

The graph must be a DAG.

The attributes have not input degree.

All the operator nodes must be defined as LSP operators.

All the arcs must have a weight p, 1 < p < 100, assigned.

The aggregation structure can not contain parallel arcs.

The input degree of the operator nodes ranges between two and five.

The sum of the weights of the input arcs of an operator node must be equal to 100.
There are only one sink node.

WENO AN

The Left Ideal® of the sink node is composed by all the structure nodes.

Before proceeding to the next stage the aggregation structure must be validated. In
other words, NESSy must verify that the Aggregation Structure built complies with all the
conditions listed above. NESSy carries out this task when the button Validate is pressed. If
the aggregation structure is not correct, NESSy shows the errors found. Figure 4 illustrates
the precedent situation, using an example based in the evaluation of graphical libraries. The
errors detected in this example are:

1. There is one arc without weight — the arc with red color has no weight.

2. There is one node without operator — the node with label New Node has no LSP operator
assigned.

3. There are nodes with wrongly pounded arcs — the weight is not correct (the sum is not
equal to 100), as happens with node labeled a (one input arc has no weight assigned).

4. There is one criterion without use — Portability is an isolated node.

5. The aggregation structure is incorrectly formed — There is one node isolated: Portability.

! Let G=(P,E) a graph where P is a node set and E is a relation defined on P, E C P x P, and let x be a
node z € P then Leftldeal(x)={y € P/p(y,x)} where p(y,) denotes a path from y to x.

B =]

Archivo Editar Ayuda

| Cew) (om] [

Ftapa Actual ————————————
"Ennslru((lﬁn Estructura de Agregacion

Supported paradigms ——40————
Integration with porgramming language ~30

Integration with IDEs ——
Extensibility

ERROR EN LA VALIDACION

® Existe(n) 1arco(s) sin pesar.
Existe(n) 1 nodo(s) sin operador.

x. ATRAS SIGUIENTE

"3 inicio

Figure 4 Error detection in the definition of an Aggregation Structure.

SLATE 2013

30 NESSy: a New Evaluator for Software Development Tools

NESSy, (New Evaluation Software SYstem)
Archivo Editar Ayuda

Etapa Actual ——————
[cagar | [Guardar | [vaiar | IDefinicion de Criterios Elementales
Normire variable Tipo Motificar | Definida (SUMO)
Modificar NO
L= NO Importante!
Modificar NO VOLVER A LA ETAPA DE CREACION DE ARBOL DE CRITERIOS (1° ETAPA), IMPLICA PERDER
- L0S DATOS DE LOS CRITERIOS ELEMENTALES CORRESPONDIENTES & LAS VARTABLES

Modificar NO
Modificar NO

Instruct
-= Para cada Yariable, se debe definir el tipo al que corresponde.
1) Continua->Variables: Funcidn continua con variables (hasta §). EL usuario debera
ingresar un valor por cada variable en el momenta de |3 evaluacian,
2) Continua-=Directa: Ingresada por el usuario (durante |a valuacion, el usuario
ingresa un valor entre 0y 100 indicando directamente |a preferencia elemental).
3) Discreta-=Multinivel: Variahle que puede tomar un valor perteneciente
@ un conjunto acotado de valores.

-> Para pasar a |a siguiente etapa deben estar definidos todos los criterios elementales
corespondientes a cada variable (la cuarta columna de la tabla indica esto)

74 Inicio

Figure 5 Interface corresponding to the Third Stage.

3.3.3 EC Specifier

At this stage, the type of each elementary criterion (EC) and the formula to evaluate it are
specified. NESSy interface to support this stage is shown in figure 5.

Observing this figure, it is possible to identify the elementary criteria displayed on the
left side, and two text areas on the right side. The first contains an advice to inform the
user that going back to stage one, all work done will be lost. The second displays some tips
regarding the criteria specification.

To specify the ECs, the left side of the screen, shown in figure 5, has three columns:
i) Variable Name contains the criteria names, ii) Type allows to select the type of each
criterion, iii) Modify is a button that allows to add information concerned with the criterion.
A forth column is included, Defined (yes/no), to indicate whether the criterion has been
defined, or not.

In order to specify the function for each elementary criterion, the engineer must follow
the steps described below.

1. Select the criterion type.
2. Press the button Modify to open the corresponding pop-up panel.
3. Complete the information required filling the form in that panel.

It is important to remark that NESSy supports the three types of elementary criteria
explained in section 2, they are: Continuous Variable — Multivariable (see figure 6), and
Direct; and Discrete Variable — Multilevel (see figure 7).

E. Miranda, M. Berén, G. Montejano, M. J. V. Pereira and P. R. Henriques

Definicion de Criterio Elemental: Continua con Variables

Nombre Criterio: Supported paradigms

Cantidad de varisbles [2F]

Nombre Lim. Inferior Lim. Superior Nota

x| Paradigms6L] [0 | [to0 | [nurber ofparadigms compatible with the graphic liorary |
Nombre Lim. Inferior Lim. Superior Nota

x2 |] [0] [100 | [numberormost used paradigms |
Nombre Lim. Inferior Lim. Superior Nota

x3
Nombre Lim. Inferior Lim. Superior Nota

x4
Nombre Lim. Inferior Lim. Superior Nota

x5

Instructivo para la Funcion

-> Las operaciones permitidas son: +[susa), -(resta), *(wultiplicacidn], /(divisién], *(porencia], %(modulo],
(] paréntesis, In (logaritao em base =), log [logarituo en base 10}, abs (valor sbsoluto), md (nim aleatorio),
sen, cos, tan (seno, coseno y tangente), surciraices cuadradas), rownd (redondes).

