
Computers & Graphics 108 (2022) 74–85

i
s
r
m
l
A
o
s
l
i
r

a
d
e
b

r

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on RAGI

Interactive VPL-based global illumination on the GPU using fuzzy
clustering
Arnau Colom a,∗,1, Ricardo Marques b,2, Luís Paulo Santos c,d,3

a Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain
b Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
c Departamento de Informática, Universidade do Minho, Braga, Portugal
d HASLab, INESC TEC, Portugal

a r t i c l e i n f o

Article history:
Received 18 July 2022
Received in revised form 7 September 2022
Accepted 18 September 2022
Available online 24 September 2022

Keywords:
Ray tracing
Global illumination
Interactive rendering
GPU

a b s t r a c t

Physically-based synthesis of high quality imagery, including global illumination light transport
phenomena, results in a significant workload, which makes interactive rendering a very challenging
task. We propose a VPL-based ray tracing approach that runs entirely in the GPU and achieves
interactive frame rates while handling global illumination light transport phenomena. This approach
is based on clustering both shading points and VPLs and computing visibility only among clusters’
representatives. A new massively parallel K-means clustering algorithm, enables efficient execution
in the GPU. Rendering artifacts, that could result from the piecewise constant approximation of the
VPLs/shading points visibility function introduced by the clustering, are smoothed away by resorting to
an innovative approach based on fuzzy clustering and weighted interpolation of the visibility function.
The effectiveness of the proposed approach is experimentally verified for a collection of scenes, with
frame rates larger than 3 fps and up to 25 fps being demonstrated.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Physically-based rendering of high quality imagery, includ-
ng global illumination light transport phenomena, results in a
ignificant workload, which more often than not implies long
endering times. Over the last decade, however, many develop-
ents have been proposed both at the hardware and algorithmic

evels, which in many cases allow for interactive frame rates.
chieving interactivity requires clever algorithmic exploitation
f some characteristics of radiance distribution within a typical
cene, such as, for example, the local smoothness of indirect
ighting. These allow for faster estimations of the light transport
ntegral, hopefully without a perceptually relevant impact on the
endered images.

This work’s main goal is to enable global illumination at inter-
ctive frame rates, therefore contributing to a more thorough un-
erstanding of how some simplifications can be introduced in the
stimation of the light transport integral and how these impact on
oth performance and perceived image quality. Specifically, we

∗ Corresponding author.
E-mail addresses: arnau.colom@upf.edu (A. Colom),

icardo.marques@ub.edu (R. Marques), psantos@di.uminho.pt (L.P. Santos).
1 Research Assistant.
2 Serra Húnter Fellow.
3 Assistant Professor.
ttps://doi.org/10.1016/j.cag.2022.09.008
097-8493/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
address scenes with static geometry/materials and lighting con-
ditions; only the viewpoint is allowed to change, thus supporting
interactive walkthroughs (we will show when analyzing experi-
mental results that fully dynamic scenes can be easily supported).
The presented solution only supports diffuse materials. However,
as discussed in the last section, extending the method to handle
glossy materials is feasible.

Enabling global illumination at interactive frame rates has
driven the main decisions made when designing the proposed
approach. The global illumination requirement led us to select
ray tracing as the visibility evaluation algorithm, since adjusting
sampling rates and integrating secondary light transport phe-
nomena is straightforward. The interactivity requirement led us
to establish as a secondary goal that the entire algorithm runs on
a GPU, completely avoiding costly memory transfers between the
devices. We use NVidia’s OptiX to trace all primary and secondary
rays [1].

An efficient use of the GPU’s execution model requires the
algorithm to follow a quite uniform control flow among a massive
number of threads and to exhibit coherent memory accesses. This
regularity can only be attained, up to a certain degree, if the
trees of rays are traversed breadth first, rather than depth-first
as on a typical canonical ray traced based rendering algorithm.
The proposed algorithm is thus organized on multiple passes,
each corresponding to a very specific task. One such pass entails
finding which scene points are relevant to the current view point,
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.cag.2022.09.008
http://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2022.09.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:arnau.colom@upf.edu
mailto:ricardo.marques@ub.edu
mailto:psantos@di.uminho.pt
https://doi.org/10.1016/j.cag.2022.09.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85

a
t

r
s
e
f
a
r
t
e
m
p
r

V
t
a
t
a
G
t
S
S
c
c

s
t
a
a
s
p
T
t
f
b
S
e
r

t
t
w
l
o

2

2

o
p
t

L

s determined by primary or specular rays shot from the camera;
hese scene points are referred to as shading points (SP).

Additionally, global illumination requires simulation of indi-
ect lighting. Evaluating this by resorting to extensive hemisphere
ampling implies shooting an unsustainable number of incoher-
nt rays, which would compromise the interactivity requirement
or all but the simplest scenes and lighting conditions. Using an
lgorithm based on VPLs was thus an early design decision. With
espect to hemispherical sampling, using VPLs has two advan-
ages: (i) separating the tracing of the VPLs from the visibility
valuation stage of the rendering algorithm allows for a much
ore regular workload, and (ii) the re-utilization of the light
aths captured by the VPLs across all shading points dramatically
educes the number of visibility rays to be shot.

Notwithstanding, tracing shadow rays between all SPs and all
PLs still implies a huge workload. As demonstrated by some of
he results described in Section 2.2, indirect lighting’ smoothness
llows for approximated visibility estimation. We leverage on
hese results and interactively cluster both SPs and VPLs, using
massively parallel K-means clustering algorithm running in the
PU. Shadow rays are traced only between SP clusters’ represen-
atives and VPL clusters’ representatives. Indirect lighting for each
P is evaluated using the visibility results for the corresponding
P cluster representative; geometric and BRDF data, however, will
orrespond to the actual shading point and the appropriate VPL
luster representative.
Clustering as described above corresponds to a piecewise con-

tant approximation of the VPLs/shading points visibility func-
ion. This approximation introduces highly perceivable artifacts,
s shown in the following sections. These artifacts are perceptu-
lly more relevant in regions of the image with intricate indirect
hadows, due to the fact that global and local lighting are not ex-
licitly handled in different manners by the proposed algorithm.
hese artifacts are smoothed away by allowing each SP to belong
o F clusters, rather than a single one. On the rendering pass, and
or each SP, a VPL cluster representative visibility is evaluated
y resorting to weighted interpolation among all the clusters the
P belongs to. Fuzzy clustering and weighted interpolation are
fficiently implemented in the GPU allowing for interactive frame
ates.

This paper’s main contributions are as follows:

• rendering approach that allows interactive VPL-based global
illumination with ray tracing in the GPU;
• massively parallel interactive fuzzy K-Means algorithm,

which exploits 3D neighborhood information in the form of
a regular grid to speedup searching for clusters’ centroids;
• efficient handling of soft shadowing artifacts by resorting to

fuzzy clustering and weighted visibility interpolation, rather
than explicitly handling separately global and local lighting
on a GPU non-efficient manner.

The remaining of this article is structured as follows: in Sec-
ion 2 we provide the necessary background, present the state of
he art and position our contribution with respect to the existing
orks. In Section 3 we present the details of our approach. Fol-

ows a thorough set of results (Section 4), and finally we present
ur conclusions and future work in Section 5.

