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ABSTRACT Face and fingerprint are, currently, the most thoroughly explored biometric traits, promising
reliable recognition in diverse applications. Commercial products using these traits for biometric iden-
tification or authentication are increasingly widespread, from smartphones to border control. However,
increasingly smart techniques to counterfeit such traits raise the need for traits that are less vulnerable to
stealthy trait measurement or spoofing attacks. This has sparked interest on the electrocardiogram (ECG),
most commonly associated with medical diagnosis, whose hidden nature and inherent liveness information
make it highly resistant to attacks. In the last years, the topic of ECG-based biometrics has quickly
evolved toward the commercial applications, mainly by addressing the reduced acceptability and comfort by
proposing new off-the-person, wearable, and seamless acquisition settings. Furthermore, researchers have
recently started to address the issues of spoofing prevention and data security in ECG biometrics, as well
as the potential of deep learning methodologies to enhance the recognition accuracy and robustness. In this
paper, we conduct a deep review and discussion of 93 state-of-the-art publications on their proposedmethods,
signal datasets, and publicly available ECG collections. The extracted knowledge is used to present the
fundamentals and the evolution of ECG biometrics, describe the current state of the art, and draw conclusions
on prior art approaches and current challenges.With this paper, we aim to delve into the current opportunities
as well as inspire and guide future research in ECG biometrics.

INDEX TERMS Acquisition, authentication, biometrics, biosensors, classification algorithms, electrocar-
diography, feature extraction, identification of persons, machine learning, off-the-person, seamless, signal
processing.

I. INTRODUCTION
Websites, smartphones, safes, cars, houses, buildings, banks,
and airports are just a few of our society’s amenities that
rely on identification or authentication systems to protect
and guard ourselves, our information, or our belongings.
Several still depend on traditional systems based on extrinsic
entities or knowledge like cards, keys, or passwords [1], [2].
However, in the last decades, researchers have focused on
avoiding the problems of traditional systems: they can be
lost, stolen, discovered, or copied [3]. Biometrics present the
perfect opportunity to achieve that goal, as they are focused
on intrinsic characteristics of the person, requiring their phys-
ical presence, and minimizing the probability of success of
possible impostors [1], [4].

A biometric system aims to either identify or authenticate
a person based on a measurement of one or several biometric
traits (see Fig. 1). To achieve that goal, it is composed of an
acquisition module (a sensor prepared to measure the respec-
tive trait), a storage module (to store personal data of enrolled
subjects), and a biometric algorithm. The biometric algorithm
uses the data from the acquisition and storage modules, and
is usually composed by stages of quality assessment, feature
extraction, and decision [1], [5], [6].

Many human traits have been proposed and studied for
the purpose of identity recognition, especially face, finger-
prints, voice, and iris [4], [7]. With the increasing number
of applications that rely on these, the methods to circumvent
them become stronger, resorting to photographic, 3D model
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FIGURE 1. Common structure of a biometric system (based on [1], [5], [6]).

reproductions, or sound recordings of the traits [8], [9], and
obliging biometric systems to include deeper security mea-
sures, such as liveness detection.

TABLE 1. Main benefits and drawbacks of the electrocardiogram when
compared with other biometric traits (includes information based
on [3], [4]).

More recently, a new set of biometric traits, called med-
ical biometrics, has gained momentum [3], [7], [10]. The
Electrocardiogram (ECG), compared with other biometric
traits in Table 1, has proven to be the most promising of
them, excelling in most of the characteristics that define the
quality of a biometric trait [3]. Its nature makes it hard to
capture and inject into the system for spoofing purposes, and
the inherent liveness detection ensures the biometric system
is not being attacked [11]. Furthermore, its unidimensional
nature places it as amore computationally efficient alternative
to image or video-based systems, especially for continuous
recognition systems, highly dependent on timely decisions.

Some surveys have delved before into the topic of
ECG-based biometrics or some specific and closely related

aspects [9], [12]–[16]. However, this research topic has now
reached a turning point that merits to be addressed and deeply
discussed. Now, electrocardiogram acquisition settings are
finally offering enough acceptability and comfort to be appli-
cable to commercial biometric systems [17], [18], but have
created new issues related to increased signal noise and
variability [19].

Moreover, researchers have recently started to explore
diverse deep learning methodologies, which bring significant
improvements in robustness, but also raise new challenges
regarding data availability [20]–[22]. Also, important issues
regarding counterfeiting attacks in ECG biometrics have
finally begun to be addressed [23], [24].

FIGURE 2. Histogram of the number of publications surveyed for this
document per year of publication (this includes all papers that propose
methods for unimodal and multimodal ECG biometrics).

In this turning point in ECG biometrics, this survey aims to
showcase the evolution and current landscape of ECG-based
biometric recognition, including a solid overview of funda-
mental concepts, providing a complete and deep guide to new
and current researchers. After presenting the most relevant
advances in ECG biometrics research, based on the review of
ninety-three state-of-the-art publications (see Fig. 2), we use
that deep perspective to discuss the most relevant challenges
and themost promising future possibilities regarding research
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and development in each part of ECG biometric systems,
from acquisition to decision.

Besides this introduction, this survey presents the funda-
mentals in anatomy, physiology, and intra and inter-subject
variability, in section II; the evolution and future possibilities
on acquisition of ECG signals for biometrics, in section III;
guidelines on data for ECG biometrics, and a characterization
of publicly available collections, in section IV; and the review
and current challenges in signal denoising, in section V.

In section VI, we discuss the methods used to prepare the
signals for feature extraction and decision; in section VII,
we review the state-of-the-art and opportunities regarding
feature extraction; and in section VIII we delve into the
methods for decision in both identification and authentica-
tion. Finally, we address other developments and challenges
in ECG biometrics, such as deep learning and spoofing,
in section IX; and we conclude with a summary and final
remarks, in section X.

II. THE ELECTROCARDIOGRAM
More than a trending biometric trait, the electrocardiogram is
a physiological signal generated from the contraction and the
recovery of the heart. In this section, we aim to introduce the
electrocardiogram, from generation to acquisition, discussing
its inter-subject and intra-subject variability factors, how they
relate to the anatomy of each person, and how they may be
useful or prejudicial for biometric recognition.

A. ANATOMY AND PHYSIOLOGY OF THE ECG
In every sense of the word, the heart is a pump. Tate [26]
defines threemain functions of the heart: generate blood pres-
sure, through the contraction of the myocardium, in order to
keep blood moving; route blood, by sending venous blood to
the lungs, in the pulmonary circulation, and arterial blood
to the whole body, in the systemic circulation; and regulate
blood supply, by adapting its rate and force of contraction to
the current metabolic demands of the body.

The contraction of the heart is, thus, of the highest impor-
tance. The myocardial muscle cells contract in response to
electrical currents, that cause the depolarization of those tis-
sues by triggering action potentials [26], [27]. These flows
of depolarization and repolarization are nothing more than
electrical currents being generated and conducted through the
heart. These electrical currents can be detected andmeasured,
through electrodes placed in the body, in a process called
electrocardiography.

The resulting signal is called an electrocardiogram (ECG)
and, in normal conditions, is a cyclic repetition of five eas-
ily recognizable deflections: the P, Q, R, S, and T waves
(see Fig. 3). Each group of these deflections composes a
single heartbeat, and each can be traced back to the phase
that originated it [25]–[27].

B. INTRA-SUBJECT AND INTER-SUBJECT VARIABILITY
The ECG signal, although presenting, in normal condi-
tions, the same deflections for all subjects at all times,

FIGURE 3. The sequence of depolarization and repolarization events in
the heart, and their relationship with the different heartbeat waveforms
in an ECG signal (based on [25]).

is characterized by a high degree of variability. Variability
in the ECG can be designated as intra-subject, the variations
between cycles (heartbeats) in the electrocardiogram of a sin-
gle subject, or inter-subject, the variations between heartbeats
of different subjects.