-> Las variables deben referenciarce por su nombre, el cual no debe poseer espacios en blancos.

-> Cada varisble debe contemer limite inferior y limite superior. - infinito = 1 , + infimito = s.

Supported paradigms = 100 * {ParadigmsGL/Paradigmshax)

Nota (Opcional)

Figure 6 Pop up Panel to specify Criteria of type Continuous Variable (Multivariable).

3.3.4 Evaluator

In this phase, the engineer must:

1. Define the tools to evaluate.

2. Provide, for each tool the information required by the elementary criteria in order to
proceed the evaluation.

The evaluation phase also has its pop up panel. In this panel, it is possible to find a
table and two buttons (Add Element and Delete Element). The table allows to visualize the

software system to be submitted to the evaluation process. It has four columns, they are:
i) Name: It is the name of the tool; ii) Input Values: Each cell in this column has a button.

When this button is pressed a pop up panel appears. The format of this panel depend on
the type of elementary criterion. If it is a Continuous Variable the engineer must fill the

| NESSy (New Evaluation Software SYstem| - [=]x]|
Archivo Editar Ayuda

Definicign de Criterio Elemental: Discreta Multinivel

Nombre Criterio: ~ Extensibility

e T e | HEE
Menor | 0| 00 o
1 000 ves
I L
| bs (1° ETAPA), IMPLICA PERDER
Extorsbl| || [DIENTES A LS VARTABLES
I
I
I
I
I
I
! ponde:
! (hasta 9. EL usuario deberd
2 evaluacidn.
Mayor lavaluacidn, el usuario

12 preferencia slsmental)

Agregar Elemento Quitar Elemento or perteneciente

0 105 criterios elementales
12 tabla inica esto).

> Debe haber 3l menos 2 valores en la tabla,

- Cormo méximo se pueden declarar 31 valores.

- Por cada valor (0, 1, 2,...) 52 debe dedarar la prefirencia correspondiente ([0.,100]),

- Las preferencias deben estar en orden creciente. La preferencia correspandiente al valor 0
debe ser cero (0) v |a conespandients al (itimo valor declarado debe ser cien (100),

Nota (Opcional)

« ;:y:y; T

“4 Inicio

Figure 7 Pop up Panel to specify Criteria of type Discrete Variable (Multilevel).

31

SLATE 2013

32

NESSy: a New Evaluator for Software Development Tools

Ingreso de Valor/ Tipo: Continua con Variables. X

Nombre Criterio: Supported paradigms

Cantidad de ¥ariables: 2

Variable [imitewr | vaer [Limitesup | Nota
ParadigmsGL I 00 I 10 | 1000 |Number of paradigms compatible with the graphic library
ParadigmsMax | 0.0 | 50 | 100.0 |Number of most commonly used paradigms

Férmula
supported paradigms = 100 * (ParadigmsGL ParadigmsMax)

Nota (Opcional)

[modicar | [umpar |

Figure 8 Panel to Evaluate a Continuous Variable Criterion.

data required by the panel shown in figure 8. If it is Constant Value the engineer just needs
to provide the preference level. Finally, if it is Discrete Multi-Level, all the values defined in
the previous steps are shown again. The engineer must select the preference level wished.

The next step is to proceed with the global evaluation. This process uses the Aggregation
Structure combining both the criteria and the LSP operators. The Aggregation Structure is
traversed and the value for each criterion is computed, following the LSP semantics. At the
end of the process, the global preference is computed.

The process described above is applied to all the tools under analysis and the ranking is
established taking into consideration the global preference of each tool.

4 Case Study: Visualization Libraries

Software Visualization (SV) is a discipline of Software Engineering aimed at creating and
displaying useful static or dynamic views of software [2, 3, 18]. A view is a graphical
representation that helps to understand some software aspects.

In order to build a view, many artifacts must be defined. An artefact is a concept used
to refer an object belonging to a particular visualization.

Building views and their associated artefacts can be a complex task. For example, to
build a graph-based view by implementing the graph from the scratch is a hard task and it
consumes much time and efforts. The engineer must consider: the internal representation,
the complexity of the operations and different strategies to visualize graphs.

When a complete and tested graph library is used much time is saved and many program-
ming errors are avoided.

The following sections describes how NESSy was used to select the most appropriate tool
to rig up software visualizations [4, 5].

4.1 Criteria Tree

The Criteria Tree shown in figure 9 has been built after a deep research in the context of
Software Visualization. As it possible to observe, the tree has four main characteristics:
Computational, Functional, Compatibility and Documentation.

The Computational characteristic is concerned with the computation of two kind of
sub-characteristics: Quantitative and Qualitative. The first analyzes simple metrics that
must be taken into account when a software tool is selected. The second is related with
properties concerning the current use of the library.

E. Miranda, M. Ber6n, G. Montejano, M. J. V. Pereira and P. R. Henriques

The Functional characteristic contains properties that a visualization library must have.

For example, a visualization library must have a large number of visual artifacts, because in
the other way it will not be useful.

The Compatibility characteristic describes the possibility of using the library with various
paradigms and in different platforms.

Finally, the Documentation characteristic includes a relevant software aspect: the existence
of well-formed and organized texts describing the software package. Many times, the engineers
reject using a powerful library because it is complex to understand how it works. It is due to
the absence of a good and clear documentation.

To finish this section, it is relevant to remark that, the actual tree has more criteria
(see [14] for more details) than those here considered. However, many of them need to be
disaggregated in order to be used by NESSy (for more details read [14]).