. Background

.1. Rendering equation and virtual point lights

In the following, we provide the basic theoretical background
n VPLs-based rendering necessary for the understanding of our
roposed approach. For a more detailed explanation please refer
o [2]. The rendering equation [3] formulates the light transport
75
across a scene. It states that the outgoing radiance Lo at a given
surface point p towards the direction ωo is given by:

Lo(p, ωo) = Le(p, ωo)+ Lr (p, ωo) , (1)

where Le(p, ωo) is the self-emitted radiance from point p towards
the direction ωo, and Lr (p, ωo) is the light reflected at point p
towards ωo. Lr can be further developed as follows:

r (p, ωo) =
∫

Ω+

Li(p, ωi) ρ(p, ωi, ωo) cos(np, ωi) dωi , (2)

with Ω+ representing the unit hemisphere around the normal
np at the surface point p, Li(p, ωi) being the incident radiance at
p from the direction ωi, ρ(x, ωi, ωo) being the bi-directional re-
flectance distribution function (BRDF) and cos(np, ωi) is the cosine
of the angle between np and ωi.

Eq. (2) is defined as an integral over the hemisphere. Using the
change of integration variable given by:

dωi =
cos(np′ ,−ωi)
∥p′ − p∥2

dp′ ,

where p′ is a surface point with normal np′ , we can re-define
Eq. (2) as an integral over the set A of all the scene surface points
p′ yielding:

Lr (p, ωo) =
∫
A
Li(p, ωi) ρ(p, ωi, ωo)G(p, p′)V (p, p′) dp′ , (3)

where V is the visibility function, and G is the geometry term
defined as:

G(p, p′) =
cos(np, ωi) cos(np′ ,−ωi)

∥p′ − p∥2
. (4)

In general, both the hemispherical and the area formulations
of the rendering equation (Eqs. (2) and (3), respectively) have
no analytic solution. Therefore, its value is typically computed
using numerical approximations. The class of many light rendering
methods, based on the seminal paper of Keller [4], tackles the
problem of providing a solution to the rendering equation by
resorting to virtual point lights (VPLs). The VPLs are generated by
stochastically tracing particles from the light sources towards the
virtual scene. At each intersection point, a new VPL is created,
capturing the reflected light at that intersection point towards the
scene. Using the resulting VPLs, the reflected radiance at a given
point p of the scene is then approximated as:

L̂r (p, ωo) =
N∑
j=1

Ij(p) ρ(p, ωi, ωo)G(p, pj)V (p, pj) , (5)

where N is the number of used VPLs, Ij(p) is the contribution of
the jth VPL to the illumination at point p and pj is the position of
the jth VPL.

2.2. Related work

Indirect lighting is typically locally smooth, in particular over
diffuse surfaces. VPL-based rendering solutions have been ac-
celerated by leveraging local smoothness. In general, these ap-
proaches cluster VPLs and/or shading points using some similarity
metric. Visibility evaluation between shading points and VPLs is
then performed using each cluster representative point, rather
than the original data. This results in a drastic reduction on the
number of computations and, consequently, on rendering time. In
the following, we provide an overview of the most representative
approaches. For more details, please refer to [2].

Lightcuts [5] were the first proposal to exploit VPLs hierar-
chical clustering according to some similarity metric, therefore
allowing for rendering times that scale sub-linearly with the

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85

n
t
t
L
a
i
r
m
b
i
i
g
T
d
a
h

t
c
v
V
M
m
t
a

m
a
l
o
T
b
u
t
p
i
(
d

w
c
a
v
c
i
t
l

l
c
c
u
p
t
r
u
u
l
w

t
f
r
i
i
t

p
a
u
c
h

(
t
m
s
q
u
a
s
A
t
l

o
b
t
w
S
e
a
i
i
m
a

p
i
m
f
u
i

C
T
l

umber of VPLs. The tree root node consists in a single clus-
er grouping all VPLs and the leaves are the individual VPLs
hemselves. Inner nodes represent different levels of clustering.
ighting local adaptation is achieved by generating for each SP
cut of the tree graph, based upon an estimate of the render-

ng error. Visibility is then evaluated between the SP and the
epresentative VPLs for the clusters lying along the cut. With
ultidimensional lightcuts [6] this proposal is extended to a
idirectional approach, where a hierarchy of pairs of VPLs and SPs
s built. Cuts are then generated at rendering time, resulting in an
mplicit clustering of VPLs and SPs. By clustering bidirectionally
reater efficiency and scalability is achieved than with lightcuts.
hese methods did not target GPUs and are far from interactive
ue, to a great extent, to the generation of different cuts per pixel
nd to the sophisticated perceptual criteria used to both build the
ierarchy and generate the cuts.
Dong et al. [7] proposed a GPU approach based on clustering

he VPLs and aiming towards interactive frame rates. VPLs are
lustered using K-means and each cluster is used to create a
irtual area light (VAL). Visibility between shading points and
ALs is evaluated using GPU-efficient Convolution Soft Shadow
aps (CSSM). Although interactive frame rates are achieved, the
ethod’s efficiency is based on the utilization of low resolu-

ion CSSMs, which means that thin indirect shadows suffer from
liasing and contact shadows are not well resolved.
Hašan et al. [8] formulate the VPL lighting problem as a

atrix, with rows corresponding to individual shading points
nd columns corresponding to different VPLs. Computing indirect
ight for a given shading point amounts to evaluate all elements
f the corresponding row and then summing across the row.
he Matrix Row–Column Sampling (MRCS) algorithm clusters
oth shading points and VPLs. Rows are stochastically selected
sing stratified uniform sampling. VPLs are then clustered, on
he CPU, using information from the reduced set of shading
oints. Visibility among the clustered shading points and VPLs
s evaluated in the GPU using shadow maps. This is a hybrid
CPU+GPU) non-interactive algorithm, requiring several costly
ata transfers between the devices.
LightSlice [9] is a non-interactive CPU-oriented algorithm,

hich builds upon MRCS [8], but significantly improves on it by
onsidering both global and locally relevant VPLs. SPs and VPLs
re independently clustered, the later capturing globally rele-
ant lighting information. For each SPs’ cluster, the global VPLs
lustering is further refined, capturing locally relevant lighting
nformation. Visibility is evaluated by ray tracing only between
he shading point clusters’ representatives and the associated
ocal VPL clusters.

Davidovič et al. [10] also build on [8] and handle global and
ocal lighting in two distinct, additive, steps. Global lighting is
omputed similarly to MRCS, but resorting to a more complex
lustering algorithm and similarity metric. Local lighting is based
pon the generation of a new, view dependent, set of local lights
er tile of shading points. For each tile a number of rays are
raced into the scene and the tile’s local lights are created at the
espective hit points, which are connected to the global lights
sing importance sampling. The tile’s shading points are shaded
sing this set of local lights, assuming full visibility. This locally
it image is then composited with the global lighting using a
eighted sum.
Jarabo et al. [11] propose a fully bidirectional hierarchical clus-

ering of both the M SPs and the N VPLs. Two initial hierarchies,
or the SPs and the VPLs, are initially built and combined at
endering time. Inspired on hierarchical radiosity methods, a cut
s generated from the bidirectional hierarchy and the final image
s rendered from this cut. The integration of the clustering along

he two dimensions allows for O(log(M + N)) rendering times.