The intra-subject variability of the ECG is mainly explored
for health monitoring and medical diagnosis [28]–[30], while
inter-subject variability is especially useful to discrimi-
nate between subjects in biometric recognition. Both these
variability types can have origin in several factors, most
importantly:
• Heart Geometry: Heart size, cardiac muscle thickness,
and the overall shape of the heart dictate the paths the
electrical current will follow inside the heart, the number
of muscle cells that will depolarize, and the time it takes
to do it across the whole heart. Athletes, with their high
physical training, commonly have larger hearts, with
thicker myocardia, which affects the ECG with higher
voltages in the QRS complex, and lower basal heart
rates [31]–[33];

• Individual Attributes: Age, weight, and pregnancy, are
some of the individual attributes that can cause shifts in
the heart position and/or orientation. These shifts will
change the orientation of the electrical current conduc-
tion vectors along the heart, meaning the electrodes will
detect the signal in a different perspective, thus altering
the ECG waveforms [34];

• Physical Exercise or Meditation: The duration of, and
intervals between the different deflections of the heart-
beats in an ECG signal, vary with the heart rate. These
changes are especially visible on the interval between
the QRS complex and the T wave in situations of tachy-
cardia (higher heart rates) or bradycardia (lower heart
rates). Changes in the heart rate caused by physical
exercise or meditation do, effectively, affect the electro-
cardiogram [10];
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• Cardiac Conditions: Medical conditions of the heart
can also interfere in the dynamics of the electrical pulse
conduction and generate variability. In the scope of bio-
metrics, one of the most studied conditions is Arrhyth-
mia, that causes wide variations in the heart rate across
time and, as reported by several researchers, can consis-
tently shrink the performance of ECG-based biometric
systems [2], [35], [36].

• Posture: Postures like standing or laying down differ
widely on the position and shape of internal organs. The
heart is also affected by this, changing its position in
the thorax, and thus its position in reference with the
electrode placement, which will cause variations in the
collected ECG signal [34];

• Emotions and Fatigue: The sympathetic and parasym-
pathetic systems of the autonomous nervous system
work to, respectively, increase or reduce the heart rate.
These systems are under direct influence of psycholog-
ical states and thus, under stress, fear and other strong
emotions, fatigue or drowsiness, the heart rate and the
ECG signal can be affected [10], [29];

• Electrode characteristics and placement: The type,
size, and number of the electrodes, whether they are
wet or dry, and the positioning on the chest or limbs,
can influence the dominance of noise on the signal. The
mispositioning of electrodes and reversal of leads are
also sources of variability, as they change the perspective
of detection of the electrocardiographic signal [31], [34].

All the previously presented factors reflect on the mor-
phology of the electrocardiographic signals acquired from
an individual. While the first two factors contribute more
to inter-subject variability and to the biometric potential of
the ECG signals, the remaining factors are the main origins
of intra-subject variability and may undermine the process
of biometric recognition.When considering the acquisition of
ECG, whether for medical or biometric recognition purposes,
it is of utmost importance to consider all of these and the way
they can ease or difficult the task at hand.

III. ACQUISITION
Since the first research initiatives in ECG-based biometrics,
the configurations used for acquisition have greatly evolved.
From the early use of several wet electrodes from medi-
cal settings to the current trend of off-the-person settings,
researchers mostly focused on addressing the main disadvan-
tage of ECG as a biometric trait: acquisition acceptability.

Below, we describe the different stages of this evolution,
present examples of publications that use them, and we delve
into the recent developments on ECG acquisition, in order to
discuss future possibilities on acquisition settings and their
potential for ECG biometrics.

A. THE EVOLUTION OF ACQUISITION SETTINGS
1) MEDICAL ACQUISITIONS
For medical purposes, there are a few defined and estab-
lished configurations of electrodes for the measurement of

FIGURE 4. Medical acquisition settings: electrode placement and leads
on the standard 12-lead configuration and Frank leads (anterior
electrodes depicted in blue, posterior electrodes depicted in lighter blue).

electrocardiogram signals in standard, comparable formats
that ease the diagnostic of cardiac conditions (see Fig. 4).
The Standard 12-Lead Configuration allows the acquisition
of an ECG signal in 12 leads (or channels): three bipolar
limb leads, three monopolar limb leads, and six monopolar
precordial leads [37]. The corrected orthogonal configura-
tion (Frank Leads) allows the acquisition of the ECG with
seven electrodes. Processing the signals obtained from all
these electrodes allows the collection of the three orthogonal
leads, Px , Py, and Pz, thus capturing the heart dipole in three
dimensions [38].

In early ECG biometric research, recordings from stan-
dard 12-lead or Frank leads were commonly used for
the development and evaluation of algorithms [39]–[41].
Even more common has been the selective use of certain
leads of these configurations, especially Lead I [42]–[44],
because of its higher acceptability due to the electrode place-
ment on the wrists, but also Lead II [45]–[48], or chest
leads [49], [50], [35].

Nevertheless, medical configurations present several limi-
tations, such as large number of electrodes and their uncom-
fortable placement, and the limitedmovement and duration of
the recordings, that fail to enable the development of robust
biometric systems.

2) MOVEMENT FREEDOM AND HOLTER SYSTEMS
To mitigate the issues with medical acquisitions, some
researchers opted for acquisitions without movement
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restrictions, with longer durations, and with less electrodes.
One of the most prominent examples was the use of Holter
systems (see Fig. 5), that are prepared to acquire ECG signals
during several hours while the subjects move and perform
their daily activities.

FIGURE 5. Acquisition settings with movement: example of a
five-electrode Holter system for ambulatory recordings (electrodes
depicted in blue).

Acquisitions at rest were first discarded by Shen et al. [51],
using ambulatory recordings from MIT-BIH Normal Sinus
Rhythm database (described further on in this survey),
acquired for thirty minutes using Holter equipment.
Labati et al. [52], [53] user 24-hour-long Holter acquisitions,
from the E-HOL 24h signal collection, and seized the oppor-
tunity to study the effect of ECG variability over time on
identification performance. Similarly, Zhou et al. [54] used
a mini-Holter system to continuously record ECG signals.

However, although allowing for longer acquisitions with
movement and activity, Holter acquisitions still require the
placement of electrodes on the torso. This significantly
reduces acquisition acceptability and comfort, and damages
the ECG strength as a biometric trait.

3) OFF-THE-PERSON SETTINGS
To improve acceptability and acquisition comfort, and get
closer to biometric systems deployable to real settings,
researchers took a number of actions regarding the acquisition
of ECG signals. Wet electrodes were replaced by dry metallic
electrodes, their numberwas reduced to two or three, and their
placement was confined to the upper limbs, especially the on
wrists, hands, or fingers (see Fig. 6).

These acquisition configurations were designated as off-
the-person settings, as opposed to the on-the-person settings
described in the two topics above. The first research works in
ECG biometrics to use off-the-person signals were, to the best
of our knowledge, Molina et al. [44], who used commercial
metallic electrodes strapped to the wrists of the subjects, and
Chan et al. [55], who acquired ECG signals using dry button
electrodes held by the subjects in contact with their thumbs.

Shen et al. [57] recorded signals from both palms from the
subjects while they held two small metallic rod electrodes.

FIGURE 6. Examples of off-the-person ECG acquisition configurations,
using thumb electrodes [55], index finger electrodes [56], metallic rods
grabbed by the subjects [8], [57]–[59], or electrodes mounted on a
table [60] (electrodes depicted in blue).

Similar configurations were used by Belgacem et al. [8], [58],
Lin et al. [59], and Lourenço et al. [61] mounted three dry
metallic electrodes on a plaque, positioned to contact with
the index finger of the left hand and the thumb of the right
hand.More recently,Matos et al. [56] used only twoAg-AgCl
electrodes (with virtual ground) to acquire ECG at the index
fingers.

Nevertheless, off-the-person systems still require the
user to hold the electrodes or deliberately place the fin-
gers or palms over them. This prevents us to designate them as
unconstrained systems, which puts the ECG in disadvantage
over other biometric traits that can already be used for uncon-
strained recognition. Besides this, the use of dry electrodes in
farther placements makes the acquisition more vulnerable to
interferences, thus affecting the quality of the signal [8], [60].

4) WEARABLES AND SEAMLESSLY
INTEGRATED ACQUISITION
Recently, a few initiatives have been conducted to improve
off-the-person configurations and approach unconstrained
settings in ECG biometrics, and close the gap to real, com-
mercial applications, by developing wearable technologies
for ECG acquisition or embedding the sensors into common
objects (see Fig. 7).

In research, the first example of this type of highly accept-
able acquisition was proposed by Coutinho et al. [62], [63],
who developed a sensor pad to be used alongside a computer
keyboard. While the users use the keyboard, their palms rest
on the sensor pad that continuously acquires their ECG signal
to be used for authentication. This configuration was also
used by Silva et al. [64]. More recently, Zhang et al. [65] have
shown it is possible to acquire ECG signals from a single arm,
and successfully use them for biometric recognition.
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FIGURE 7. Wearable and seamless acquisition: examples of surveyed
configurations (electrodes depicted in blue).