4.2 Aggregation Structure

The aggregation structure was built taken into account: i) The user’s experience using
graphical libraries; ii) Experts recomendations; iii) The state of the art of graphic libraries in
the context of Software Visualization, as exposed by Miranda in [14].

| Criteria T I — . Source Lines of Code (SLOC)
riteria Iree
= Number of Classes (for OO only)
Metric

Parameters | 1 Projects that use the library

® Per respect to ion time

Computational - Performance respect to Storage
Characteristics -

* Actualization

* Discussion Forums
Cualitative | J
Parameters

= Bug and Issue support
= Main purpose

= Open source

™« visual Artifacts

* Artifacts Customization

* Useful data structures for views

construction

View 4 Data Specification Language

Construction (DSL}
= 3D support
= Animation support
| Functionaliies |~ « Large data visualizations
L support

= View manipulation algorithms

Extras « Filter Functions

« Graphical Interfaces

—
—

= Supported paradigms

. ion with pr

> Compatibility | == -Integration with IDEs
= Extensibility
« Portability
—
—

*Documentation Clarity

= API Clarity
. —
—> Documentation « Extra Documentation Clarity

* Instalation Facilities
—

Figure 9 Criteria Tree.

33

SLATE 2013

34

NESSy: a New Evaluator for Software Development Tools

* Supported di

ion with pr

ion with IDEs

= Extensibility

« Portability

Figure 10 Aggregation Structure corresponding to High Level Characteristic Compatibility.

Table 2 Paradigmsar, and Paradigmsnre. description.

Name Min. Max. Note
Paradigmsar, 0 100 Paradigms supported by the graphic library
Paradigmsyraz 0 100 Maximum number of paradigms supported by a graphic library

Figure 10 shows the aggregation structure corresponding to the high level characteristic
Compatibility. The Compatibility’s partial preference is computed by using two operators.

The first, C+, a quasi-conjunctive function, aggregates Supported Paradigms and Integra-
tion with Programming Languages. This operator is employed when the input requirements
are mandatory. Thus if one of the input values is zero, the operation result will be zero.
The second operation A (the arithmetic average) is a neutral function (neither conjunctive
nor disjunctive). It aggregates the first result with the three criteria Integration with IDEs,
Extensibility and Portability. The reader willing to know the full aggregation structure can
read [14].

4.3 Elementary Criteria Functions

The approach to specify the Elementary Criteria Functions was described in section 3.3.3.
To illustrate how this task is carried out, a simple example is presented: the specification
of the elementary criterion Supported Paradigms. This criterion is of type Multivariable (a
Continuous Variable) and depends on two parameters Paradigmsgr and Paradigms praq
that are described in table 2. The value of Supported Paradigms is determined by formula 1.

Using NESSy to accomplish this task, it is necessary to start specifying the criterion type
in the form shown in figure 5. After this action, a new pop-up panel will spring out. Then
the description of the two parameters and the evaluation formula, presented above, shall be
filled in the form associated to that pop-up panel, as can be seen in figure 6.

4.4 Evaluation

In order to show NESSy usefulness, three graphical libraries were evaluated: Graphviz, JUNG
and Prefuse. Graphviz is open source graph visualization software [15]. This library has
been used in several scientific projects. Jung provides a common and extensible language
for the modeling, analysis and visualization of data that can be represented as a graph or
network [16]. Prefuse is a software tool for creating rich interactive data visualization [22].

At this stage all the values required to evaluate the elementary criteria were provided.
This task was accomplished for each library. It is important to notice that the values
previously mentioned were obtained from: i) Graphic libraries Web Site; ii) Graphic libraries
Documentation; iii) Evaluators Experience.

The Global Preferences obtained for each library are shown in table 3. In the same table it
is possible to see the decomposition of the Global Preference of each tools into its components

E. Miranda, M. Ber6n, G. Montejano, M. J. V. Pereira and P. R. Henriques

Table 3 Final Scores obtained by NESSy.

High-Level Characteristics Graphviz JUNG Prefuse
Computational Characteristics 69.0892 51.8395 47.4708

Functionalities 64.5728 63.2473 76.5484
Compatibility 88.1042 75.2208 75.2208

Documentation 74.7158 88.6803 85.2318
Final Scores 71.7626 66.1774 67.9197

(the high level characteristic preferences). Graphiz was ranked in the first position (achieve
the maximal punctuation for the Global Preference) due to values got for the characteristics
Computational and Compatibility.

5 Conclusion and Future Work

In the context of a bilateral cooperation project devoted to the research of Program Com-
prehension and Language-based Tools, we decided to adopt Logic Scoring of Preference
(LSP)—a multi-criteria Evaluation Method adaptable to several domains, that was being
applied by the Argentinean team for a long time in different areas—as a method to compare
or select software systems (as discussed for instance in [7] or [6]).

This decision has created the need for a tool that could help in the application of LSP,
leading to the development of NESSy, a new evaluator for software development tools, that
was presented in this paper. In order to correctly follow the LSP approach, NESSy has four
stages.

The first stage allows the engineer to define the criteria tree. The second is concerned with
the definition of an aggregation structure. The third phase allows to define the elementary
criteria types and the respective evaluation functions. Finally, the fourth stage uses the
aggregation structure and the elementary criteria to produce a global preference. This
preference represents the engineer satisfaction level regarding the tool evaluated.

