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In this work, we investigate the superfluidic properties of light propagating in a four-level coherent atomic
medium. The model is derived under the paraxial approximation in the form of a generalized nonlinear
Schrödinger equation and features spatially controllable and quantum-enhanced optical properties, which
can offer new possibilities in the field of optical analogue systems. In particular, we use this versatility to study
the dynamics of an optical vortex beam confined in a nontrivial connected geometry, finding numerical evidence
of another superfluidic signature analogue: the persistent current of light. © 2017 Optical Society of America
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1. INTRODUCTION

Optical analogues of many-body physical systems appear as a
promising tool for exploring systems that span from general
relativity [1–4] to quantum effects [5]. In these experiments,
the effective interactions between photons are determined by
the optical properties of matter, typically related with its
nonlinear response [5]. Thus, the need to explore systems
whose optical properties can be easily tailored is a problem
of paramount importance.

The superfluidic behavior of light has received some atten-
tion in recent years [6]. Since the first observations of super-
conductivity and superfluidity, the exploration of these
macroscopic quantum phenomena during the past decades
took advantage from the development of a theoretical frame-
work relating these effects with Bose–Einstein condensates
(BECs) [7,8]. Indeed, BECs constitute a highly tunable plat-
form that allow the control of a wide range of parameters, from
the density to the interaction between atoms. As a result, super-
fluidic behavior has been extensively analyzed using BECs, first
in ultracold atomic gases [9,10] and more recently in exciton–
polariton fluids [5,11–13]. However, the technological
challenges involved in these experiments strongly limit their
experimental implementation in configurations of increasing
complexity. This paves the way for the development of alter-
native platforms to emulate of these effects.

The similarity between the model for monochromatic beam
propagation in bulk nonlinear media under the paraxial
approximation and the Gross–Pitaevskii equation describing
the dynamics of a BEC allows the interpretation of light as

a many-body physical system [6,14]. Furthermore, the well-
known hydrodynamic description of light identifies the inten-
sity of light and the gradient of the phase of the optical field
with the density and velocity of a fluid [15,16]. In this context,
typical superfluidic signatures are predicted to occur below the
critical speed defined by the Landau criterion [7,17]. Recently,
there have been theoretical and experimental advances on this
subject, including the study of dissipationless motion [18], sup-
pressed scattering [6,18–20], and the formation of shock wave
diffraction patterns by a defect, with both dark solitons and
vortices [21–24]. Still, the study of these quantum phenomena
is limited when using bulk nonlinear media, which are not suit-
able to reproduce other superfluidic signatures, including the
hallmark of superfluidity: the existence of persistent currents.
Therefore, these optical media should be replaced by other ma-
terials that allow a spatial control of the linear and the nonlinear
optical properties. Although photorefractive crystals can be
used for that purpose [6,25], their relatively weak nonlinearity
and the consequently large propagation distance needed to
obtain these effects strongly limits the use of these materials.

In this context, quantum atomic optical systems such as
atomic gases can constitute a good alternative. In these systems,
quantum interference and atomic coherence between electronic
levels can be exploited to develop highly tunable optical media
with spatial control of both linear and nonlinear susceptibility
using an external control beam [26,27], while strongly sup-
pressing near-resonance absorption effects under the electro-
magnetically induced transparency regime [28]. Also, these
can exhibit a large enhancement of the Kerr nonlinearity, even
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at low intensities (down to the few-photons regime) [28,29],
making it an extremely appealing optical medium to study non-
linear phenomena, including the realization and control of spa-
tial [26], vectorial [30], and temporal dissipative solitons [31].

In this paper, we consider an N -type four-level atomic sys-
tem and use it to obtain a highly tunable optical medium suit-
able for the development of optical analogue simulations. We
derive a generalized nonlinear Schrödinger equation governing
the propagation of a probe optical field, featuring not only en-
hanced third-order nonlinearity but also allowing a spatial
variation of the linear refractive index, induced by an external
optical switching field. Introducing the hydrodynamic model
for this light fluid, we derive the Bogoliubov dispersion relation
for small perturbations on top of the light fluid created by a
linear defect induced by the optical switching field and observe
the characteristic superfluidic signature of suppressed scatter-
ing. Moreover, we explore the possibility of controlling the lin-
ear refractive index to confine light into a connected geometry
and use this system to predict and observe numerically persis-
tent currents in the light fluid, establishing a optical analogue of
this well-known quantum phenomenon.