As for commercial applications, the Nymi Band [18] is
one of the resulting products. It is a wearable wristband that
acquires the ECG using two metallic electrodes on its inner
and outer surface. Authentication is performed when the band
is put on, requiring the user to place a finger of the opposite
hand on the outer electrode of the band. After this, the session
remains open until the band is taken off, and the Nymi Band
broadcasts an identity signal to authenticate the user in other
nearby systems.

The CardioWheel [17], like other products by CardioID
Technologies LDA, is based on the incorporation of acquisi-
tion electrodes and hardware into common objects for seam-
less ECG measurement. It is a steering wheel cover using
conductive leather for seamless and continuous biometric
recognition and health monitoring of drivers, aiming towards
automatic personalization of driving settings and remote fleet
supervision.

Also, Yathav et al. [66] have recently proposed the
miBEAT, a versatile platform for simultaneous acquisition
of ECG and photopletismography (PPG) signals. According
to the authors, the platform can be used for several cus-
tom applications, including the seamlessly integrated signal
acquisition in smartphones or tablets for personal identifica-
tion or authentication.

These efforts have brought ECG biometrics closer to
viable, unconstrained applications. However, wearables like
the Nymi Band still require the users to wear the product for
long periods of time, and touch the outer electrode with the
opposite hand every time they put it on to open the session.
Integrated acquisition settings like the CardioWheel may suf-
fer from unprecedented noise dominance and frequent signal
loss, as the users move or take their hands off the electrodes.
Hence, these issues must be addressed and adequately solved
in order to obtain viable commercial ECG biometric systems.

B. REFLECTIONS ON FUTURE SETTINGS
Since the first research initiatives in ECG biometrics, many
problems have been addressed regarding the acquisition,
as presented in the previous subsection. However, as dis-
cussed for wearables and seamlessly integrated settings, there
is still work to do. They still require contact with both limbs
during acquisition, and the loose contact with the user’s skin
is the origin of signal loss and frequent movement artifacts.

Nevertheless, some researchers have addressed these
issues. The single-arm acquisition settings studied by
Zhang et al. [65] raise new and inspiring possibilities for
wearable ECG devices. Furthermore, Chi et al. [67] have
developed and evaluated electrodes that dismiss the need
for contact, successfully acquiring ECG through layers of
plastic or clothes. For applications that do not require as
much information as carried by the ECG, techniques have
been proposed to measure the heart rate, at a distance, using
microwave Doppler sensors [68]–[70].

This paves the way for better future technologies, that
could consist in seamlessly integrated biometric systems that
can acquire ECG signals at short distances from one hand of
the user, without requiring contact and thus suffering from
signal loss. For wearables, the future could reside in products
that can continuously monitor the users’ ECG while only
contacting with one of their wrists, or when inside their
pockets separated from the body by clothes.

IV. DATA IN ECG BIOMETRICS
Numerous researchers, when working with ECG signals, for
biometric recognition purposes or for automatic diagnosis of
medical cardiac conditions, opt for private acquisitions of
data. However, as the needs grow for more complete datasets,
with more subjects, including medical conditions, on more
sessions, spread across wider time frames, and under different
posture and activity conditions, researchers became more
aware of the importance of public signal collections [60].

Moreover, public ECG databases are needed to enable
comparison and benchmarking of algorithms in challenging
conditions, across different publications, without requiring
researchers to replicate algorithms and evaluate them again.
Below, we delve into the important aspects behind a well-
structured ECG signal collection to aid the development of
biometric systems, and we present the most relevant publicly
available collections, and we discuss the current needs and
future possibilities regarding data in ECG biometrics.

A. BUILDING A COMPLETE ECG COLLECTION
A well-structured ECG signal collection is key to appro-
priately guide the development towards the exploitation of
the best possibilities for the system, and accurately predict-
ing its performance upon real-life application. To achieve
such a complete collection, a few aspects have to be
considered:
• Number of electrodes: Less electrodes and leads have
been shown to provide more challenging settings for
biometrics [50], [71];
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• Electrode placement: As shown by [43], the use of
chest leads is less challenging than limb leads, and the
distance of the electrodes to the heart has a significant
negative impact on the system’s performance;

• Sampling frequency: Sampling causes the loss of fine
details that influence the recognition process [71]. The
lower the sampling frequency, the larger the amount of
details that can be lost, and the higher the risk of alias-
ing of high-frequency noise (such as electromyogram
interference);

• Subject posture, activity, and fatigue: Several studies
have shown that fatigue, exercise, or different postures
have a negative effect on recognition performance,
if the systems have not been trained accord-
ingly [48], [71], [72];

• Subject health: Some health issues, mainly arrhyth-
mia, can generate intra-subject signal variability that
encumber the recognition process [36], [73], [74]. Thus,
systems should be made robust against this, by including
subjects with heart conditions in the datasets used during
development and validation of the methods;

• Number of subjects: The diversity of individuals and
their own characteristics may ease or difficult the job of
the biometric systems [75], [76], and successful state-of-
the-art algorithms have been shown to be significantly
worse when evaluated on larger datasets [12]. The use
of a collection with large number of subjects ensures the
presence of subject diversity, increasing the thorough-
ness of the performance assessment. As visible in Fig. 8,
the vast majority of surveyed publications reported the
use of data from less than 100 subjects;

• Acquisition sessions: The ECG signal varies enough
to cause recognition errors in most biometric sys-
tems, even over a short 24-hour period [52], [53].
Systems should be prepared with data from sev-
eral sessions, weeks or months apart, to ensure their
robustness [64], [71].

All these factors can have an impact on the performance
of an ECG-based biometric system. In order to correctly
assess the capabilities of such systems, it is of the high-
est relevance to not only build a database that fits the
system’s expected application context, but also one that
reflects all possibilities mentioned above, in order to study
the use of the same biometric system in a wider set of
contexts.

B. CURRENT PUBLICLY AVAILABLE COLLECTIONS
Currently, there are several collections, publicly available
for ECG biometrics research,1 that try to cover some or all
these factors to create a challenging environment for the
development of robust biometric systems. Many are stored

1Some of these databases may require prospective users to contact the
respective administrators to request access to the data and/or sign agreements
beforehand. Nevertheless, all presented databases are made available by the
creators for research purposes.

FIGURE 8. Histogram of surveyed publications per number of subjects in
the datasets used (it is worthy of notice that two surveyed publications
did not specify the number of subjects considered; for works that used
more than one database separately, only the largest was considered; and
for those that used a joint group of signals from more than one database,
the total number of subjects was considered).

by Physionet,2 while others are ceded by their owners. Below,
we present and characterize the most relevant of the currently
available ECG collections (see Fig. 9 for the number of
publications that have used them), and Table 2 summarizes
the characteristics of each.
• AHA: The AHA ECG database3 was created by the
American Heart Association to guide the training of
health professionals on the diagnosis of arrhythmias.
It includes 154 ECG recordings from real patients,
donated by various institutions, each three hours long
and composed of 2 lead signals. The last 30 minutes
of each recording are annotated for seven types of
arrhythmia;

• CYBHi: The Check Your Biosignals Here initia-
tive4 [60] is a collection of off-the-person ECG signals
acquired with two dry electrodes at the palms, and two
electrolycras at the middle and index fingers. It consists
of a short-term dataset, with single-session recordings
of 65 volunteers; and a long-term dataset, where 63 sub-
jects were recorded in two-sessions, three months apart.
In each session, for 5 minutes, the subjects were exposed
to videos designed to cause emotional reactions;

• DriveDB: Resulting from the Stress Recognition in
Automobile Drivers initiative, this database was created
with the purpose of monitoring of stress in drivers [77].

2Physionet ECG databases. Available on: https://www.physionet.org/
physiobank/database/#ecg.

3American Heart Association ECG database. Available on: https://www.
ecri.org/components/Pages/AHA_ECG_USB.aspx.

4CYBHi dataset for off-the-person ECG biometrics. Available on: https://
www.researchgate.net/publication/323543069_Check_Your_Biosignals_
Here_Initiative_CYBHi_dataset_for_off-the-person_ECG_biometrics.
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TABLE 2. Summary of the technical specificities of the most relevant publicly available ECG collections (OP – off-the-person; NS – number of subjects;
Fs – sampling frequency (Hz); L./E. – number of leads/electrodes).

FIGURE 9. Currently available ECG collections and the number of
surveyed publications that have used them.