NESSy provides an easy-to-use interface to support the user work along all these four
steps. As a proof of concept, NESSy was used to rank three powerful graphic libraries:
Graphviz, JUNG and Prefuse. The main goal was to establish which of them provide more
functionalities to build graph-based software views. The results obtained indicate that
Graphviz is better (more helpful) than Jung and Prefuse. It is because Graphviz got the best
scores concerning the Computational Characteristics and Compatibility. These characteristics
were considered more important by the Aggregation Structure designers.

From the experience gained using NESSy in laboratory contexts, we can say: NESSy is
user-friendly, has an attractive and easy to learn visual DSL which is employed to specify
the aggregation structure, NESSy uses few computational resources and the time consumed
to produce the result is acceptable. The evaluation task is a difficult process, either using
NESSy tool or adopting the traditional manual approach. However, the advantage of using
NESSy is that a considerable amount of work (e.g Criteria Tree, Agregation Structure and
Elementary Criteria) is already done for future evaluations.

The future work is oriented in four directions. The first is concerned with improving
NESSy adding the following characteristics: i) New types of elementary criteria, and ii) More
support for project management.

The second is related with the elaboration of strategies to automatize the evaluation
process. Currently, all the necessary data is provided manually. However, some elementary

35

SLATE 2013

36

NESSy: a New Evaluator for Software Development Tools

criteria can be automatically computed. An example of this assertion is the metric SLOC
(Source Lines of Code). For this reason, we intend to study the possibility of using plug-ins
in order to automatize the evaluation of some attributes.

The third is related with the improvement of the Criteria Tree for the Software Visualiza-
tion Domain. As was mentioned along this paper, the CT is wider than the presented in
section 4.1. Many criteria were not included because they need to be disaggregated. This
problem motivates further research for producing a more complete CT.

Finally, we also plan to explore the application of NESSy to other areas such as: Reverse
Engineering, Program Comprehension and Re-Engineering. The goal is to define the Criteria
Tree, Aggregation Structure and Elementary Criteria for specific problems in these areas. For
example, if a Program Comprehension tool is needed in a specific context, the components
previously mentioned, can help to select the best option for this particular situation. Obviously,
NESSy is fundamental to carry out this task properly.

—— References

1 Aicha Aguezzoul, B. Rabenasolo, and A.-M. Jolly-Desodt. Multicriteria decision aid tool
for third-party logistics providers’ selection. In Service Systems and Service Management,
2006 International Conference on, volume 2, pages 912-916, 2006.

2 T. Ball and SG Eick. Software visualization in the large. Computer, 29(4):33-43, 1996.

3 Michael Balzer, Andreas Noack, Oliver Deussen, and Claus Lewerentz. Software Land-
scapes: Visualizing the Structure of Large Software Systems, 2004.

4 S. Bassil and R. Keller. A Qualitative and Quantitative Evaluation of Software Visualization
Tools. Proc. of the IEEE Symposium on Information Visualization, pages 69-75, 2001.

5 M. Beron, P. Henriques, and R. Uzal. Program Inspection to interconnect Behavioral and
Operational Views for Program Comprehension. Ph.D Thesis Dissertation at University
of Minho. Braga. Portugal, 2010.

6 M. M. Beron, D. Cruz, M. J. Varanda Pereira, P. R. Henriques, and R. Uzal. Evaluation
criteria of software visualization system used for program comprehension. 3a Conferencia
Nacional em Interacgao Pessoa-Mdquina, 03:285, 2008.

7 Mario Marcelo Berén. Program Inspection to interconnect the Behavioral and Operational
Views for Program Comprehension. PhD thesis, National University of San Luis & Univer-
sity of Minho, Nov 2009.

8 Jean-Pierre Brans and Bertrand Mareschal. Promethee methods. In Multiple criteria
decision analysis: state of the art surveys, pages 163—186. Springer, 2005.

9 J.P. Brans, Ph. Vincke, and B. Mareschal. How to select and how to rank projects: The
promethee method. Furopean Journal of Operational Research, 24(2):228 — 238, 1986.
<ce:title>Mathematical Programming Multiple Criteria Decision Making</ce:title>.

10 J.J. Dujmovic. A Method for Evaluation and Selection of Complex Hardware and Soft-
ware Systems. The 22nd Int’l Conference for the Resource Management and Performance
Evaluation of Enterprise CS. CMG 96 Proceedings, 1:368-378, 1996.

11 J.J. Dujmovic, R. Elnicki, University of Florida, and United States. National Bureau
of Standards. A DMS Cost/benefit Decision Model: Mathematical Models for Data Manage-
ment System Evaluation, Comparison and Selection (part 1 of Second Deliverable). National
Bureau of Standards, 1981.

12 Jozo Dujmovié¢ and Metin Kadaster. A technique and tool for software evaluation. Evolution,
374:246, 2002.

13 Jozo J Dujmovié, Jeffrey W Ralph, and Leslie J Dorfman. Evaluation of disease severity and
patient disability using the Isp method. In Proceedings of the 12th Information Processing
and Management of Uncertainty international conference (IPMU 2008), pages 1398-1405.

E. Miranda, M. Ber6n, G. Montejano, M. J. V. Pereira and P. R. Henriques

14
15
16
17

18

19

20

21

22
23

24

25

26
27

28

29

Miranda Enrique. Evaluacién de funcionalidades de visualizacion de software provistas por
librerias graficas. licentiate thesis. 2013.

GraphViz-Team. http://www.graphviz.org/, 2011.

JUNG-Team. http://jung.sourceforge.net/, 2011.

Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Preferences and
Value Tradeoffs. Cambridge University Press, 1993.