76
Daqi et al. [12] use a lighting grid hierarchy (LGH), built in real
time in the GPU, to approximate lighting from many VPLs. The
contribution of each VPL is distributed to the eight vertices of the
voxel containing it. A grid light is then generated for each vertex
with non-zero power and placed at the geometrical center of the
VPLs contributing to it. The grid lights are rasterized as coarse
spheres to approximate their non-shadowed contribution to each
SP. The approximated contribution used to build a probability
distribution over the grid lights for each SP. k grid lights are then
stochastically selected, per SP, and their visibility is evaluated by
shooting shadow rays. The average the visibility of these k sam-
les is used as a shadow ratio estimator per SP. These estimators
re filtered in screen-space to reduce high-frequency noise and
sed for shading against the previously evaluated non-shadowed
ontributions. Interactive frame rates are demonstrated with this
ybrid rasterization/ray tracing approach.
Tatzgern et al. [13] propose using Stochastic Substitution Trees

SST), an hierarchical approach inspired by lightcuts, but with
he lighting associated with inner nodes approximated by a nor-
al distribution. Clusters’ representatives within a cut are then
tochastically sampled, trading structured artifacts by high fre-
uency noise. The proposed method runs entirely in the GPU,
sing an efficient parallel algorithm to build the SST and lever-
ging the dedicated ray tracing modules for VPL tracing and SST
ampling. A rasterization pass generates first hit from the camera.
dditionally, recurrent autoencoders are used for denoising and
emporal filtering; these run in the GPU’s tensor cores, further
everaging modern graphics devices computing capabilities.

Our proposal is related to the previously described meth-
ds, in that it clusters both SPs and VPLs. Visibility is evaluated
etween SP clusters’ representatives and VPL clusters’ representa-
ives, rather than between all SPs and all VPLs, resulting in a huge
orkload reduction. Shading, on the other hand, is evaluated per
P with respect to each VPL cluster representative (Eq. (6)). It runs
ntirely in the GPU, including all ray tracing and clustering steps,
voiding costly memory transfers between devices and enabling
nteractive frame rates. Artifacts due to local lighting are handled
n a GPU efficient manner, by resorting to fuzzy clustering. Our
ethod is entirely ray-tracing based, contrarily to some of the
bove hybrid methods [7,12,13].
Wang et al. [14] originally inspired our approach with their

roposal to use interactive K-means clustering in the GPU. Shad-
ng points are clustered in the context of a caching/interpolation
ethod similar to the irradiance caching [15], but applied to the

inal gathering stage of photon mapping. Final gathering is eval-
ated by hemispherical sampling at the centroids, and irradiance
s interpolated for the remaining points.

Cuomo et al. [16] present a thorough analysis of an hybrid
PU–GPU implementation of the K-means algorithm using CUDA.
hey distinguish two stages that are iterated repeatedly in a
oop until convergence: the labeling stage, where data points are
assigned to clusters and the reduction stage, where new centroids
are computed. The former stage runs entirely in the GPU, whereas
the latter runs on the CPU; this requires, for each iteration, ex-
pensive data transfers between the CPU and GPU address spaces.
For N data points, each with d attributes, a total of N × d CUDA
threads are created. Each computes, per attribute, the square
difference between a data point and a centroid. The squared
Euclidean distance is then computed in parallel per data point
using a parallel reduction algorithm. This process is repeated K
times, once per centroid, and data points are assigned to the
centroid at minimum distance. The parallel square differences
evaluation and parallel reduction for summing only achieve in-
teresting speedups for datasets with large dimensionality, such
as d = 128. Bhimani et al. [17] assess a CUDA K-means imple-

mentation, which also performs the reduction stage on the CPU,

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85

r

o
a

(
d
t
b
r
t
s
c
r
c

3

a
g

Fig. 1. Results when clustering both VPLs and shading points. The top row shows the reference images. The results have been generated with three different
configurations and scenes, trying to find the best trade-off for each one of them: (a) The Conference Room configuration, with 2k VPL clusters and 8k shading
clusters; (b) The Cornell box configuration, with 1k VPL clusters and 20k shading clusters; and (c), The Living Room configuration, with 4k VPL clusters and 8k
shading clusters. The rendering times for (a), (b) and (c) were 106 ms (MSE = 1.80E−3), 162 ms (MSE = 1.10E−3) and 206 ms (MSE = 8.13E−4), respectively. The
eference images required 1715 ms, 2348 ms and 1195 ms respectively.
Fig. 2. A diagram showing our algorithm workflow. The green boxes indicate the part of the algorithm in which rays are traced whereas the yellow ones point out
the steps that are computed in CUDA.
thus implying the same data transfer overheads. Their algorithm
does not evaluate the distance metric in parallel across the data
dimensions, thus they use N threads, i.e., as many as the number
f data points. They do compare the CUDA version with OpenMP
nd MPI implementations.
We cluster SPs and VPLs, each with 6 geometric attributes

3D position and normal), therefore dispensing with the parallel
ecomposition across attributes. Our K-means approach (Sec-
ion 3.3) runs entirely in the GPU, requiring no data transfers
etween the CPU and the GPU. The reduction stage provides a
educed degree of parallelism, since updates to the same cen-
roid require using some access control mechanism, partially
equencializing the workload execution. We use hardware effi-
ient atomic adds, thus minimizing access control overheads. A
egular grid over the centroids, built in the GPU, is used to avoid
omputing distances between each data point and all K centroids.

. Proposed approach

This section provides a detailed description of the proposed
pproach. We start by giving an overview of the rendering al-
orithm in Section 3.1. Section 3.2 presents the most relevant
77
theoretical aspects of our approach to clustering SPs and VPLs.
Then, in Section 3.3, we present the details of our GPU-based
massively parallel implementation.

3.1. Algorithm description

As shown in Fig. 2, our proposed algorithm can be divided in
six main steps:

1. VPLs tracing and creation;
2. VPLs clustering;
3. Generation of the shading points by tracing paths from the

camera;
4. Shading points clustering;
5. Visibility evaluation between representatives of VPLs and

shading points’ clusters;
6. Rendering the final image’s indirect lighting using the

coarse visibility data.