Various physiological parameters (electrocardiogram,
electromyogram, and skin conductivity) were recorded
from 9 subjects over a total of 18 driving sessions,

including periods of rest (lower stress levels), highway
driving, and city driving (higher stress levels);

• ECG-ID: The ECG-ID is a database entirely focused on
biometrics [78], [79]. 20-second ECG recordings were
collected from 90 subjects, and are currently available
on Physionet. For each subject, the database has between
2 and 20 recordings (a total of 310) collected over a six
month period. The signals were acquired from Lead I
using limb-clamp electrodes at the wrists;

• E-HOL 24h Holter: This is an ECG database, focused
on biometrics, from the University of Rochester.5 A total
of 203 healthy subjects were recorded using a Holter
monitor during 24 hours, with four electrodes placed on
the chest, from 3 leads following a pseudo-orthogonal
configuration;

• European ST-T: The European ST-T database [80]
was originally intended for the analysis of ST
and T-wave changes. The database is composed by
90 two-hour excerpts of recordings from 79 subjects,
from 2 leads, and include abnormalities with origin in
myocardial ischaemia, hypertension, ventricular dyski-
nesia, and effects of medication;

5University of Rochester Medical Center, Telemetric and Holter ECG
Warehouse. Database E-HOL-03-0202-003. Available on: http://thew-
project.org/Database/E-HOL-03-0202-003.html.
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• Long-Term ST: The LTST database [81], available on
Physionet, includes a variety of ST segment changes
for the development of algorithms for the diagno-
sis of myocardial ischaemia. This database includes
86 records from 80 subjects, from ambulatory record-
ings between 21 and 24 hours, from two and three
leads;

• MIT-BIH Arrhythmia: The MIT-BIH Arrhythmia
database [82], [83], one of the most used in ECG-based
biometrics research, is available at the Physionet repos-
itory. The database is composed by a total of 48 sig-
nals, 30 minutes long excerpts from ambulatory two-
lead recordings. The 47 subjects were selected to obtain
a representation of a wide variety of arrhythmias;

• MIT-BIH Normal Sinus Rhythm: This database is
composed of excerpts from 18 subjects, from the
MIT-BIH Arrhythmia database [82], [83], presented
above, deemed to be free from arrhythmias or other
abnormalities;

• PTB: The PTB Diagnostic ECG database [84], [86]
includes 549 recordings from 290 healthy subjects
and individuals with various cardiac conditions (such
as myocardial infarction, dysrhythmia, hypertrophy, or
heart failure). It has 1 to 5 recordings per subject, ranging
between 38.4 and 104.2 seconds, from all 12 standard
and 3 Frank leads;

• QT: The QT database aims to aid the development
of automatic methods of measurement of QT wave-
forms [85]. This collection is a compilation of 105
15-minute relevant recording extracts from other public
databases;

• UofTDB: The University of Toronto ECGDatabase [72]
was specifically created for biometrics and addresses
several important criteria for a thorough evaluation of
biometric performance. The off-the-person ECG signals
were captured using dry electrodes at the thumbs of a
total of 1019 subjects. For each subject, the database
includes up to six recordings over a period of sixmonths,
in various postures: supine, tripod, exercise, sitting, and
standing.

C. FUTURE POSSIBILITIES REGARDING PUBLIC DATA
While many researchers opt to use private acquisitions of
data for their studies on ECG biometrics, public datasets have
been crucial in allowing the appropriate comparison of results
across publications. Nevertheless, if our goal is to increase
competitiveness between ECG-based biometrics and more
developed traits, we should address some concerns regarding
public collections.

Currently, countries like India, China, or the United States,
are starting to invest in nation-wide identification systems for
their large populations [87], which awakens the need for bio-
metric systems that can robustly discriminate between several
million enrolled subjects. To keep up with this trend, we need
to work towards the creation of public ECG collections with
larger number of subjects.

Moreover, researchers can currently choose from small
on-the-person datasets that include health conditions and
long acquisition times (such as the AHA, European ST-T,
and the MIT-BIH Arrhythmia databases), or the off-the-
person UofTDB collection with short recordings from several
healthy subjects. This calls for the creation of a pub-
lic database with number of subjects similar or superior
to UofTDB, with several longer off-the-person recordings
(ideally over one hour), taken over long time periods (months
to years), during different activities and postures.

Finally, it would also be very beneficial to have a publicly
available collection of signals acquired using recent wearable
and seamless technologies, such as the aforementioned Car-
dioWheel and Nymi Band. The highly acceptable acquisition
settings offered by such products places, undoubtedly, new
challenges on signal noise and variability, that would be very
useful for the development of robust biometric algorithms.

V. SIGNAL DENOISING
A. OVERVIEW AND OBJECTIVES
During the previously discussed stage of acquisition, the elec-
trocardiographic signals are highly susceptible to be cor-
rupted by noise [88]. The amplitude of their waveforms can
vary depending on the electrode characteristics and place-
ment but, in ideal conditions (using chest leads in medical
settings), the QRS complex only reaches 2−3 mV, the largest
amplitude of the whole cyclic beat [89].

This means that the farthest the location of the electrodes,
the weaker the signal and the more dominant the noise, that
can originate in many sources, most commonly:
• Powerline interference (PLI): The sinusoidal alternat-
ing current, used as energy source by the acquisition
equipment, reflects on the acquired signal as a high-
frequency noise (60 Hz in the United States and other
American countries, and 50 Hz in Europe, Asia, and
most other countries) [13], [89];

• Baseline wander (BW): Baseline wander is caused by
breathing movements and it reflects on the acquired sig-
nal as a low-frequency undulation of the signal baseline,
normally below 1 Hz [13], [89];

• Electromyographic (EMG) interference: Like the
cardiac muscle, other muscles in the body also use
electric impulses to contract. While capturing ECG,
electromyographic signals can interfere in the signal
resulting in high-frequency, high-amplitude, short-term
bursts [13], [89];

• Electrode movement: Skin impedance changes around
the electrode, caused by the movements of the subject,
can reflect as high amplitude artifacts in the signal [89];

• Lead reversal: The reversal of leads through misplace-
ment of electrodes causes the incorrect measurement
of potentials, reversing in amplitude some or all of the
heartbeats waveforms [13];

• Pacemaker interference: Signals from artificial pace-
makers can be captured along with the ECG signal, com-
monly appearing as short spikes before the S wave [13].
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The stage of signal denoising is, thus, of utmost importance
for a ECG biometric system. Generally, this stage is grouped
with the one that follows, signal preparation, on a single phase
designated as Quality Assessment (see Fig. 1) or, more com-
monly, Signal Preprocessing. However, as systems evolve
towards more acceptable acquisition settings, as discussed
before, each of these stages becomes increasingly impor-
tant and detailed, and thus will be presented and discussed
separately.

A summary of information on the most relevant aspects of
the surveyed unimodal methods in ECG biometrics, to allow
for a unprecedentedly complete analysis and comparison of
state-of-the-art algorithms and their results, can be analyzed
in Tables 3, 4, 5, 6, and 7.

B. APPROACHES FOR ON-THE-PERSON SIGNALS
On the first initiatives in ECG biometrics, using on-the-
person acquisitions, signal-to-noise ratio was higher, and
noise sources were mainly limited to powerline interference
and baseline wander from breathing movements. Hence, fil-
ters, such as bandpass (BPF), lowpass (LPF), highpass (HPF),
or notch (NF), were the first and have been the most fre-
quent option, due to their simplicity and lower computa-
tional cost. Bandpass filters have been most common, with
bands between 1 − 40 Hz [8], [10], [28], [90], 2 − 40 Hz
[36], [88], [91], or 2 − 30 Hz [62], [63], [92], aiming to
keep most useful individual information of the ECG while
attenuating low and high-frequency noise.

Recently, Choudhary and Manikandan [93] proposed the
use of the Discrete Cosine Transform (DCT) for simultane-
ous removal of baseline wander and powerline interference,
which proved more successful than bandpass filters, when
compared on simulated scenarios. The Discrete Wavelet
Transform (DWT) has also been proposed for denoising of
on-the-person signals [89], [94], [95], as it allows to decom-
pose the signal into several levels, which may be separately
processed to eliminate noise in certain frequency ranges.

C. APPROACHES FOR OFF-THE-PERSON SIGNALS
When considering off-the-person approaches, wearables, or
seamlessly integrated acquisition settings, it is reasonable to
expect a considerable increase in the noise influence, with
lower signal-to-noise ratio. The ability to capture the ECG
signal weakens, so the amplitude of the ECG components is
smaller, when compared with chest leads, and movement arti-
facts are much more frequent and dominant [96], [56], [60].