K. Mens, T. Mens, and M. Wermelinger. Supporting software evolution with intentional
software views. Proceedings of the International Workshop on Principles of Software Evol-
ution, pages 138-142, 2002.

Gholam Ali Montazer, Hamed Qahri Saremi, and Maryam Ramezani. Design a new mixed
expert, decision aiding system using fuzzy electre iii method for vendor selection. FExpert
Syst. Appl., 36(8):10837-10847, October 2009.

V. Mousseau, R. Slowinski, and P. Zielniewicz. A user-oriented implementation of the
electre-tri method integrating preference elicitation support. Comput. Oper. Res., 27(7-
8):757-777, June 2000.

L. Olsina and G. Rossi. Measuring Web Application Quality with WebQEM. [EEE Multi-
Media, 2002, 09(4):20-29, 2002.

Prefuse-Team. http://prefuse.org/, 2011.

Carlos Romero. Teoria de la Decision Multicriterio: Conceptos, técnicas y aplicaciones.
Alianza Editorial: Madrid., 1993.

B. Roy. Problems and methods with multiple objective functions. Mathematical Program-
ming, 1:239-266, 1971.

Bernard Roy. The outranking approach and the foundations of electre methods. Theory
and Decision, 31:49-73, 1991.

M.J.; Rios-Insua S Rios, S.; Rios-Insua. Procesos de Decision Multicriterio. 1989.

T. Saaty. How to make a decision: The analytic hierarchy process. European Journal of
Operational Research, 48(1):9-26, September 1990.

Herbert Alexander Simon. The New Science of Management Decision. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1977.

S. Tilley and S. Huang. On selecting software visualization tools for program understanding
in an industrial context. ‘wpc, 00:285, 2002.

37

SLATE 2013

Supporting Separate Compilation in a
Defunctionalizing Compiler

Georgios Fourtounis and Nikolaos S. Papaspyrou
School of Electrical and Computer Engineering

National Technical University of Athens, Greece
{gfour, nickie}@softlab.ntua.gr

—— Abstract

Defunctionalization is generally considered a whole-program transformation and thus incompat-

ible with separate compilation. In this paper, we formalize a modular variant of defunctionaliz-
ation which can support separate compilation. Our technique allows modules in a Haskell-like
language to be separately defunctionalized and compiled, then linked together to generate an
executable program. We provide a prototype implementation of our modular defunctionalization
technique and we discuss the experiences of its application in a compiler from a large subset of
Haskell to low-level C code, based on the intensional transformation.

1998 ACM Subject Classification D.1.1 Applicative (functional) programming; D.3.3 Language
Constructs and Features: Abstract data types, Modules, Packages; F.3.3 Studies of Program
Constructs: Functional constructs; D.3.4 Processors: Compilers.

Keywords and phrases Defunctionalization, functional programming, modules, separate compil-
ation.

Digital Object Identifier 10.4230/0OASIcs.SLATE.2013.39

1 Introduction

Separate compilation allows programs to be organized in modules that can be compiled
separately to produce object files, which the linker can later combine to produce the final
executable. Modern compilers support separate compilation for many reasons. It saves
development time by avoiding all the source code to be recompiled every time a change is
made. Object files can be collected together in the form of libraries, which can be distributed
as closed-source code. It is also used by build systems like make to tractably recompile big
code bases [1].

Defunctionalization [15] is a technique which transforms higher-order programs to first-
order programs. It does so by eliminating all closures of the source program, replacing them
with simple data types and invocations of special first-order apply functions. It has been
an important theoretical tool, e.g. used by Ager et al. to derive abstract machines and
compilers from compositional interpreters [3, 2], but it has also been used as a compilation
technique [8].

Defunctionalization has so far been presented as a whole-program transformation, a
property that has been frequently cited as its major shortcoming, rendering it unsuitable
as a realistic implementation approach for most compilers. Although defunctionalization is
used in compilers that run in whole-program mode, such as MLton and UHC, so far it has
not been used in compilers that support separate compilation to native code.

In the rest of this paper we give an introduction to defunctionalization and describe
the problems that appear when we attempt to combine it with separate compilation. We
then demonstrate how these problems can be overcome using modular defunctionalization, a
? Geor(%ios (fou(rjtoun.is ar(ljd Nikolaoi.S. Papgs&)}g\o{u;
ond Syposilllinosi LZEg\elrage:aigglicsglomnsr;sndl’ﬁiifnoloéies (SLATE’13).

Editors: José Paulo Leal, Ricardo Rocha, Alberto Simd&es; pp. 39-49

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

40

Supporting Separate Compilation in a Defunctionalizing Compiler

variant that supports separate compilation of modules and linking. We give a formalization
of our transformation and describe how it has been implemented in a compiler for a subset
of Haskell. To our knowledge, this is the first time defunctionalization is implemented in a
way that supports separate compilation to native code.

2 Defunctionalization

In this section we introduce the reader to the basics of defunctionalization, a program
transformation that takes a higher-order program and produces an equivalent first-order
program with additional data types representing function closures.

Assume that we have the following higher-order program written in Haskell:

result = high (add 1) 1 + high inc 2
high g x =g x

inc z =z+1

add ab =a-+b

There are three higher-order expressions in this program:

1. add 1 is a partial application of the add function yielding a closure of add that binds a
to 1; the closure has residual type Int — Int.

2. inc is the name of the inc function yielding a (trivial) closure that binds no variables
and has residual type Int — Int.

3. g is a higher-order formal variable of type Int — Int.