Rendering algorithm. In Step 1 the VPLs are stochastically gener-
ated by shooting light particles from the light sources. Once the
VPLs are scattered over the scene, we cluster them based on their

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85

s

s
s
e
a
r
V
3
p
v
c
s
o
u

S
p
c

L

w
c
i
a

c

(
a
t

d

w
f
a
d
f

Fig. 3. Visualization of the result of clustering 8k VPLs with a varying numbers of VPL clusters. Note that, as the number of cluster increases, the clusters become
maller thus allowing for more detailed information.
patial similarities. Fig. 2 depicts these as two pre-processing
tages since they are performed only once per scene; scene geom-
try/lighting and materials are not allowed to change, thus VPLs
nd the respective clustering can be reused across frames. Each
esulting VPL cluster thus approximates the contribution of all its
PLs. In Step 3 we shoot one primary ray per pixel to collect the
D position and the normal of each shading point. These shading
oints are then clustered in Step 4. In Step 5 we compute the
isibility of each VPL cluster as seen from each shading point
luster. This is achieved by launching shadow rays from each
hading points’ cluster representative towards the representative
f each cluster of VPLs. Finally, the image is rendered in Step 6
sing the information produced in the previous steps.

hading. To render the final image in Step 6 of Fig. 2 we com-
ute the reflected radiance at each shading point p towards its
orresponding pixel direction ωo using the following equation:

˜r (p, ωo) =
∑
c∈CVPL

Ic(p) ρ(p, ωi, ωo)G(p, pc)Ṽ (p, pc; CSP) , (6)

here c iterates over the set CVPL of all VPLs clusters, Ic(p) is the
ontribution of the VPL cluster c to the illumination at point p, pc
s the position of the representative VPL of cluster c , and Ṽ is an
pproximated visibility function between p and pc which resorts

to the visibility information stored in the clusters of shading
points CSP . Using Eq. (6), the most computationally-intensive task
(i.e., the explicit computation of VPLs visibility, which implies
shooting shadow rays to evaluate V) is only performed per each
luster of shading points, while Ṽ , Ic , ρ, and the geometric term G
are evaluated per shading point. As demonstrated by our results,
this approach allows an effective trade-off between efficiency and
image quality.

3.2. Theoretical aspects

3.2.1. Hard clustering
In order to perform clustering of both VPLs and shading points,

a Distance Metric that quantifies similarities between different
data points is required. Given a general surface data point d =
p, n) where p ∈ R3 represents the 3D location of the data point,
nd n the normal at the surface where p lies, the distance between
wo data points d1 and d2 can be defined as:

ist(d1, d2) =

{
|p1 − p2|, if n1 · n2 > nt

∞, otherwise ,
(7)

here nt is an orientation threshold below which dist(d1, d2) is
orced to be ∞. This threshold forces two data points that have
n angle between their respective normals larger than nt to be
istributed into different clusters. This is an interesting feature
or our application case since it is well known that illumination
78
between two surfaces is highly dependent on their mutual ori-
entation. In our experiments, we have empirically found that a
threshold of

√
3/2 (corresponding to the cosine of a maximum

angle of π/6) leads to good results.
Let us now consider we are provided with a dataset D of M

data points, such that D = {dm|m = 1 . . .M}, and with the
number of clusters to generate (K). Then, the first step of the
K-means algorithm is to select a set C = {ck|k = 1, . . . , K }
of K centroids as initial cluster centers. This selection is often
random, but it can also leverage some structure existing in the
data. Follows an iterative phase with two steps: (i) the data points
dm ∈ D are assigned to the nearest centroid ck ∈ C using Eq. (7);
(ii) the set C of K centroids is updated by re-computing the cen-
troids ck based on the attributes of the data points dm assigned to
each cluster. Typically, this process is repeated until a maximum
number of iterations is reached or until C remains unchanged in
two consecutive iterations. At the end of the process, K-means
yields a set of centroids C as well as information regarding to
which centroid ck each data point dm belongs. In this work, we
will assume this information is represented by a vector A of size
M mapping each point dm ∈ D to its respective cluster index
k ∈ {1, . . . , K }.

Fig. 3 shows the results of clustering the VPLs for the Con-
ference Room scene. As expected, the size of the VPL clusters is
reduced as the number of clusters increases. Note however that
the cluster size reduction is not uniform across the scene. Indeed,
areas of the image for which the VPLs’ features change rapidly
(such as, for example, the farthest wall) tend to have smaller clus-
ter sizes, whereas other areas with smoother geometric variations
(such as, for example, the back of the chairs) generally keep a
larger cluster size.

Fig. 4(a) shows the results of clustering the shading points for
the Conference Room scene. It is interesting to note that, due
to the used Distance Metric, the resulting clusters do not group
together data with significantly different normals or 3D positions.
This is a desired feature for our rendering algorithm, since it is
well known that illumination conditions might vary drastically
with the normal and 3D position of shading points. However,
as shown in Fig. 5(a), directly using these clusters for rendering
the final image can have negative effects in the image quality.
This is because, for each shading point, the used visibility is that
of the corresponding cluster representative and, for neighboring
shading points belonging to different clusters, the border between
clusters becomes apparent. This problem is efficiently mitigated
using distance-based fuzzy clustering, as proposed in the next
section.

3.2.2. Distance-based fuzzy clustering
In general, clustering techniques can be classified as hard or

fuzzy (aka soft) clustering algorithms. The former are character-
ized by the fact that each data point can only belong to a single

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85

g

i
i

r

w
c
b
a
l
h
c
e
s

V

Fig. 4. Visualization of the different tested clustering techniques when clustering the shading points (3D spatial clustering). Note that the border between neighboring
clusters is progressively faded from left to right. The corresponding rendering results are shown in Fig. 5.
Fig. 5. The effect of hard clustering (a), fuzzy clustering (b) and distance-based fuzzy clustering (c) on the final rendered image. Comparing (a) and (b) allows
assessing the improvement brought by fuzzy clustering with respect to the typical hard clustering. The comparison between (b) and (c) shows the improvement
brought by distance-based weighting of the nearest clusters.
t
p
s

w

w

I
p

e
U
s
S

cluster, while the latter allow data points to belong to more than
one cluster. The degree of cluster fuzziness can be controlled by
a fuzziness parameter F that determines to how many clusters a
iven data point can belong. Using this approach, the vector A

representing the map between each data point dm and the cluster
ck it belongs to (see Section 3.2.1) becomes a matrix with size
M × F , with M being the number of data points in the dataset D
of points to be clustered. Each row of the A matrix can thus be
nterpreted as a vector Im containing the indexes of the F cluster
ndexes k ∈ [1, . . . , K] to which each data point dm belongs.

When using soft clustering, the approximated visibility Ṽ be-
tween a shading point p and a VPL (or a VPL cluster represen-
tative) pc is given by the average visibility between pc and the
epresentative points pf of all the F clusters to which p belongs,
yielding:

Ṽ (p, pc; CSP) =
1
F

F∑
f=1

V (pf , pc) , (8)

here CSP is the set of shading point clusters containing the F
losest clusters to p. Using F > 1 provides a softer transition
etween neighboring clusters due to the smoothing effect of the
veraging operation in Eq. (8), which makes the clusters’ borders
ess sharp (see Fig. 4(b)). As shown in Fig. 5(b), this approach
as a positive effect in the final image quality, even though
lustering artifacts are still perceivable in the final image. An
fficient solution to this problem is achieved by replacing the
imple average in Eq. (8) by a weighted average given by:

˜ (p, pc; CSP) =
F∑

wf V (pf , pc) , (9)

f=1

79
where wf is a normalized weight assigned to the f th cluster such
hat

∑F
f=1 wf = 1. The weight of each SP cluster f is inversely

roportional to the distance between its representative pf and the
hading point p, such that:

f =
w′f

W
, (10)

here w′f =
(
dist(p, pf)

)−1 cf. Eq. (7), and W =
∑F

f=1 w′f . Such
an approach successfully eliminates the hard borders between
neighboring pixels (see Fig. 4(c)) and allows efficient rendering
of images with high visual quality (see Fig. 5(c)). We empirically
found that using F = 6 provides a good balance between image
quality and computation time.