For these, filters have also been widely applied [56], [90],
as well as DWT [97]. However, the enhanced noise content
motivated the proposal of new approaches based on line
fitting algorithms, such as fitting of polynomial curves and
the Savitzky-Golay algorithm [98]. Their use or combination
with moving average or median filters has been shown more
successful than filters or transform denoising [19], [44], likely
because noise is widely present across the ECG frequency
range, and such methods avoid restricting their operation to
narrow frequency ranges.

D. TRENDS AND CHALLENGES
Looking back, we can conclude that the trend in signal
denoising has been the evolution towards methods that
can adapt to increasingly unexpected and dominant noise.
Considering the efforts devoted to more acceptable and com-
fortable acquisition settings, with increasing focus on wear-
ables and seamless settings, it is unreasonable to expect this
trend would be reversed in the near future.

While filters appear to be a wise option if the noise is con-
fined to known frequency ranges outside the ECG frequency
range, for on-the-person signals, transforms (especially DCT)
have been shown to be a good alternative for denoising
without causing distortions [93]. However, when the noise is
widespread and/or its frequency range is unpredictable (such
as with off-the-person signals), line fitting algorithms such
as the Savitzky-Golay filter may be a better option, as they
smooth the signal without making strong assumptions on its
noise content.

Nevertheless, research must continue to work towards
increasingly robust and adaptable denoising methods.
Researchers have recently started to use deep learning
methodologies (as discussed further on in subsection IX-A),
that have shown remarkable robustness to noise and vari-
ability in several pattern recognition applications [99], [65].
These, along with a deep study of data augmentation, may
result in better alternatives to current and future methods
devoted to signal denoising, and should certainly be explored
in depth.

VI. SIGNAL PREPARATION
A. OVERVIEW AND OBJECTIVES
ECG biometric algorithms frequently resort to the applica-
tion of several processing operations over the acquired ECG
signal, between denoising and feature extraction. These have
the main goal to prepare the signal for the feature extraction
phase, in order to maximize the performance of the system,
by reducing persistent noise and variability, segmenting spe-
cific useful parts of the acquired signal, and/or discarding its
undesirable or prejudicial parts [19], [96], [123].

The noise and variability that may remain after the signal
denoising stage, which this stage will aim to attenuate, are
generally:

• Length inconsistencies: The acquisition may start at the
middle of an heartbeat or waveform, and its duration
may vary, which may conflict with feature extraction
methods that require equal length and/or aligned wave-
forms across acquisitions;

• Amplitude variations: The variation of electrode place-
ment and contact strength over time or between ses-
sions may cause amplitude variations in the signal,
scaling differently the various heartbeats and their
waveforms [102];

• Heart rate variability: Varying heart rate, over
time or across acquisition sessions, causes variations in
the duration of the heartbeat waveforms, especially the
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TABLE 3. Summary of the surveyed state-of-the-art unimodal methods proposed for ECG biometrics – Part I (ordered by year of publication and first
author name, DR – Dimensionality Reduction, NS – Number of Subjects, OP – Off-the-Person).
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TABLE 4. Summary of the surveyed state-of-the-art unimodal methods proposed for ECG biometrics – Part II (ordered by year of publication and first
author name, DR – Dimensionality Reduction, NS – Number of Subjects, OP – Off-the-Person).
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TABLE 5. Summary of the surveyed state-of-the-art unimodal methods proposed for ECG biometrics – Part III (ordered by year of publication and first
author name, DR – Dimensionality Reduction, NS – Number of Subjects, OP – Off-the-Person).
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TABLE 6. Summary of the surveyed state-of-the-art unimodal methods proposed for ECG biometrics – Part IV (ordered by year of publication and first
author name, DR – Dimensionality Reduction, NS – Number of Subjects, OP – Off-the-Person).
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TABLE 7. Summary of the surveyed state-of-the-art unimodal methods proposed for ECG biometrics – Part V (ordered by year of publication and first
author name, DR – Dimensionality Reduction, NS – Number of Subjects, OP – Off-the-Person).
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ST and PQ waves, the duration of the heartbeat itself,
and the time between heartbeats [123];

• Movement artifacts: Sudden movements, especially
those caused by user activity, may cause spikes on the
acquired signal that may mimic R-peaks, distort heart-
beats, and influence the subsequent processes [123];

• Contact loss or impedance artifacts: Especially in
seamlessly acquired signals or off-the-person acqui-
sitions, contact with the electrodes may vary in
strength or be momentarily interrupted, and thus cause
saturation periods or signal loss [19].

To fulfill its objective, this stage generally consists of
reference point detection, signal segmentation, amplitude
normalization, time normalization, and/or outlier detec-
tion processes. On the other hand, some researchers have
opted to discard completely the processes included in this
stage [39], [28], [97], with the goal ofmaking their algorithms
completely non-fiducial.

Reference point detection and signal segmentation are
common in the state-of-the-art, followed by amplitude nor-
malization. Time normalization and outlier detection have
been much less frequently applied. Below, some of the most
relevant examples of each are presented and, then, some
future opportunities are discussed regarding this stage.

B. COMMON PROCESSES
1) FIDUCIAL DETECTION
In order to aid posterior processes, such as signal segmenta-
tion, the preparation of the signal for recognition can include
a step of detection of heartbeat reference points, designated as
fiducials. The majority of the surveyed research works have
used this technique, varying in the methods used.

The Pan-Tompkins algorithm [135] was the most frequent
choice for fiducial detection [42], [47], [57], [90], [121],
and was developed specifically for real-time QRS detection
in ECG signals. The method starts by reducing noise with
a bandpass filter, and a derivative is used to provide QRS
slope information. A squaring function emphasizes high fre-
quencies, and moving-window integration offers waveform
feature information, after which adaptive thresholding is used
to select the R-peak locations.

Some researchers [89], [94], [105], [134] have opted to use
the Discrete Wavelet Transform (DWT) to pinpoint the loca-
tions of the fiducials on ECG signals and delineate the heart-
beat waveforms. Fatemian and Hatzinakos [89] described this
process. After appropriate noise filtering, the DWT is used
to isolate the details of the QRS, of which most energy is
contained on the frequency range 3–40 Hz [94]. The R peaks
are detected by finding modulus maxima on the resulting
signal, and the Q and S fiducials are located by searching for
opposite-sign modulus maxima within a window centered in
R. After the QRS is located, the P and T waves are delineated
following similar processes of local maxima finding and
thresholding.

The Trahanias algorithm [136] is another common algo-
rithm [19], [44], and is based in successive morphological

open and close operations over the signal that compose filter-
ing and peak-valley extraction phases. These aim to empha-
size sharp amplitude peaks (generally the R-peaks) in the
signal, that are selected through adaptive thresholding.

The Engelse-Zeelenberg algorithm [137], adapted by
Lourenço et al. [138], works with a differentiated and filtered
version of the input signal. The R-peaks are located by ana-
lyzing the negative lobes on the signal, and are confirmed
through an adaptive thresholding process. Other methods
chosen for detection of R-peaks were Steep-slope thresh-
olding [111], a First Order Gaussian Differentiator (FOGD)
technique followed by peak correction stages [93], and
thresholding of local maxima [73], [74].

The Engelse-Zeelenberg and Pan-Tompkins algorithms,
based on signal differentiation, have been consistently
successful in on-the-person and off-the-person signals
[138], [90]. However, Pinto et al. [19] have recently applied
them to signals acquired seamlessly with CardioWheel dur-
ing driving, and Trahanias performed significantly better than
the alternatives, probably because of the filtering properties
of the morphological operations that highly reduce noise.

2) SIGNAL SEGMENTATION
Signal segmentation is the most commonly used signal prepa-
ration technique among the surveyed approaches. It is used
to limit the signal span for feature extraction, or to set a fixed
size to ease template matching when the feature is the signal
itself.

In some cases, the segmentation follows the reference point
location and consists on the cropping of the QRS complex
and/or other waveforms [107], [110], [121], or is meant to
include the whole heartbeat (or a majority of it), and is
thus performed at fixed distances before and after detected
R-peaks or QRS complexes [54], [90], [120]. Other research
works included segmentation of the signal using sliding win-
dows, with or without overlap, regardless of the completeness
of the heartbeat cycles inside it [106], [109], [116].