2. MODEL

This paper considers an N -type four-level atomic system
interacting with three continuous-wave optical fields, as repre-
sented in Fig. 1. The levels j1i, j2i, and j3i constitute a
typical three-level Λ scheme, with a weak probe field Ep �
1
2 �Ep�r; z�eikpz−iωpt � c:c:� and a strong control field Ec �
1
2 �Ec�r�eikpz−iωpt � c:c:� driving the transitions j1i → j3i and
j2i → j3i with envelope functions Ep;c�r�, center frequencies
ωp;c , and wave vectors kp;c , respectively. Additionally, there
is a supplementary strong switching field Es �
1
2
�Es�r; z�eiksz−iωs t � c:c:� that coherently couples levels j2i

and j4i at frequency ωs and wave vector ks. Using a classical
description for the fields and neglecting the effects of the
weak probe beam in the dynamics of both the switching
and control fields, the optical beam propagates according to
the wave equation under the paraxial approximation as

ikp∂zEp �
1

2
∇2

⊥Ep �
1

2ε0c2
∂2t Pp; (1)

where Pp is the polarization resulting from the interaction of
the fields with the atomic medium, defined as Pp �
ημ31ρ31ei�kpz−ωpt� � c:c: with η being the atomic density, μij
the dipole moment of the transition jii → jji, and ρij the el-
ements of the density-matrix operator ρ. To obtain an analytical
expression for the polarization term, we address the dynamics of
the atomic populations described by the master equation

_ρ � i
ℏ
�ρ; Ĥ � − Γ̂�ρ�

2
; (2)

with H being the Hamiltonian of the system and given by

Ĥ �
X4
i�1

ℏωijiihij −
ℏ
2
�Ωpe−iωpt σ̂31

�Ωce−iωc t σ̂32 �Ωse−iωs t σ̂42 �H:c:�; (3)

where the Ωi are the Rabi frequencies for the transitions de-
fined as Ωp � μ31Ep∕ℏ, Ωc � μ32Ec∕ℏ, and Ωs � μ42Es∕ℏ
and σ̂ij � jiihjj is the atomic projection operator. We have also
introduced the Lindblad superoperator Γ̂�ρ� that describes the
relaxation and dephasing processes in our system. Using the
above definitions, Eq. (1) becomes

i
1

kp
∂zΩp �

1

2k2p
∇2

⊥Ωp � χpΩp � 0; (4)

where the susceptibility is defined as

χp �
ημ231
ε0ℏΩp

ρ31: (5)

Assuming an instantaneous optical response, the equations
describing the optical media and the field propagation can be
decoupled by considering that the system attains a steady-state
solution _ρ � 0. Neglecting the rapid oscillating terms by taking
the rotating-wave approximation [32], Eq. (2) can be simplified
[33] and expressed in a convenient matricial form as

Fig. 1. (a) Schematic representation of the N -type four-level atomic
system. A weak probe field drives the transition j1i → j3i with fre-
quency ωp and detuning Δ1 while two strong optical fields, a control
and a switching field, couple j2i → j3i and j2i → j4i with frequencies
ωc and ωs and detunings Δ2 and Δ3, respectively. Also included are
the decoherence rates γij , describing relaxation processes between two
states. Comparison between the deduced simplified model (solid line)
and the numerical results (circles) including losses for the real part of
the susceptibility, both for the (b) linear term V as a function of jΩsj
and (c) the nonlinear term G as a function of jΩpj. For these results,
we have used jΩ0

c j � 4 and the detuningΔ � −30, and in (c), we have
additionally considered jΩ0

s j � 4.
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_ρ � �M 0 �Mp�ρ; (6)

where ρ is a vector containing the coefficients ρij of the density
matrix and where M 0 and Mp are matrices describing the
Ωp-independent and -dependent parts of the dynamical equa-
tion for ρ, respectively. Then, since both the control and the
switching field are much stronger than the probe field (i.e.,
jΩpj ≪ jΩsj; jΩc j), the density-matrix elements can be ob-
tained iteratively as ρij � ρ�0�ij � ρ�1�ij � ρ�2�ij � ρ�3�ij �….
Applying this expansion to Eq. (6), it is easy to obtain that
the nth step of the density matrix should satisfy

M 0ρ�n� � −Mpρ�n−1�: (7)

Considering the ground state as the zeroth order solution
(i.e., ρ�0�11 � 1, ρ�0�ij � 0 if i or j ≠ 1), Eq. (7) yields