3.3. GPU implementation

3.3.1. Hard clustering
Algorithm 1 depicts the massively multi-threaded version of

K-means clustering proposed for efficient execution in the GPU.
It is parameterized with: a dataset D (c.f. Section 3.2.1); the
number of clusters to generate (K) and a downsampling factor γ .
n this section we will only consider the case where the fuzziness
arameter F = 1, i.e., hard clustering. The case where F > 1

(i.e., soft clustering) will be treated in Section 3.3.2. Algorithm 1
returns a vector C of K centroids, as well as a matrix A mapping
ach data point to the F cluster indexes to which it belongs.
sing F = 1 results in matrix A becoming a column vector with
ize M . Finally, the role of the variable W will become clear in
ection 3.3.2, and can be overseen at this stage.

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85

i
t
t
o
i
i

o
c
c
m
b
d
w
t
m
w

3

Algorithm 1: K-Means: GPU parallel
input : D (input dataset),

K (number of clusters),
γ (downsampling factor),
F (clustering fuzziness)

output: A (matrix mapping each data point dm ∈ D to a
vector Im of F cluster indexes),
C (vector of K centroids),
W (matrix with inverse distances for each pair

(dm, Im) ∈ A)

/* Downsample the dataset */
1 D ← downsample(D, γ) ;

/* Initialize centroids */
2 C ← initialCentroids(K , D) ;

/* Initialize vector A */
3 A ← [−1] × len(D) ;

4 for i← 1 to iterations do
/* Acceleration structure */

5 G← grid(C) ;

/* Assignment step */
6 do in parallel for ds ∈ D
7 minDist ←∞;

/* Iterate over neighborhood */
8 for ck ∈ neighborhood(ds, C,G) do
9 if dist(ds, ck) ≤ minDist then

10 minDist ← dist(ds, ck) ;

11 A[s] ← k ;

/* Recompute centroids */
12 counter ← value← [0] × K ;
13 do in parallel for ds ∈ D
14 k← A[s] ;
15 atomicAdd(value[k], ds);
16 atomicAdd(counter[k], 1);
17 do in parallel for k← 1 to K
18 C[k] ← value[k]/counter[k] ;

/* Final assignment step */
19 A,W ← clusterAssign(C,D, F) ;

20 return C, A, W

The algorithm starts by downsampling the M points of the
nput dataset D, yielding a reduced dataset D with S points such
hat S ≪ M and D = {ds|s = 1 . . . S} (line 1). This allows
he main loop, which computes the C vector of K centroids, to
perate over a smaller set of data points (i.e., with those stored
n D), therefore saving execution time. The downsampling factor
s given by the parameter γ . Then, a subset of K points of D is
selected as initial centroids and stored in vector C (line 2); this
selection is often random, but it can also leverage some structure
existing in the data. The loop starting at line 4 repeatedly assigns
data points ds ∈ D to the current clusters (lines 6 to 11) and
updates the respective centroids (lines 13 to 18) based on the new
assignment. Finally, when the main loop concludes, the M data
points of the original (i.e., full resolution) dataset D are assigned
to the K final centroids stored in vector C (line 19). In the simplest
case, corresponding to F = 1, each data point dm ∈ D is assigned
to a single cluster ck ∈ C .

Note that the two inner loops at lines 6 and 13 are parallelized
over the S data items d ∈ D. Parallel decomposition, whenever
s

80
possible, is performed over the largest collection of data available,
such that maximum degree of parallelism is made available to the
GPU. In practice, this means that, in most cases, the decomposi-
tion is data parallel over the dataset D instead of C or Im, since
M ≫ K ≫ F , respectively. Another important property of Alg. 1 is
the use of a regular grid G (line 5) creating a partial 3D ordering
ver the centroids in C . The assignment of data points to clusters
an therefore be optimized, in the sense that only the centroids
k in the neighborhood of each data point ds are tested for the
inimum distance (line 8). This neighborhood was selected to
e a cube of 27 voxels centered on the voxel containing the
ata point whose nearest neighbors we wish to find. Finally, we
ould like to emphasize the atomic add operations that are used
o compute the average value (i.e., position and normal) of all
embers of a cluster (line 15), in order to maximize parallelism
hile minimizing overheads associated with shared data updates.

.3.2. Fuzzy clustering

Algorithm 2: Clustering Assignment
input : D (input dataset),

C (vector of K centroids),
F (clustering fuzziness)

output: A (matrix mapping each datapoint dm ∈ D to a
vector Im of F cluster indexes),
W (matrix with inverse distances for each pair

(dm, Im) ∈ A)

1 A← W ← [[]] × len(D) ;

/* Acceleration structure */
2 G← grid(C) ;

/* Final assigning step */
3 do in parallel for dm ∈ D

/* Array F Distances */
4 Rm ← [∞] × F ;

/* Array F centroids indexes */
5 Im ← [−1] × F ;
6 nf ← 0;

/* Iterate over the neighborhood */
7 for ck ∈ neighborhood(dm, C,G) do
8 rm,k ← dist(dm, ck) ;
9 f ← 1 ;

10 while f ≤ nf and rm,k > Rm[f] do f ++;
11 if f≤F then
12 if nf < F then nf ++;
13 for j← nf downto f + 1 do
14 Rm[j] ← R[j− 1] ;
15 Im[j] ← I[j− 1] ;
16 Rm[f] ← rm,k ;
17 Im[f] ← k ;

18 A[m, :] ← Im ;
19 W [m, :] ← 1/Rm ;
20 return A, W

Fuzzy clustering is efficiently implemented in our framework
by considering a fuzziness value F > 1 in the cluster assignment
step of Alg. 1 (line 19). Alg. 2 shows how the data points of the
original dataset D are assigned to the final K clusters ck ∈ C
(line 19, Alg. 1). Its input is set D of data points which must be
assigned to clusters; the vector C of K centroids to which the data
points will be assigned; and the clustering fuzziness factor F . The
output of Alg. 2 is a matrix A mapping each data point dm to its
corresponding cluster indexes; and a matrix W , containing, for
each data point d , the inverse of the distance between d and
m m

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85

a
r
r

r
o
a
c
a
w
o
T
i
d
d
c
c

4

t
s
i
t
i
a

4

f
i
c

Fig. 6. Rendering results for the Living Room scene when clustering shading points only with a varying number of clusters (from approximately 2k clusters to
pproximately 30k clusters). The number in-between parentheses shows the percentage of used clusters with respect to the total number of shading points. The
endering times for (a), (b) and (c) were 319 ms (MSE = 7.42E−4), 349 ms (MSE = 4.54E−4) and 472 ms (MSE = 3.00E−4), respectively. The reference image
endering time was 1195 ms.
t
c
l
s
t
a
6