Defunctionalization will then convert this program to an extensionally equivalent one,
using only first-order functions. This is achieved by introducing a data type Clo for closures
with one constructor for each different type of closure. In addition, a special function apply
is introduced that recognizes these constructors and does function dispatch:

data Clo = Add Int | Inc

result = high (Add 1) 1 + high Inc 2
high g x = apply g x

inc z =z+1

add ab =a+b

apply ¢ cO = case c of
Inc — inc cO
Add a0 — add a0 cO

Defunctionalization is a well-known technique, first introduced by Reynolds as an imple-
mentation technique for higher-order languages in an untyped setting [15]. For applying it
to the simply-typed language that we study in this paper, we base our transformation on
the type-safe variant of defunctionalization proposed by Bell, Bellegarde, and Hook, which
creates different closure dispatching functions for different closure types [4]. For example,
assume the following higher-order program:

result = highl (add 1) 1 1 + high2 inc 2
hight hi j=h i j

high2 g x =g x

inc z =z +1

add a b ¢ =a+b+c

G. Fourtounis and N.S. Papaspyrou

The types of the closure constructors introduced would be Int — Int — Int for Add1
and Int — Int for Inc. The example code is then defunctionalized to the following equivalent
first-order program:

data CloI_I = Inc | Add2 Int Int
data CloII_I Addl Int

result = highl (Add1l 1) 1 1 + high2 Inc 2
highl h i j =apply II_.T h i j

high2 g x = apply_I_.I g x

inc z =z+1

addabc =a+b+c

apply_I_I clol mil = case clol of

Inc — inc ml

Add2 al bl — add al bl ml
apply_II_I clo2 m2 n2 = case clo2 of

Add1l a2 — add a2 m2 n2
apply_II_I_I cloC mC = case cloC of

Add1l aC — Add2 aC mC

In this example, the constructors representing closures that can be applied to different
types are dispatched by two different functions, apply_I_I and apply_II_I, that take
closures belonging to data types Clo_I_I and Clo_II_I. We see that another closure

constructor is also introduced, Add2, representing the closure of add binding two arguments.

This can be the result of partially applying a closure Add1 (i.e., add with one argument) to
another argument, creating a new closure of add with two arguments. Partial application of
Add1 closures is done by function apply_II_I_I.

3 The Source and Target Languages

In this section we describe HL,;, a higher-order functional language with modules that
will serve as the source language for modular defunctionalization. We also describe FL,
its first-order subset that is the target language of our algorithm. Finally, we discuss how
standard defunctionalization fails to separately transform HL,; modules.

3.1 The Source Language HL,,

The language HL,/ is a Haskell-like higher-order functional language with modules [9]. A
program in HL,; is organized in modules, each having a name, a list of data types and
functions that are imported from other modules, a list of data type declarations, and a list
of function definitions. HL,; is defined by the following abstract syntax, where u ranges
over module names, a ranges over data type names, b ranges over basic data types, x ranges
over function parameters and pattern variables, op ranges over built-in constant operators, f
ranges over top-level functions, and x ranges over constructors:

*

p = m program
m ::= module u where imports I* §* d* module
I == p(p.a)* (v:7)* import

0 == data p.a= (u.k:7)* data type
T ou=b|lpal|ToT type

41

SLATE 2013

42

Supporting Separate Compilation in a Defunctionalizing Compiler

d == pfar= e definition

e == (x| v]| op) e | case e of b* expression

v o= u.f | n.K top-level variable
b = pra* — e case branch

In HLps we assume that type names (a), top-level function names (f) and constructor
names (k) are always qualified by the name of the module (x) in which they are defined.
Function parameters and pattern variables (x) are local names; they are not qualified. In
this way, every module has its own namespace: every top-level function is distinct and
two different modules can define functions, data types or constructors with the same name,
without the danger of name clashes. In our presentation, we will follow Haskell’s convention:
all functions and variables start with a lowercase letter, while data types, constructors, and
modules start with an uppercase letter.

An example program that is organized in two modules Lib and Main is Listing 1.

Listing 1 Example of a program organized in two modules.
module Lib where
Lib.high g x = g x
Lib.h y =y+1

Lib.test = Lib.high Lib.h 1
Lib.add a b =a+ b

module Main where

import Lib (Lib.h :: Int—Int , Lib.high :: (Int—Int)—Int—Int
Lib.test :: Int , Lib.add :: Int—Int—Int)

Main.result = Main.f 10 4 Lib.test ;

Main.f a = a + Main.high (Lib.add 1) + Lib.high Main.dec 2
Main.high g = g 10
Main.dec x =x - 1

3.2 The Target Language FL

The language FL is the first-order subset of HL,;, without modules. In other words, in
programs written in FL:

1. All functions and data type constructors are first-order.

2. Module qualifiers are considered parts of the names of functions, data types and con-
structors.

3. All module boundaries have been eliminated; programs are lists of data type declarations
and function definitions.

For the purpose of our presentation, FL is used as the target language of our defunc-
tionalization transformation. In a real compiler, FL would be replaced by (or subsequently
transformed to) native object code.

G. Fourtounis and N.S. Papaspyrou

3.3 The Problem with Naive Separate Defunctionalization

Let us go back to the two modules Lib and Main that were defined in §3.1. If we defunctionalize
them separately, we obtain the two modules presented in Listing 2.