ρ�1�31 � AΩp;

ρ�2�31 � 0;

ρ�3�31 � BjΩpj2Ωp; (8)

where the expressions for A and B are functions of the control
and switching field amplitudes jΩc j and jΩsj, the decoherence
rates γij (accounting the relaxation and dephasing processes
from state jii to the state jji). The single-photon detunings
between the transition frequencies and those of the optical
fields are given by Δ13 � ωp − ω31, Δ23 � ωc − ω32, and
Δ42 � ωd − ω42 ≡ Δ2, with ωij � ωi − ωj. While the full ex-
pressions for these quantities are too cumbersome to be written
here, a simplified limit can still be obtained. Neglecting the
dephasing processes between the two ground states and
considering that γ32 � γ31 � γ42 � γ41 � γ for sufficiently
large and equal detunings, i.e., Δ1 � Δ2 � Δ ≫ γij, Ωc;p,
we obtain that

ρ31 ≈ −
jΩsj2

2Δ�jΩc j2 � jΩsj2�
Ωp �

jΩsj2
2Δ�jΩc j2 � jΩsj2�2

jΩpj2Ωp:

(9)

Finally, introducing the new variables z 0 � kpz, x 0 � kpx,
y 0 �kpy, and r 0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 02�y 02

p
, the transformation Ω 0

p;s;c�
Ωp;s;c∕γ, Δ 0

1;2�Δ1;2∕γ, and the coefficient κ � ημ231∕�ε0ℏγ�,
and dropping the primes, we obtain the dimensionless gener-
alized nonlinear Schrödinger equation describing the evolu-
tion of the probe field as

i∂zΩp �
1

2
∇2

⊥Ωp � V �r�Ωp − G�r�jΩpj2Ωp � 0; (10)

where the effective linear coefficient is expressed as

V �r� � −
κjΩsj2

2Δ�jΩc j2 � jΩsj2�
; (11)

while the nonlinear term is associated with a self-Kerr effect and
given by

G�r� � −
κjΩsj2

2Δ�jΩc j2 � jΩsj2�2
: (12)

The four-level scheme here considered can be implemented
with a multitude of atomic systems. For an example, we
can consider the hyperfine structure of the D line of 87Rb,
assigning the levels j1i, j2i, j3i, and j4i to the levels

6S1∕2�F�1�, 6S1∕2�F�2�, 6P1∕2�F�2�, and 6P3∕2�F�1�,
respectively. Using realistic physical parameters [34], the
dipole matrix elements are μ13 ≃ 2.11 × 10−29 Cm, μ23≃
1.26 × 10−29 Cm, and μ24 ≃ 1.79 × 10−30 Cm and the decay
rates are γ31 � γ32 � γ42 � γ41 ≃ γ and γ21 ≃ 10−8γ (with
γ � 36 × 106 s−1). Also, we consider the wavelengths of the
optical fields to be λp ≈ λc � 795 nm and λs � 780 nm and
consider a fixed atomic concentration η � 1015 cm−3.

Using these values and recovering the definition of Eq. (5),
we plot the dependence of the real part of χp on the probe and
switching field amplitudes for fixed detunings Δ1 � −30γ and
Δ2 � −30γ, computed numerically from the steady state of the
density matrix. In Figs. 1(b) and 1(c), we observe a direct com-
parison between our model obtained from the perturbative
approach and the numerical data including losses for both
the linear and nonlinear terms of Eq. (10). Our model provides
an excellent fit for relatively low values of Ωp with small
discrepancies occurring at larger values, as we breakaway
from the weak-field assumption (i.e., jΩpj ≪ jΩsj; jΩc j) and
correspond to higher-order nonlinearities [35,36]. Still, the
relative error between our model and numerical calculations
is below 3% for the parameter range considered here.
We have also found numerically that Refχpg ⪅ 102 Imfχpg
for the physical parameters considered here, allowing us to
safely neglect the losses for sufficiently small propagation
distances [30,35].

The possibilities offered by this system to study the subject
of light fluids are nontrivial, as it allows not only control of the
strength of the nonlinear parameter but also provides a highly
tunable spatial modulation of the linear refractive index. In
particular, we are interested in the case of a spatially uniform
control field jΩc�r�j � jΩ0

c j and a modulated switching
field jΩs�r�j � jΩ0

c j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f �r�p

, where f �r� is a small spatially
dependent perturbation. Expanding V and G to the first order
in f , we obtain

V �r� � −
κ

4Δ

�
1� f �r�

2

�
; (13)

G � −
κ

8ΔjΩ0
c j2

: (14)

In the following section, we use this model to explore the
superfluidic signatures in a fluid of light.