The alignment and averaging of various signal segments
is closely related to the signal segmentation process. The
alignment is generally performed using the R-peak as refer-
ence after its location, or it is performed through correlation.
It usually serves as a way to guarantee the template and
the collected signal are not affected by variability, that dis-
torts the personal information the signal contains, and could
threaten the recognition task. This approach accompanied
the signal segmentation in several of the analyzed research
works [8], [92], [93], [96].

3) AMPLITUDE AND TIME NORMALIZATION
As previously discussed, the electrocardiogram varies over
time with several factors. Specifically, differences in acquisi-
tion equipment or the interaction of the subject with it may
cause differences in signal amplitude and DC offset [102].
Moreover, heart rate variability causes significant changes in
the duration of the heartbeats and their waveforms. To main-
tain high performance regardless of this, some researchers
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include amplitude and time normalization techniques in the
ECG biometric algorithms.

Regarding amplitude normalization, Irvine et al. [102]
proposedmin-max normalization, setting themaximumvalue
to 1 and the minimum to 0 (y and x denote, respectively,
the normalized and the original segments):

y[n] =
x[n]−min(x[n])

max(x[n])−min(x[n])
. (1)

This same expression was used by some poste-
rior approaches that applied amplitude normalization
[50], [11], [36]. Odinaka et al. [106] opted to normalize heart-
beat segments through the z-score method, by subtracting the
signal mean and dividing by the standard deviation:

y[n] =
x[n]− µ(x[n])

σ (x[n])
. (2)

Tawfiq et al. [107] and Lourenço et al. [108] used the max-
div method, that simply divides the entire beats by the R-peak
amplitude value:

y[n] =
x[n]

max(x[n])
. (3)

Time normalization techniques aim to reduce the impact
of heart rate variability on the electrocardiogram’s heartbeats.
Themost noticeable impact is the total length of the heartbeat.
So, some researchers performed normalization by simply
shrinking the segmented signal to a predefined length, usually
through signal resampling [11], [101], [108]. This technique
has its limitations, as the heartbeat does not expand uniformly
with lower heart rates, but it presents the advantage of only
requiring the system to know the start and end points of the
heartbeat.

To address the different way the heartbeat responds to heart
rate, Tawfiq et al. [107] normalized only the QT waveform,
more prone to variations from the heart rate. The researchers
used the Framingham study formula to shrink or enlarge
the heartbeat, computing the linearly corrected QT dura-
tion (QTLC ) using the time between the nearest R-peaks (RR),
and the original duration of the waveform (QT ), through:

QTLC = QT + 0.154(1− RR). (4)

Fatemian and Hatzinakos [89] went further, segment-
ing each ECG heartbeat into its key waveforms (P, QRS,
and T), and individually resampling them, before joining
them back together, with regulated intervals between them.
By reducing the effects of heart rate variability and avoiding
the typical distortion of the individual waveforms, this is
likely the best technique for time normalization. However,
it requires the detection of several waveforms’ onset and
offset fiducial points, making it potentially unreliable for
off-the-person or seamlessly acquired signals.

4) OUTLIER DETECTION
Outlier detection is generally applied to discard false or
deflected heartbeats, segmented from unacceptably noisy

signal portions affected from movement or impedance arti-
facts or contact loss [19].

A suitable outlier detection method should also be able
to appropriately deal with heartbeats whose morphology has
been affected by other factors, such as cardiac conditions. If a
health condition reflects similarly in the morphology of all
heartbeats, the outlier detection should consider it as a normal
subject signal feature as it will not menace the recognition
process. But if the condition only causes deflections occa-
sionally, the outlier detectionmethod should act appropriately
on the affected segments, and discard them if the morpholog-
ical changes are enough to menace the recognition process.

Nevertheless, the outlier detection process should be
applied equally to both enrollment and test templates, in order
to avoid harming the recognition performance. With the same
goal in mind, the subject’s stored templates/model should
be updated whenever they no longer adequately describe the
subject’s current trait.

DMEAN, proposed by Lourenço et al. [139], was specif-
ically created to reject heartbeat outliers. It checks, for each
candidate heartbeat, the veracity of four rules, regarding the
distance to the average template, the minimum and maxi-
mum amplitudes, and the position of the maximum heartbeat
amplitude (which must correspond to the R-peak location).
If it verifies the four rules, it is considered a true heartbeat,
otherwise it is rejected. This method presented significant
improvements when compared with DBSCAN, a common
density-based clustering algorithm, but the rule-based deci-
sionmay be unreliable when applied tomore noisy or variable
signals.

Louis et al. [90] opted to study Gaussian Mixture
Models (GMM) as a supervised method for outlier detection.
Trained on a set of known clean and desirable heartbeats,
the GMM is able to then separate normal heartbeats from
abnormal ones. The authors have tested it with off-the-person
signals acquired at the fingertips, and reported significant
improvements over the state-of-the-art approaches. Neverthe-
less, the method raises issues over the labeled data used to
train the GMM, as themodel can easily be biased towards cer-
tain subjects or patterns. These must be adequately addressed
in order to successfully apply the proposed method.

More recently, Pinto et al. [19] proposed a clustering
algorithm, NCCC, based on normalized cross-correlation
between candidate heartbeats. Those that presented lower
values of average cross-correlation between themselves were
considered true heartbeats, as they are more similar between
themselves. When evaluated with highly noisy seamlessly
acquired signals, using the CardioWheel, this method pre-
sented better performance than DMEAN. However, by using
clustering, it potentially becomes unreliable for sets of few
candidate heartbeats.

C. THE FUTURE OF THE PREPARATION STAGE
With the rise of off-the-person, wearable, and seamlessly inte-
grated acquisition settings, denoising is becoming increas-
ingly flawed, and more noise is capable to survive it.
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Fiducial detection will need to be improved for acceptable
reliability in such signals, and amplitude and time normal-
ization will need to be reformulated into more robust and
adaptable techniques, to avoid harming the subsequent stages.

However, we expect signal segmentation and outlier detec-
tion to be increasingly applied, as the only way to reject
unacceptable parts of the signal, which will becomemore fre-
quent. Deep learning, as discussed further on, will probably
be a robust alternative to this stage, but comes at the price of
increased computational cost. Thus, this stage is expected to
be increasingly important, and should certainly be addressed
in depth in future research efforts.

VII. FEATURE EXTRACTION
A. OVERVIEW AND OBJECTIVES
After the first two stages, the acquisition should now be ready
for the extraction of features. This stage aims to translate
the acquired signal into a representation that further reduces
the effects of remaining noise and intra-subject variability,
while emphasizing differences between subjects, to ease the
decision process.

Several feature extraction methods have been proposed for
ECG biometrics, and are generally grouped by their type:
fiducial, non-fiducial, or hybrid approaches [109], [113].
Furthermore, these can be clustered according to the domain
in which the features are extracted – time domain, frequency
domain, or others [140]. Extracted features may, additionally,
suffer dimensionality reduction to improve performance [72].
In the following subsections, we discuss these topics in detail,
while presenting relevant state-of-the-art examples.

The designation of approaches as fiducial or non-fiducial,
in the literature, is dissonant. Some reserve the non-
fiducial term to approaches that do not perform fiducial
detection at any stage of the entire biometric recognition
method [39], [28]. Others focus on the feature extraction
stage, considering as non-fiducial other methods that require
the previous location of fiducial points for segmentation of
heartbeats or their waveforms.

This section addresses solely the feature extraction stage.
Thus, feature extraction approaches that use fiducial mea-
surements as features are considered fiducial, and those that
do not use them are designated as non-fiducial, regardless of
the signal preparation processes that may precede them.

B. FEATURE EXTRACTION MODALITIES
1) FIDUCIAL APPROACHES
Fiducial approaches are thus designated because they exclu-
sively use as features the measurements of fiducial landmarks
of the ECG signal in the time domain. These measurements
vary widely throughout the state-of-the-art. Israel et al. [91]
used several time intervals between the heartbeat waveforms
P, Q, R, S, and T, as well as their onset and offset points,
and the width of the P and T waveforms. Zhang and Wei [43]
proposed the use of several amplitude, duration, interval,
level, and area measurements of the heartbeat fiducials.

Similarly, Shen et al. [57] used several normalized time
domain features, including the RS and ST slopes, and the
QRS triangular area. More recently, Rezgui and Lachiri [88]
used fifteen temporal attributes, six amplitude features,
and ten morphological parameters for identification.
Waili et al. [121] used the Q, R, and S amplitudes of twelve
consecutive QRS complexes, to obtain higher robustness to
variability and noise.