1
l
b
T
(
m
m
r
c
t
t
a
c

4

t
b
V
i
r
g

u
r
t
t
C
c
u
r

Table 1
Scenes’ characteristics.
Scene Triangles VPL Resolution

CornellBox 1.9M 5000 1024 × 1024
Conference 331k 8000 1024 × 720
LivingRoom 313k 10000 1024 × 720

the representatives of the clusters it belongs to. The algorithm
starts by initializing matrix A (line 1), as well as creating the
egular grid G which acts as an acceleration structure to search
ver C (line 2). The main loop (line 3), executed in parallel for
ll data points dm ∈ D, assigns each dm to the F closest centroids
k ∈ C . To this end, two auxiliary vectors are maintained: Rm, an
rray containing the distances to the F closest centroids found,
hich is initialized at line 4; and Im, an array with the indexes
f the F closest centroids found, which is initialized at line 5.
hen, at lines 7 to 19, we use the regular grid G to efficiently
terate over the centroids ck which are in the neighborhood of
m. At each iteration, we use the distance information in Rm to
etermine whether the current centroid ck is closer to any of the
losest centroids found so far. In that case we discard the farthest
entroid and replace it with the current one.

. Rendering results

In this section we present and analyze experimental results for
he proposed approach. We start by describing the experimental
etup and methodology. Then experimental results are presented
ncrementally, as in an ablative study. First the impact of clus-
ering only shading points is analyzed. Then the same analysis
s performed to clustering only the VPLs, followed by the final
pproach, which clusters both.

.1. Experimental setup

In the following we present results for three scenes with dif-
erent characteristics (details are shown in Table 1, and reference
mages in Fig. 1). The Cornell Box scene provides a benchmark
ommonly used in rendering. The Conference Room scene allows
81
esting difficult soft shadowing conditions, due to the visibility
omplexity caused by the presence of a large number of chair’s
egs. Finally, the Living Room scene provides an alternative test
etting from the previous two scenes, with large areas of ex-
remely smooth indirect light conditions. For all scenes, and when
pplying fuzzy clustering, each SP is assigned to 6 clusters (F =
).
The results have been generated using an MSI Leopard with

6 GB of RAM, an Intel i7 processor and an NVIDIA RTX 2060
aptop graphic card with 6 GB of memory. The algorithm has
een implemented on the NVIDIA OptiX 7.5 ray tracing engine [1].
he quality of the results is assessed by evaluating the MSE
mean squared error) of each generated image, by proving error
aps that complement subjective visual inspections, and through
easurements of the execution time. In order to avoid inaccu-

acies in the measured rendering times all timings have been
omputed using a 3-best approach: we measure the execution
ime 10 times, and present the execution time as the average of
he three smallest execution times. The time required to shoot
nd to cluster the VPLs are presented separately in the figures’
aption.

.2. Clustering shading points

In this section, we present rendering results concerning clus-
ering of shading points only, meaning that visibility is computed
etween each shading points cluster representative and each
PL. At the rendering stage, and for each shading point, indirect
llumination is thus computed using all VPLs as in Eq. (3), but
eplacing the original visibility function V by the approximation
iven by Eq. (9).
Fig. 6 shows the rendering results for the Living Room scene

sing different numbers of clusters, ranging from 2k to 30k (cor-
esponding to 0.3% and 4.1% to the total shading points, respec-
ively). We can observe that as the number of clusters increases,
he visual artifacts progressively vanish, and the MSE is reduced.
onversely the rendering time increases with the number of used
lusters. This is explained by the fact that, as the number of
sed clusters increases, the visibility information becomes more
efined, but also more costly to compute. With this regard, the

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85

T

i
o
b
r
w
p
r
B
o

v
r
s
v
o
i
u
w
n

Fig. 7. Timings and mean squared error (MSE) as a function of the number of used clusters. The vertical bars show the decomposition of the total rendering time
into: clustering, evaluating the visibility term (for each cluster), and rendering the final image. The MSE values (in purple) are plotted with respect to the right-hand
axis (also in purple).
Fig. 8. Rendering results for the Cornell Box scene when clustering VPLs only with a varying number of clusters (from 500 clusters to 2500 clusters). A total of 7500
VPLs are clustered. The number in-between parenthesis shows the percentage of used clusters with respect to the total number of VPLs. The rendering times for
(a), (b) and (c) were 168 ms (MSE = 1.80E−3), 439 ms (MSE = 5.42E−4) and 760 ms (MSE = 4.20E−4), respectively. The reference image took 2348 ms to render.
he VPL tracing and clustering times for (a), (b) and (c) (not included in the rendering times) were 8.0 ms, 9.4 ms and 10.5 ms, respectively.
ntermediate number of used clusters (8k, corresponding to 1.1%
f the total shading points) seems to be a good compromise
etween rendering time and incurred error. Note also the drastic
eduction in rendering time brought by our proposed method
hen compared to the reference, even in the case of 30k shading
oints clusters (from 1195 ms to 472 ms, respectively). Extended
esults shown in supplemental material (including the Cornell
ox and the Conference Room scenes) fully agree with these
bservations.
The timings and MSE values for the three tested scenes when

arying the number of SP clusters are depicted in Fig. 7. The
endering time is divided into clustering time (in blue, corre-
ponding to Steps 3 and 4 in Fig. 2); time for computing the
isibility of each VPL as seen from each representative point
f the shading clusters (in red, Step 5 in Fig. 2); and finally,
n yellow, the rendering time that consists of shading each SP
sing the data from the previous stages. Corresponding MSEs
ith respect to the reference image is shown in purple, with
umerical values given by the right-hand axis. The results suggest
82
the existence of a sweet spot corresponding to a good trade-off
between image quality and rendering time. Indeed, for the three
scenes, increasing the number of clusters to more than≈1% of the
total shading points brings relatively small reductions in terms of
MSE, whereas rendering time can increase significantly.

4.3. Clustering VPLs

In this section we present the results obtained when clustering
VPLs only. The shading points remain unclustered, and the visi-
bility of each VPL cluster representative is thus explicitly tested
for each shading point. The rendering results for the Cornell Box
scene with a varying number of VPL clusters are shown in Fig. 8
(an extended version of these results as well as results for the two
other tested scenes are provided in supplementary material). We
can observe that, similarly to the case of clustering shading points
only, the error decreases with the number of used VPL clusters,
whereas the rendering time increases. Furthermore, when com-
paring Fig. 8(b) and (c), we can observe that their MSE values