3. SUPERFLUID LIGHT IN A FOUR-LEVEL
ATOMIC MEDIUM

First, we consider the scattering of a plane wave by a localized
linear defect, a problem widely studied in the contexts of BECs
and in the hydrodynamic interpretation of light [5,6,11,12,37].
Taking the Madelung representation

Ωp � jΩ0
pjeiϕ�x�; (15)

Equation (10) can be rewritten into two coupled hydrody-
namic-like equations:

∂zρ� ∇�ρv� � 0; (16)
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∂zv� �v · ∇�v � −∇
�
V � Gρ� ∇2ρ1∕2

ρ1∕2

�
; (17)

where the fluid velocity and density are defined as v � ∇ϕ and
ρ � jΩ0

p j2, respectively. At this point, it is noteworthy that the
density ρ is proportional to the light intensity, while the veloc-
ity v is associated with an incidence angle of the probe beam
relative to the optical axis z [6]. According to this interpreta-
tion, we assume that at z � 0, the probe field is given by a
plane wave as

Ωp�r; 0� � jΩ0
pjeivx ; (18)

which corresponds to a fluid moving with velocity v, and that
the switching field has a Gaussian-shaped defect on a constant
background that can be expressed as

f �r� � δ exp

�
−
r2

2σ2

�
: (19)

Provided that the defect is relatively small, the scattering
process results in elementary excitations with small amplitude
on top of the initial state [38] that follow the well-known
Bogoliubov dispersion relation

ωBog�k⊥� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥

�
k2⊥
4
� GjΩ0

p j2
�s
: (20)

In this framework, two regimes have been identified in the
literature [6] depending on the value of the wavevector k⊥
compared with the healing length ξ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕�GjΩ0

p j2�
q

: large

momentum excitations (with k⊥ξ ≫ 1) follow a parabolic

dispersion relation with ωBog�k⊥� ≈ k2⊥
2 , typical of single-

particle behavior, whereas small momentum excitations (with
k⊥ξ ≪ 1) follow a sonic dispersion relation with

ωBog�k⊥� ≈ csk⊥, where cs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GjΩ0

p j2
q

is the velocity of

sound, typical of a collective response. Thus, and according
to the Landau criterion, the light fluid behaves as a superfluid
for sufficiently small velocities v < cs [6,7,17].

Figures 2(a) and 2(b) show the results of the numerical sim-
ulations for the values v ≈ 2.0cs and v ≈ 0.5cs, respectively. The
asymptotic behavior after the transient has passed are shown in
Figs. 2(c) and 2(d). The occurrence of the two regimes de-
scribed above can be identified: for flows at supersonic regime,
we observe the characteristic Mach–Cerenkov cone [23], while
for the sub-sonic regime, we notice very small fluctuations
of the density upstream the defect that correspond to the fric-
tionless flow of the light fluid around the defect [5,6]. For this
simulation, we have used the parameters Δ � −30 and jΩ0

c j �
jΩ0

s j � 4 and for the defect we have chosen the values δ �
0.01 and σ � 5. Also, we have considered the amplitude of
the probe field jΩ0

p j � 1. We have checked numerically that
these results hold, even when considering the loss terms pre-
viously neglected, thus confirming numerically that this super-
fluidic signature could in principle be observed experimentally.

While the numerical results presented here were already pre-
dicted for other nonlinear materials [6,39], we foresee that the
optical media here introduced could offer different experimental
possibilities. In particular, using an atomic gas should allow us to
observe an optomechanical signature of the superfluid flow of
light as proposed in Ref. [19], both in obstacles and defects that
can be embedded in the media or in the switching optical field
itself, an idea that we will explore in a separate work.

Another interesting property of this medium is that it allow us
to reach larger values for the nonlinear refractive index. For exam-
ple, for the simulation considered in this section, we obtain a non-
linear refractive index of the order of Δn ≈ 3 × 10−3, at least one
order of magnitude larger than the optical media typically used
[6,19,39]. As we are interested in the low-frequency modes asso-
ciated with the sonic dispersion, we need to consider propagation
distances sufficiently large to support a full period of oscillation for
these modes, i.e., the minimum propagation distance should sat-
isfy zmin ≫ λp∕Δn [39]. Consequently, higher nonlinear param-
eters reduce the propagation distance from the decimeter to the
centimeter range, which can constitute an advantage in experi-
mental characterization of the superfluidic behavior of light [39].