Listing 2 Main and Lib modules, defunctionalized independently.

module Lib where

data Lib.CloI_I = Lib.H

Lib.high g x = Lib.apply I I g x
Lib.h y =y+1
Lib.test = Lib.high Lib.H 1

Lib.add a b =a+ b

Lib.apply_I_I c¢c z = case c of
Lib.H — h z

module Main where

import Lib (Lib.h :: Int—Int , Lib.high :: (Int—Int)—Int—Int
Lib.test :: Int , Lib.add :: Int—Int—Int)

data Main.CloI_I = Lib.Add Int | Main.Dec

Main.result = Main.f 10 4+ Lib.test ;

Main.f a = a + Main.high (Lib.Add 1) 4 Lib.high Main.Dec 2
Main.high g = Main.apply I_I g 10

Main.dec x =x - 1

Main.apply_I_I c z = case c of
Lib.Add aC — Lib.add aC z
Main.dec — Main.dec z

First of all, we see that different modules generate closure constructors that may populate
the same closure type, here Int — Int — Int, but these constructors and their closure
dispatching functions are spread over different modules. This problem is evident when the
expression Lib.high Main.Dec 2 is evaluated: Lib.high will call Lib.apply_I_I, which
does not know the closure constructor Main.Dec and the program will terminate with an
error.

We observe that closure types, closure constructors and closure dispatching functions
must be treated specially, if functions from different modules are to exchange higher-order
expressions. On the other hand, all other data types, constructors and functions can be
safely compiled separately and coexist, since it is guaranteed that there are no name clashes.

4 Modular Defunctionalization

The solution to the problem described in the previous section is to have a proper way of
managing the code that is generated by defunctionalization: closure types, constructors
and their dispatchers must be collected together from all modules and code for them must

43

SLATE 2013

44

Supporting Separate Compilation in a Defunctionalizing Compiler

only be generated at link-time. Our technique applies defunctionalization separately to each

module, transforming to FL code, introducing closure constructors and invoking closure

dispatchers whenever needed. It remembers the closure constructors that were required for
each module and collects this information together with the target code generated for each
module. Subsequently, in a final linking step, it generates code for the closure dispatchers
based on the collected information.

Our modular defunctionalization is therefore a two-step transformation:

1. Separate defunctionalization: Each module is defunctionalized separately. This results to
(i) a set of defunctionalized data type declarations; (ii) a set of defunctionalized top-level
function definitions; and (iii) information about the closures that were used in this module.
The third part serves as the defunctionalization interface of the module. At this point,
the defunctionalized definitions from each module can be compiled separately to object
code, assuming that closure constructors and dispatching functions are external symbols
to be resolved later, at link-time.

2. Linking: The separately defunctionalized code is combined and the missing code is
generated for closure constructors and dispatching functions, using the defunctionalization
interfaces from the previous step. The missing code can then be compiled and linked
with the rest of the already generated code, to produce the final program.

This section formally presents a module-aware variant of defunctionalization. The two
steps mentioned above are described in the next two subsections.!

4.1 Separate Defunctionalization

This step defunctionalizes each module, generating a list of defunctionalized data type and
function definitions, and a list of all closure constructors that are used in the transformed
code. In the rest of this section, we describe how a single module m is defunctionalized.

The variant of defunctionalization presented here is type-driven (however, this is not
essential for our technique, which can also be used for defunctionalizing untyped source
languages). We therefore assume that type checking (and/or type inference) has already
taken place and that all type information is readily available. To simplify presentation, we
assume that expressions are annotated with their types (e.g., ™) but most of the times we
will omit such annotations to facilitate the reader.

We also assume a mechanism for generating unique names during defunctionalization.
All such names will be free of module qualifiers and suitable for use in FL. In particular:

N(p.a), N(p.f), and N (u.x) generate names for module-qualified types, top-level func-

tions and constructors that appear in the source code of a module;

Cl(T) generates the name of a data type corresponding to closures of type T;

C(v,n) generates the name of a constructor corresponding to the closure of v, binding n

arguments; and

A(1,n) generates the name of the closure dispatching function for closures of type T,

supplying n arguments.

LA prototype implementation in Haskell of the technique described in this section is available at:
http://www.softlab.ntua.gr/~gfour/mdefunc/.

http://www.softlab.ntua.gr/~gfour/mdefunc/

G. Fourtounis and N.S

. Papaspyrou

A number of auxiliary functions for manipulating types will be useful:

arity(7) returns the arity of a type (i.e., how many arguments must be supplied before a
ground value is reached).

arity(b) =
arity(p.a)
arity(m1 — 72)

0
0
1+ arity(72)

ground(7) converts higher-order types to ground types, by replacing function types with

the corresponding clo

ground(d)
ground(p.a)
ground(7T; — 7o)

sure types.
= b
N(p.a)

C@(Tl — TQ)

lower(7) converts higher-order types to first-order, by replacing the arguments of function
types with the corresponding closure types, if necessary.

lower (b)
lower (p.a)
lower(11 — T2)

b
N(p.a)

ground(7;) — lower(72)

The defunctionalization process is formalized using four transformations: 7(d), D(d),
E(e), B(b), for type declarations, top-level function definitions, expressions and case branches,
respectively. They are defined as follows:

T(data p.a = pky 71| ... | phin:7) = data N(p.a) = N(u.r1) : lower(ry)

| N(u.ryn) : lower(,,)
D(p.f ...y = €) = N(f)zr...2pn = &E(e)
E(x) x
E(xTer ... en) = A(r,n) z E(er) ... E(en) ifn>0
EWmer ... ey) = N(@) E(er) ... E(ey) if n = arity(7)
EW er ... ep) = C(v,n) E(er) ... E(en) if n < arity(7)
E(oper ... ep) = op&(er) ... E(en)
E(caseeof by; ... ; by) case £(e) of B(b1) ; ... ; B(by)
B(u.k z1 ... z, — e) = N(pk)zy ... 2, = E(e)

In principle: (i) partial applications of top-level functions and constructors are replaced by

closure constructors; (ii)
corresponding closure di
higher-order types in the
data types.

functional parameters or pattern variables are applied by using the
spatching functions; (iii) data types are also defunctionalized: all
signatures of constructors are replaced by the corresponding closure

During the first step of the transformation, useful information is collected for every closure
corresponding to a top-level function or constructor. This is achieved with function F(v7),
defined as follows. We assume that v is a top-level function or constructor that is used in a

closure and 7 is its type.