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85

r
1

a
a
w
g
i
s
a
o
a
c
t
t
r
r

4

V
t

Fig. 9. Timings and mean squared error (MSE) as a function of the number of used VPL clusters. The MSE values (in purple) are plotted with respect to the right-hand
axis (also in purple).
Fig. 10. Rendering results when clustering both VPLs and shading points. The results have been generated with three different configurations: (a) a light-weight
configuration, with only 0.75k VPL clusters and 1k shading clusters; (b) an intermediate configuration, with 2k VPL clusters and 8k shading clusters; and (c), a high
quality configuration, with 4k VPL clusters and 30k shading clusters. Note the progressive decrease of the rendering error, from left to right, as the number of used
clusters increases. The rendering times for (a), (b) and (c) were 34 ms (MSE = 3.80E−3), 109 ms (MSE = 1.80E−3) and 328 ms (MSE = 8.55E−4), respectively. The
eference image rendering time was 1715 ms. The VPL tracing and clustering times for (a), (b) and (c) (not included in the rendering times) were 5 ms, 6.3 ms and
0 ms, respectively.
re relatively similar, whereas the rendering time increases by
factor close to two. This indicates that there is a limit from
hich increasing the number of VPL clusters brings no significant
ains in image quality, despite the increase in rendering time. It
s important to note the almost negligible time required for VPLs
hooting and clustering (8.0 ms, 9.4 ms and 10.4 ms for 0.5k, 1.5k
nd 2.5k VPL clusters, respectively). This shows the efficiency of
ur parallel clustering algorithm, and opens the path for a direct
pplication of our method to dynamic scenes, where interactive
lustering of VPLs would also be required. Finally, Fig. 9 shows
he rendering times for different numbers of VPL clusters, for the
hree tested scenes. In all cases, our method offers an important
eduction in terms of rendering time when compared to the
eference.

.4. Clustering both VPLs and shading points

Fig. 10 presents the rendering results when clustering both the
PLs and the shading points. Similarly to the previous sections,
hree different settings are considered corresponding to a low, an
83
intermediate and a high number of used clusters. The resulting
images confirm the previously observed trend: the error is pro-
gressively reduced as the number of clusters increases, while the
rendering time increases with the number of clusters. In the three
settings, the results show that our method allows a significant
reduction in terms of rendering time, ranging from 50 to 5 times
faster than the reference image (computed without clustering).
Note that in all settings, clustering both VPLs and shading points
always yields faster rendering times compared to the cases of
clustering only shading points or VPLs.

Fig. 1 shows results for the three scenes when using an in-
termediate number of VPL and SP clusters (the actual number
of used clusters varies from scene to scene, due to differences
in incident light complexity). More detailed results can be found
in supplemental material. For all scenes, the results show an
important reduction in terms of rendering time, while keeping
the approximation error (MSE) at low levels. The final image
quality is also generally comparable to that of the reference image
taking into account the drastic reduction obtained in rendering
time. Finally, a detailed depiction of the relationship between

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85
Fig. 11. Time in function of the number of clusters for the shading points and the number of clusters for the VPLs. The color of the surface depends on the MSE.
The reference images required 1715 ms, 2348 ms and 1195 ms respectively.
i

rendering time and MSE as a function of the used VPLs and
shading points (SP) clusters is provided in Fig. 11, for the three
tested scenes.

5. Conclusions and future work

In this paper we have proposed and thoroughly assessed a
massively parallel algorithm for global illumination at interactive
frame rates. Our solution is based on the use of Virtual Point
Lights and on soft clustering algorithms. It is built using CUDA and
the NVidia OptiX ray-tracing framework and thus runs entirely
in the GPU. Thanks to the clustering of both the shading points
and the VPLs, we have shown that the rendering time of the
original algorithm can be drastically reduced, while keeping the
final image quality (and MSE) at satisfactory values. As shown by
our results, our parallel algorithm for soft K-means clustering can
be used to cluster shading points interactively, which allows for
dynamically changing the camera setting. Furthermore, the sheer
cost of parallel clustering indicates that an application of our
algorithm to dynamic scenes (i.e., with moving objects and light
sources) for which interactive clustering of VPLs is also required
is perfectly feasible.

With respect to future work, several research lines could
be pursued in order to address some of the limitations of our
method. Perhaps the most obvious one is extending the method
so as to handle glossy reflections. This could be achieved by stor-
ing the incoming direction of the VPL, but would likely require the
total number of VPLs in the scene to increase significantly so as
to capture the directional distribution over the glossy materials.
In order to assure the coherence of the VPLs within the resulting
clusters, one possibility would be to take into consideration the
material glossiness and the direction of incidence of the VPL in
the clustering Distance Metric, so as to create clusters of VPLs
with similar features.

Exploiting temporal coherence across consecutive frames,
which is currently not considered, is another interesting possi-
ble extension. For example, the result of clustering the shading
points in a given frame could be used as initial condition for K-
means clustering of the shading points in the subsequent frame.
Furthermore, our method requires a user-specified number of
shading points and VPL clusters, which is scene dependent. Future
work could address this limitation by automatically determining
the number of clusters required to achieve a given frame rate or
image quality value (which would be more intuitive to provide
than the number of clusters).

Inspired by hierarchical approaches, such as lightcuts [6], the
clustering could be generalized into a hierarchy, allowing im-
proved scalability to large scenes with large numbers of VPLs.
Additionally, VPL clusters could be importance sampled, such
that only the clusters that potentially contribute to the indirect
illumination at each SP cluster are sampled using shadow rays.
84
Inspired by the LGH [12] and SST [13] approaches, it would be
interesting to evaluate whether each cluster representative (both
SPs and VPLs) can be stochastically selected whenever a visibility
assessment or a shading operation is performed; this would allow
trading structured artifacts by high frequency noise, eventually
allowing a reduction on the number of required clusters for the
same image quality. Stochastic sampling would incur the cost of
building the required probability distributions; advantages and
disadvantages would have to be thoroughly assessed.

As regards the weighted interpolation, which acts as a smooth-
ing operation, we have shown that it successfully removes most
low frequency artifacts. However it might eventually have a neg-
ative impact on existing sharp shadows, although we did not
observe this issue in our results. One way to cope with this
potential problem would be to replace our weighting function
(which is currently given by the inverse of the Euclidean distance)
by a function with a faster fall-off, possibly controlled by some
parameter. This would allow explicitly controlling the degree of
smoothness provided by the weighted interpolation.

CRediT authorship contribution statement

Arnau Colom: Conceptualization, Methodology, Software, Val-
dation, Investigation, Writing – original draft, Visualization. Ri-
cardo Marques: Conceptualization, Methodology, Visualization,
Writing – original draft, Writing – review & editing, Supervi-
sion, Project administration. Luís Paulo Santos: Conceptualiza-
tion, Methodology, Supervision, Writing – original draft, Writing
– review & editing, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

As Serra Húnter Fellow, Ricardo Marques acknowledges the
support of the Serra Húnter Programme. This work is partially
funded by TIN2018-095232-B-C21, MUSAE Horizon Europe
project (#101070421) and CERCA Programme/Generalitat de
Catalunya. This work is financed by National Funds through the
Portuguese funding agency, FCT - Fundação para a Ciência e a
Tecnologia, within project LA/P/0063/2020. Arnau Colom and Ri-
cardo Marques acknowledge the support of the European Union’s
Horizon 2020 Research and Innovation Programme under Grant
Agreement No 856879 (Present Project).