4. SUPERFLUID PROPERTIES OF LIGHT IN
CONNECTED GEOMETRIES

When confined in connected geometries, the existence of
persistent currents or supercurrents is a manifestation of the

Fig. 2. Results for the numerical simulation of the scattering of a
plane wave of initial condition Ωp � exp�ivx� by a defect, both in
(a) the supersonic regime v ≈ 2.0cs and (b) the superfluid regime
v ≈ 0.5cs . The evolution of light fluid jΩp�z�j can be observed in
the planes taken at increasing propagation distance z. The small defect,
created by a Gaussian spatial profile with parameters δ � 0.01 and
σ � 5, is also represented schematically by the dark cylindrical surface.
Details of the asymptotic transverse intensity profiles of the probe
beam intensity jΩpj are presented both for (c) the supersonic regime
and (d) the superfluid regime, for the same numerical simulations,
taken at kpz � 2500.
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dissipationless flow of a superfluid across a defect. In this sec-
tion, we will establish the optical analogue of this phenomenon
by using the switching optical field to create a linear potential
that can effectively trap an optical beam with orbital angular
momentum in a connected geometry.

We assume that initially the intensity distribution for the
probe beam can be approximated by

Ωp�r; θ� � jΩ0
pj exp

�
−
�r − r0�2

w2

�
exp�ilθ�; (21)

which corresponds to the expression of a perfect vortex beam in
polar coordinates, a profile currently realizable experimentally
[40]. Here, r0, w, and l are, respectively, the radius, the width,
and the angular momentum of the beam. According to the hy-
drodynamic interpretation, Eq. (21) describes the flow of a
light fluid in a connected geometry with velocity v0 ≡ l∕r0
and density ρ0 ≡ jΩ0

pj2. Also, the intensity distribution of
the switching field is

f �r; θ� � I exp

�
−
�r − r0�2

w2
f

�
� U �r; θ�; (22)

which determines the shape of the linear trapping potential
V �r�, according to Eq. (13). The first term in Eq. (22) de-
scribes a ring-shaped potential well of depth I that confines
the vortex beam, while the second term corresponds to a po-
tential barrier, described by U �r; θ�, that will be used to probe
the supercurrent state. Following the approach proposed in
Ref. [41], we consider that the barrier size is much larger than
the healing length, allowing us to adopt the hydraulic approxi-
mation [41] and neglect the Bohm potential in Eq. (17).
Taking r � r0 and z � 0, we obtain a simplified one-
dimensional model for the stationary flow of light in the form
of a Bernoulli equation as

1

2
v�θ�2 � Gρ�θ� � U �θ� � v20

2
� Gρ0; (23)

where v0 and ρ0 are, respectively, the velocity and the density
sufficiently far away from the barrier, corresponding to initial
conditions set by Eq. (21).

The barrier potential forces a decrease in the density (and
consequently, of the velocity of sound), while the velocity of
the fluid increases. According to the Landau criteria, if the
velocity of sound drops below the velocity of the fluid (or
equivalently, if the velocity of fluid exceeds the velocity of
sound), the fluid of light enters a dissipative regime. This
occurs when the barrier reaches a value of the potential
Umax at which the velocity of sound coincides with the veloc-
ity of the fluid of light. Also, as we have an inhomogeneous
radial density profile, a small correction factor to the sound
speed should be taken into account [42,43]. Here, we use
the reduction by a factor

ffiffiffi
2

p
predicted for harmonic chan-

nels. Then using the corrected sound velocity, we have that
at θb

c 0s�θb� �
cs�θb�ffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρ�θb�

2

r
: (24)

This defines a critical value for the velocity at the barrier
[43], which, together with Eq. (23) and the continuity condition

imposed by Eq. (16), can be used to obtain a threshold value
for the barrier potential

Umax �
v20
2
� Gρ0 −

5

4

� ffiffiffi
2

p
Gρ0v0

�
2∕3

: (25)