Nevertheless, these approaches present the significant
drawback of requiring the previous localization of several
fiducial points in the ECG heartbeats (see subsection VI-B1).
This requirement proves difficult to satisfy when using off-
the-person or seamless signals, as noise and variability dis-
tort the heartbeat waveforms and render the measurements
unreliable. Thus, fiducial feature extraction approaches were
significantly more frequent among the first research works,
and are currently solely chosen when working with on-the-
person signals.

2) NON-FIDUCIAL APPROACHES
As research evolved towards off-the-person signals and fidu-
cial detection became unreliable, new feature sets were
studied and proposed. Non-fiducial approaches are those
that use the entirety of the signal (or segments of it),
holistically, to extract features related to the waveform
morphology [108], [109], [113].

Saechia et al. [101] pioneered by applying a Fourier trans-
form to the whole PQRST segments, and to the P, QRS,
and T waveforms, separately. Since then, Fourier or Wavelet
transforms have been used in several occasions [8], [35],
[56], [106], [107], [113]. Plataniotis et al. [39] and, later,
Agrafioti et al. [10], Agrafioti and Hatzinakos [28], and
Hejazi et al. [97], successfully accomplished their goal to
dismiss completely the need for fiducial detection, by using
autocorrelation coefficients from sliding-window signal
segments.

Sufi et al. [110] aimed to apply two-dimensional feature
extraction from image analysis applications to ECGbiometric
recognition, and accomplished this by transforming 1D ECG
heartbeats into 2D cardioid graphs. Then, the researchers
used the cardioid centroid, area, perimeter, and extrema as
features. Iqbal et al. [117] also used cardioid graphs, selecting
their x and y coordinates as features. Dong et al. [130] opted
for the combination of 12 ECG leads to build tridimensional
vectorcardiograms (3D VCG or TVCG), taking advantage of
this to formulate a novel deterministic recognition approach.

From the perspectives of lossy compression or quanti-
zation, Coutinho et al. [63], [92] devised a user-specific
method of feature extraction based on Lloyd-Max quanti-
zation, and Brás and Pinho [118] inspired on Kolmogorov
complexity to propose aKolmogorov-based relative heartbeat
compression algorithm for feature extraction. More recently,
Louis et al. [90] aimed to avoid the effects of noise by
applying one-dimensional multi-resolution local binary pat-
terns (1DMRLBP) for extraction of local and global signal
characteristics.
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Furthermore, several state-of-the-art methods use seg-
mented heartbeats or average ensemble heartbeats [53],
[111], [120], or segments between R peaks [44], [54], result-
ing from the signal preparation stage, as feature sets for
decision, effectively skipping the feature extraction stage.

As presented, some non-fiducial approaches have success-
fully dismissed the need for robust fiducial detection, while
others only require the detection of the R-peak (generally
needed for heartbeat segmentation). While more applicable
to noisier signals, these have still to reach the near-perfect
performance reported by works using fiducial features.

3) HYBRID APPROACHES
Hybrid approaches are those that use features from both
fiducial and non-fiducial origins. Following the state-of-the-
art analysis performed for this survey, these proved to be
significantly more uncommon than the other two types of
approaches.

Palaniappan and Krishnan [42] combined the common
fiducial features R amplitude, QR interval, RS interval, QRS
width, and RR interval, with a non-fiducial QRS complex
form factor, computed using the segment and its first and sec-
ond derivatives. Ergin et al. [116] proposed the fusion of
QRS fiducials, with several time domain, Wavelet transform,
and Power Spectral Density (PSD) features, computed across
two-second sliding windows. Dar et al. [74] opted for the
extraction of a total of 46 features from Haar transform and
heart-rate-variable RR intervals.

By requiring the extraction of features through both fidu-
cial and non-fiducial techniques, hybrid approaches present
more complexity. This would, in some applications, be toler-
able if accompanied by a significant improvement in recog-
nition performance. However, following the results reported
by publications using similar evaluation settings, this has not
been verified. Thus, the best option would be to select either
fiducial or non-fiducial, considering the signal quality and
system requirements on the expected application settings.

C. DIMENSIONALITY REDUCTION
Although frequently overlooked, dimensionality reduction
has a very important goal in biometric systems and pattern
recognition algorithms in general. In the quest to entirely cap-
ture the wide variety of individual information stored by the
electrocardiographic signal, the number of features extracted
by biometric systems can easily become too high for a time-
efficient and reliable recognition process [9]. Thus, dimen-
sionality reduction aims to select or transform the extracted
features, in order to reduce its number to a more computation-
ally viable number, while keeping the maximum discriminant
power to improve the system’s recognition performance [72].

Biel et al. [37], [100], the pioneers in ECG biomet-
ric recognition, applied dimensionality reduction using
correlation matrices, to select 10 of 30 features from
Lead I, of a grand total of 360 features extracted from
all 12 leads. Israel et al. [91] selected 12 of 15 extracted
fiducial features using Wilkes’ lambda stepwise correlation.

Matos et al. [113], [56] used the symmetric Kullback-Leibler
divergence for bin selection, after fitting Gaussian
models to STFT spectrograms of heartbeat segments.
Dar et al. [73], [74] applied the Greedy Best First
Search (GBFS) algorithm for selection of Haar transform
features.

Plataniotis et al. [39] used the Discrete Cosine Trans-
form (DCT) to reduce the features extracted from win-
dowed autocorrelation. Later, Agrafioti and Hatzinakos [28]
obtained better performance with dimensionality reduction
using Linear Discriminant Analysis (LDA) than with DCT,
also for autocorrelation features. LDA was also the choice
of [10], [103], [109]. Li and Narayanan [11] opted for an
extension of LDA, the Heteroscedastic Linear Discriminant
Analysis (HLDA), while Pathoumvanh et al. [48] used the
less general Fisher Linear Discriminant Analysis (FLDA).
Hejazi et al. [97] used, besides LDA, Principal Component
Analysis (PCA) and Kernel Principal Component Analy-
sis (KPCA) for dimensionality reduction, concluding that
KPCA rendered the best performance results.

In fact, the work performed by Agrafioti and
Hatzinakos [28], Plataniotis et al. [39], and, more recently,
Hejazi et al. [97], on the use of non-fiducial autocorrelation
feature extraction, provides an adequate platform for com-
parison of dimensionality reduction algorithms. According
to their findings, LDA enabled higher decision performance
than unsupervised techniques, such as PCA and DCT coef-
ficients, the first to be explored by these researchers, despite
LDA’s supervised nature that requires knowledge of the sub-
jects prior to the deployment of the biometric system [109].

More recently, other supervised techniques, such as the
non-linear KPCAmethod [97], [134], were shown to be better
alternatives to LDA, which indicates that research should
probably focus on more sophisticated dimensionality reduc-
tion methods. Also, deep learning methodologies, such as
convolutional neural networks or autoencoders, can be tuned
to provide optimized non-linear dimensionality reduction,
which justifies further and deeper studies.

D. FUTURE WORK IN FEATURE EXTRACTION
Through the analysis of the surveyed research works, it is
possible to conclude that fiducial approaches generally con-
tribute more towards a high performance biometric system,
as the use of specific measurements reduces useless infor-
mation to a minimum, and allows for feature sets with less
dimensions.

However, as noise increases, the relevance of robustness
overcomes that of accuracy, and the former can only be
offered by non-fiducial methods. The ideal feature extrac-
tion method would be one that combines the conditions for
high performance offered by fiducial approaches with the
robustness to noise and variability offered by non-fiducial
approaches.

Unfortunately, such method is still to be devised. It is
possible that, with the onset of deep learning method-
ologies in ECG biometrics (to be discussed further on,
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TABLE 8. Definition of the commonly used metrics for performance evaluation in identification and authentication tasks.

in subsection IX-A), with their characteristic robustness to
noise and versatile feature extraction capabilities, we can
approach such ideal.

VIII. DECISION
A. OVERVIEW AND OBJECTIVES
Based on the representation of the ECG acquisition, obtained
through processes of feature extraction and dimensionality
reduction, the decision stage aims to accurately attribute one
of the enrolled identities to the user, in the case of identi-
fication tasks, or to accept or reject and identity claim, for
authentication tasks [2], [6], [141].

In the case of identification, the decision stage usually
consists of a classification process while, for authentication,
the acceptance or rejection of the identity claim is generally
based on a reference threshold T that is applied to the predic-
tion score. Adequately assessing performance in both tasks is
of the utmost importance, and thus a fewmetrics have become
common for the evaluation of biometric algorithms. The most
frequent are presented in Table 8 and in Fig. 10.