A. Colom, R. Marques and L.P. Santos Computers & Graphics 108 (2022) 74–85

A

o

R

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.cag.2022.09.008.

eferences

[1] Parker SG, Bigler J, Dietrich A, Friedrich H, Hoberock J, Luebke D, McAllis-
ter D, McGuire M, Morley K, Robison A, Stich M. OptiX: A general purpose
ray tracing engine. ACM Trans Graph 2010;29(4). http://dx.doi.org/10.1145/
1778765.1778803.

[2] Dachsbacher C, Křivánek J, Hašan M, Arbree A, Walter B, Novák J. Scal-
able realistic rendering with many-light methods. Comput Graph Forum
2014;33(1):88–104. http://dx.doi.org/10.1111/cgf.12256.

[3] Kajiya JT. The rendering equation. SIGGRAPH Comput Graph
1986;20(4):143–50. http://dx.doi.org/10.1145/15886.15902.

[4] Keller A. Instant radiosity. In: Proceedings of the 24th annual conference
on computer graphics and interactive techniques. SIGGRAPH ’97, USA: ACM
Press/Addison-Wesley Publishing Co.; 1997, p. 49–56. http://dx.doi.org/10.
1145/258734.258769.

[5] Walter B, Fernandez S, Arbree A, Bala K, Donikian M, Greenberg DP.
Lightcuts: A scalable approach to illumination. ACM Trans Graph
2005;24(3):1098–107. http://dx.doi.org/10.1145/1073204.1073318.

[6] Walter B, Arbree A, Bala K, Greenberg DP. Multidimensional lightcuts.
ACM Trans Graph 2006;25(3):1081–8. http://dx.doi.org/10.1145/1141911.
1141997.

[7] Dong Z, Grosch T, Ritschel T, Seidel H-P. Real-time indirect illumination
with clustered visibility, In: Proc. vision modeling and visualization, 2009.

[8] Hašan M, Pellacini F, Bala K. Matrix row-column sampling for the many-
light problem. In: ACM SIGGRAPH 2007 Papers. SIGGRAPH ’07, New York,
NY, USA: Association for Computing Machinery; 2007, p. 26–es. http:
//dx.doi.org/10.1145/1275808.1276410.
85
[9] Ou J, Pellacini F. LightSlice: Matrix slice sampling for the many-lights
problem. In: Proceedings of the 2011 SIGGRAPH Asia Conference. SA ’11,
New York, NY, USA: Association for Computing Machinery; 2011, http:
//dx.doi.org/10.1145/2024156.2024213.

[10] Davidovič T, Křivánek J, Hašan M, Slusallek P, Bala K. Combining global
and local virtual lights for detailed glossy illumination. ACM Trans Graph
2010;29(6). http://dx.doi.org/10.1145/1882261.1866169.

[11] Jarabo A, Buisan R, Gutierrez D. Bidirectional clustering for scalable VPL-
based global illumination. In: CEIG 2015 - Spanish computer graphics
conference. 2015.

[12] Lin D, Yuksel C. Real-time rendering with lighting grid hierarchy. Proc ACM
Comput Graph Interact Tech 2019;2(1). http://dx.doi.org/10.1145/3321361.

[13] Tatzgern W, Mayr B, Kerbl B, Steinberger M. Stochastic substitute trees for
real-time global illumination. In: Symposium on interactive 3D graphics
and games. I3D ’20, New York, NY, USA: Association for Computing
Machinery; 2020, http://dx.doi.org/10.1145/3384382.3384521.

[14] Wang R, Wang R, Zhou K, Pan M, Bao H. An efficient GPU-based approach
for interactive global illumination. ACM Trans Graph 2009;28(3). http:
//dx.doi.org/10.1145/1531326.1531397.

[15] Ward GJ, Rubinstein FM, Clear RD. A ray tracing solution for diffuse
interreflection. SIGGRAPH Comput Graph 1988;22(4):85–92. http://dx.doi.
org/10.1145/378456.378490.

[16] Cuomo S, De Angelis V, Farina G, Marcellino L, Toraldo G. A
GPU-accelerated parallel K-means algorithm. Comput Electr Eng
2019;75:262–74, URL https://www.sciencedirect.com/science/article/
pii/S0045790617327994.

[17] Bhimani J, Leeser M, Mi N. Accelerating k-means clustering with parallel
implementations and GPU computing. In: 2015 IEEE high performance
extreme computing conference (HPEC). 2015, p. 1–6. http://dx.doi.org/10.
1109/HPEC.2015.7322467.

https://doi.org/10.1016/j.cag.2022.09.008
http://dx.doi.org/10.1145/1778765.1778803
http://dx.doi.org/10.1145/1778765.1778803
http://dx.doi.org/10.1145/1778765.1778803
http://dx.doi.org/10.1111/cgf.12256
http://dx.doi.org/10.1145/15886.15902
http://dx.doi.org/10.1145/258734.258769
http://dx.doi.org/10.1145/258734.258769
http://dx.doi.org/10.1145/258734.258769
http://dx.doi.org/10.1145/1073204.1073318
http://dx.doi.org/10.1145/1141911.1141997
http://dx.doi.org/10.1145/1141911.1141997
http://dx.doi.org/10.1145/1141911.1141997
http://dx.doi.org/10.1145/1275808.1276410
http://dx.doi.org/10.1145/1275808.1276410
http://dx.doi.org/10.1145/1275808.1276410
http://dx.doi.org/10.1145/2024156.2024213
http://dx.doi.org/10.1145/2024156.2024213
http://dx.doi.org/10.1145/2024156.2024213
http://dx.doi.org/10.1145/1882261.1866169
http://refhub.elsevier.com/S0097-8493(22)00175-3/sb11
http://refhub.elsevier.com/S0097-8493(22)00175-3/sb11
http://refhub.elsevier.com/S0097-8493(22)00175-3/sb11
http://refhub.elsevier.com/S0097-8493(22)00175-3/sb11
http://refhub.elsevier.com/S0097-8493(22)00175-3/sb11
http://dx.doi.org/10.1145/3321361
http://dx.doi.org/10.1145/3384382.3384521
http://dx.doi.org/10.1145/1531326.1531397
http://dx.doi.org/10.1145/1531326.1531397
http://dx.doi.org/10.1145/1531326.1531397
http://dx.doi.org/10.1145/378456.378490
http://dx.doi.org/10.1145/378456.378490
http://dx.doi.org/10.1145/378456.378490
https://www.sciencedirect.com/science/article/pii/S0045790617327994
https://www.sciencedirect.com/science/article/pii/S0045790617327994
https://www.sciencedirect.com/science/article/pii/S0045790617327994
http://dx.doi.org/10.1109/HPEC.2015.7322467
http://dx.doi.org/10.1109/HPEC.2015.7322467
http://dx.doi.org/10.1109/HPEC.2015.7322467

	Interactive VPL-based global illumination on the GPU using fuzzy clustering
	Introduction
	Background
	Rendering Equation and Virtual Point Lights
	Related Work

	Proposed Approach
	Algorithm Description
	Theoretical Aspects
	Hard Clustering
	Distance-based Fuzzy Clustering

	GPU Implementation
	Hard Clustering
	Fuzzy Clustering

	Rendering Results
	Experimental Setup
	Clustering Shading Points
	Clustering VPLs
	Clustering both VPLs and Shading Points

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