The existence of persistent currents was investigated using
numerical simulations that consider a perfect vortex probe
beam with initial conditions jΩ0

pj � 1.0, r0 � 600, w � 40,
and l � 5. We have also considered that jΩ0

s j � jΩ0
c j � 4

and that f has a depth I � −0.1, with the same radius of
the probe beam and width wf � 50. The barrier has a
Gaussian shape according to Eq. (19), centered at r � r0
and θ � 0 and with parameter σ � 200. The resulting linear
trapping potential is schematically illustrated in Fig. 3. The re-
sults of the simulations are shown in Fig. 4 for δ1 � 0.002 [see
Fig. 4(a)] and for δ2 � 0.004 [see Fig. 4(b)], corresponding to
maximum values of U �r� below and above the threshold value
Umax, respectively. Although the intensity plots in Figs. 4(a)
and 4(b) do not allow us to clearly identify the two regimes
(the superfluid and dissipative regimes), it is possible to inves-
tigate them by analyzing the averaged current

J ≡
1

2i

Z
2π

0

�Ω�
p∂θΩp − Ωp∂θΩ�

p �drdθ:

The initial current at z � 0 is J � lN 0, with N 0 given by
N 0 �

R jΩp�0�j2drdθ. For sufficiently long propagation dis-
tances and above the threshold value (dissipative regime), we
should observe a decay of the current, whereas below the critical
value (superfluid regime), the averaged current should be con-
stant and remain equal to the initial value. This is confirmed by
the numerical results presented in Fig. 4(c), where the persis-
tent current can be observed when the maximum of the barrier
is below Umax [see Fig. 4(c)(i)], in contrast to the decay ob-
served above the threshold [see Fig. 4(c)(ii)].

Persistent currents are a manifestation of the superfluidic
behavior of light associated with the defocusing nonlinearity.
Indeed, the numerical results without the nonlinear term
exhibit periodic oscillations, commonly observed in these

Fig. 3. Schematic illustration of the linear trapping potential used
in the simulations where it is possible to identify the ring-like potential
as well as the local barrier potential (dashed line). In this figure, the
height of the Gaussian-shaped barrier was exaggerated tenfold to high-
light the distortion imposed by the barrier on the ring potential.
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systems [44] and associated with the Cherenkov synchronism
between the obstacle and the fluid [Fig. 4(c)(iii)]. This contrasts
with the case with the nonlinear terms that unveils persistent
currents that exhibit either no decay at all [see Fig. 4(c)(i)] or a
quantized decay from a state with l � 5 to another with l � 2
[see Fig. 4(c)(ii)].

This phenomenology has been extensively studied in con-
text of superfluids and BECs and is associated with the particu-
lar superfluidic properties of the system [13,45,46]. Within the
context of our work and of the fluid of light as an analogue
system, the conservation of the current in the presence of a
barrier can be associated with a state of dissipationless flow
of light, which is a characteristic signature of superfluid systems
known as a persistent current.

5. CONCLUSIONS

In this work, we have proposed an N -type four-level atomic
system to explore the superfluid properties of light. Following
a perturbative approach, we derived an effective generalized
nonlinear Schrödinger equation for the propagation of a weak
probe optical beam. The effective model includes linear and
nonlinear terms that can be spatially modulated through the
choice of appropriate additional control and switching
optical fields.

Focusing on the context of the superfluid properties of
light, we have shown that the versatility of these systems
can be used to extend beyond the already reported phenomena.
Introducing the hydrodynamic description of light, we have
investigated the dynamics of an optical vortex beam confined
into a nontrivial connected geometry. We have observed
numerically that the fluid of light undergoes a dissipationless
motion, even in the presence of a potential barrier, which
we found to be associated with a superfluidic regime of light,
thus constituting evidence of an optical analogue to persistent
currents.

In conclusion, atomic optical media constitute a nontrivial
addition to the field of optical analogue, especially due to its
unique tunable optical properties. This can present new oppor-
tunities, allowing the realization of experimental setups that
extend beyond the capabilities of other media previously con-
sidered. Furthermore, these media offer enhanced nonlinear
parameters that reduce the propagation distances usually re-
quired to access the low-frequency modes, at which the super-
fluidic signatures occur. Finally, it is also noteworthy that this
study can be extended beyond the effects explored in this paper.
We foresee that interesting results could be observed in the
nonperturbative approach, as established in Ref. [35], either
in the dynamics of the probe beam itself, due to the large quin-
tic nonlinear properties of the optical media, or in the mutual
interaction between the probe, the control, and the switching
fields. All this versatility could in principle be used to establish
new directions of research and support further analogies
between light fluids and many-body quantum systems.
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