F@™) = info(v,T,[])

info(v, 7, 7%)
info(v, 7, 7%)

0

{(r,

ifr=m —>mn
if 7 is a ground type

N (v), 7)} Uinfo(v, 19, 7* ++ [ground(71)])

45

SLATE 2013

46

Supporting Separate Compilation in a Defunctionalizing Compiler

Function F(v7™) returns a set of triples, one for each possible closure in which v can be
used. Each triple contains: (i) the type of the closure; (ii) the name of v; (iii) the types of
arguments contained in the closure. Notice that, for each triple, the number of arguments
remaining to be supplied is equal to the arity of the closure’s type. As an example, consider
the function add from an earlier example:

add abc=a-+b+c

This function can be used in three closures, when 0, 1 and 2 arguments are supplied:

F(adgtet —int —Int =Int) — [(Tpt — Int — Int — Int,add,[]),
(Int — Int — Int,add, [Int]),
(Int — Int,add,[Int,Int]) }

It is possible that not all of the different closures generated by function F(v™) will actually
be used in the final program. The implementation is free to use a subset of these closures,
e.g. taking just the ones that are generated in the code of the module. However, the final set
of closures after linking is not just the union of those generated in the code of each linked
module; more closures need to be automatically generated by the dispatching functions, in
the case of partial application.

4.2 Linking

After separately defunctionalizing a number of modules, we are left with object code, i.e.,
defunctionalized definitions, and information about closures. To link the final executable pro-
gram, we must merge all defunctionalized definitions and add the missing closure dispatching
functions. Let I be the union of closure information from all modules to be linked.

As our presentation is at the source level, we start by generating data type definitions for
closures; this would not be necessary if we were linking native code. For each closure type 7,
we generate a definition for C4(7) as follows:

data Cl(1) = {C(z,n): 7 = ClT) | (1,2,7*) € I and n = arity(7) }

To generate the closure dispatching functions we use again the closure information I.
As the program is closed at link-time, we only need to create closure dispatchers for all
constructors in I. For every closure type 7, there may be two kinds of closure dispatchers.
One is for the full application of such a closure, when all remaining arguments are supplied.
However, if n = arity(7) > 1, there are also n — 1 closure dispatchers corresponding to the
partial application of such a closure, when only m arguments are supplied (1 < m < n). The
first kind of dispatchers returns ground values, whereas the second kind returns closures of
smaller arity. Both kinds can be treated uniformly if we define C(z,0) = z. The definition
for A(7,m), where now 1 < m < n, can be written as follows: a dispatcher for closures of
type 7 when m arguments are supplied.

A(r,m) xg x1 ... &, = case xg of
{Cx,n)y1 ... yu > Clx,n—m) y1 ... Y T1 ... Ty
| (1,2,7%) € I and n = arity(7) and k = |7*]| }

G. Fourtounis and N.S. Papaspyrou

5 Modular Defunctionalization in a Haskell-to-C Compiler

Apart from a simple prototype implementation for a small subset of a Haskell-like language
with modules, we have implemented this technique in GIC,? a compiler from a large subset
of Haskell to low-level C that is based on the intensional transformation [11]. Defunc-
tionalization is used in the front-end of the GIC compiler, transforming from Haskell to
a first-order language with data types, which is subsequently processed by the intensional
transformation [16, 17] to generate C code using lazy activation records [7].

As in our prototype implementation, defunctionalizing a Haskell module in GIC generates
a set of function definitions. These can be transformed to C and then compiled to native
code. The defunctionalized definitions contain references to external symbols corresponding
to closure dispatching functions. Closure constructor information for each module is kept in
a separate file, which describes the defunctionalization interface of the module.

This technique permits each module to be independently compiled to an object file. These
files can be combined by the linker, which does the following:

It builds the final closure constructor functions and closure dispatchers for all closures in

the defunctionalization interfaces;

It compiles the generated code of closure constructors and dispatching functions to a

separate object file; and

It calls the C linker to combine the compiled code of the modules and the compiled

generated code of defunctionalization, in order to build the final executable.

Modular defunctionalization enables incremental software rebuilding for our Haskell
subset. Moreover, it enables the building of shared libraries from defunctionalized Haskell
code, provided that defunctionalization interfaces are distributed together with object files;
such libraries can then be used by any third-party source code that has an appropriate linker.

6 Related Work

Pottier and Gauthier point out that defunctionalization can be modular for languages that
are richer than our HLy; and support recursive multi-methods [14]. Our technique is simpler,
as it only records closure constructor information for every module.

GRIN’s front-end had some support for separate compilation, but the back-end was a
whole-program compiler [5]. The Utrecht Haskell Compiler (UHC), which is also based on the
GRIN approach, supports separate compilation for a special bytecode format that runs on an
interpreter but not for native code [10]. In the context of the specialization transformation