Below, we present the decision methods used for ECG
biometric algorithms, we analyze them in depth, and we delve
into future possibilities for enhanced decision in both iden-
tification and authentication tasks. To help the comparison
of state-of-the-art methods in terms of reported performance,
we group the results of the surveyed publications that have
used the four most common collections (see Fig. 9) – PTB,
ECG-ID, MIT-BIH Normal Sinus Rhythm, and MIT-BIH
Arrhythmia – in Tables 9, 10, 11, and 12, respectively.

B. STATE-OF-THE-ART DECISION METHODS
1) CLASSIFIERS
The decision stage of the ECG biometric algorithms can con-
sist on a classifier, trained on the stored templates from the set
of subjects enrolled in the biometric system, which will dis-
crimination between the subjects, in order to output an accu-
rate decision when needed. Classifiers are more commonly
used for identification tasks, and are generally either Support
Vector Machines, Nearest Neighbor classifiers, or Artificial
Neural Networks.

Support Vector Machines (SVM) are classifiers that, based
on a given set of training data, compute an optimal hyperplane

FIGURE 10. The evolution of False Acceptance Rate and False Rejection
Rate with the threshold T (top), and an example of a Receiver Operating
Characteristic curve (bottom).

that divides two classes, ensuring maximum margin between
the boundary and the nearest samples [88]. Kernel functions
allow to map non-linearly separable datasets into alternative
feature spaces, where an optimal hyperplane boundary can
be found. SVM have been extensively used in ECG-based
recognition [11], [35], [59], [64], [88], [96], [97], [111].
In what concerns the kernel functions, Gaussian Radial Basis
Function (RBF) and non-linear polynomial kernels have been
the most studied.

Nearest Neighbor classifiers, commonly k-Nearest-
Neighbors (kNN), take the feature vector being classified
and those of the stored templates and, in the feature space,
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TABLE 9. Results of surveyed approaches evaluated with the PTB
database (ordered by number of subjects – NS; works that joined PTB
with other databases [8], [28], [58], [89] are not included).

TABLE 10. Results of surveyed approaches evaluated with the ECG-ID
database (ordered by number of subjects – NS).

compute the distance between the former and each one of
the others. The feature vector is then attributed the most
verified class among the k closest template vectors. Nearest
Neighbor classifiers have been extensively used in ECG
biometrics [10], [40], [41], [71], [111], [114], [118], [120],
mainly because they offer the advantage of being easily
updated when new samples become available, by just storing
them on the database, while most other techniques would
require the repetition of the training process [95].

As for Artificial Neural Networks (ANNs), they mimic the
function of their biologic homonyms, that consist of webs
of interconnected neurons that receive inputs, analyze and
modify them, and pass them along until they reach a target
organ or tissue [27]. These classifiers are also composed by
neurons (or nodes), arranged in a varying number of layers,
and connected between them. The first layer receives the
inputs (feature vectors), the nodes have activation functions,

TABLE 11. Results of surveyed approaches evaluated with the MIT-BIH
Normal Sinus Rhythm database (ordered by number of subjects – NS;
works that joined MIT NSR with other databases [8], [28], [58], [88], [89],
[93], [112] are not included).

TABLE 12. Results of surveyed approaches evaluated with the MIT-BIH
Arrhythmia database (ordered by number of subjects – NS; works that
joined MIT Arrhythmia with other databases [8], [58], [88], [93], [112] are
not included).

and their connections are weighted to guide the final classifi-
cation, output by the last node layer [9], [117].

ANNs are especially useful in non-linear classification
problems [9]. Various types of these classifiers were used in
the surveyed approaches, especially the Multilayer Percep-
tron (MLP) [41], [42], [117], [142], but also the Decision-
based Neural Network (DBNN) [51], the Simplified Fuzzy
ARTMAP (SFA) [42], the Radial Basis Function Neural
Network (RBFNN) [103], and the Probabilistic Neural Net-
work (PNN) [41]. Most of these are trained with similar loss
functions, optimized with gradient-descent-based methods,
differing in the node activation functions.

Besides the most common methods, there have been
proposals of decision based on discriminant and compo-
nent analysis. These methods are more commonly used for
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dimensionality reduction, as they allow the transformation
of the feature space in order to minimize intraclass variance
and increase discrimination between classes [37]. However,
these transformations of the feature space have also been
used for the classification of new samples, for the first works
in ECG biometric recognition, with LDA [45], [46], [49] or
SIMCA [37], [100], a commercial PCA-based data analysis
algorithm.

2) METRIC-BASED MATCHING
Other methods are based on the comparison between the cur-
rently acquired trait and the previously acquired templates,
stored in the system database. The comparison is performed
based on similarity or dissimilarity metrics: for identifica-
tion, the comparison with the best result will decide the
identity to be chosen; for authentication, the metric value
is compared with a defined threshold to decide whether to
accept or reject the identity claim. Hence, the processes of
metric-based matching can be seen as adaptations of nearest
neighbor algorithms. The use of metrics for decision has
been significantly more common for authentication than for
identification tasks.

A substantial fraction of the research works that apply
matching methods have opted to use distance metrics. The
most popular distance metric was, by far, the Euclidean
distance [36], [39], [48], [64], [95], [108], [109], [112].
However, Euclidean distance is regarded by some researchers
as unreliable in high dimensional spaces, leading to the use of
other distance metrics, such as the cosine distance [64], and
the Mahalanobis distance [45], [46], [49], [104].

The correlation coefficient, unlike distance metrics, serves
to measure the statistical similarity between two sig-
nals or feature vectors [28]. It was first used for match-
ing method by Shen et al. [51], and was since used in
several other works [28], [55], [57], [89], [94], [105].
Choudhary and Manikandan [93] studied the Normalized
Cross-Correlation (NCC), comparing it to four different dis-
tance metrics: the Root Mean Square Error (RMSE), the
Percent Residual Difference (PRD), the Wavelet Weighted-
based Percent Residual Difference (WWPRD), and the
Wavelet Distance (WDIST). Based on the results, the resear-
chers concluded that NCC offered the best performance for
authentication tasks.

Besides distance metrics and similarity metrics based
on correlation, other techniques can be found in the
state-of-the-art. Examples include Gaussian log-likelihood
[56], [106], [113], and Dynamic Time Warping (DTW)
paths [44], [47], [54]. About DTW, we should remark its
applicability on out of time scale or unsynchronized signals,
without needing signal alignment, which, despite increased
computational cost, proves very useful when working with
signals suffering from increased variability.

Another matching method worthy of mention is the
Ziv-Merhav cross parsing algorithm [62], [63], [92], orig-
inally used with symbol sequences for data compression,

modified to compare two quantized heartbeat segments and
output two measures, similarity and relative entropy. In gen-
eral, metric-based methods offer less accuracy than methods
based on classifiers, but they gain some robustness by not
having to be trained on a specific dataset, and thus do not
depend much on the set of enrolled subjects, nor need to be
re-trained every time a new subject is enrolled in the system.

3) OTHER METHODS AND TECHNIQUES
A few researchers have opted for more unusual meth-
ods or techniques for decision. Zhang and Wei [43] built a
classification method based on Bayes theory error minimiza-
tion, while Ergin et al. [116] used Bayesian Networks along
with C4.5 Decision Trees. Some have proposed ensemble
decision methods, like Random Forests [8], [58], [74], and
Bagging [90]. Jahiruzzaman and Hossain [119], after com-
puting Chaotic Encryption (CE) features, based its decision
approach on the identification of unique CE sequences for
each subject.

Moreover, combined with several aforementioned meth-
ods, Pinto et al. [19] proposed the use of User-Tuned Authen-
tication, applying different specific thresholds depending
on the identity claimed for each authentication task. The
researchers found that the use of specific, subject-specific
thresholds reduces overall false acceptances and rejections,
improving the performance of the authentication system.

C. CHALLENGES AND FUTURE WORK
SVMand kNN, two of themost common decision algorithms,
have proven their superiority in performance, even in situa-
tions with increased noise and variability. It is safe to assume
that these would be wise options for new ECG biometric
algorithms. However, it would be useful to find an equally
accurate alternative that would not require re-training with
every subject enrollment or update (as SVM does) or the
memory-heavy storage of all subject’s templates (as kNN
does). Artificial Neural Networks, or even Deep Neural Net-
works, could potentially solve these issues, but researchers
will need to dedicate efforts to reach (or surpass) the perfor-
mance level offered by SVM and kNN.

IX. OTHER DEVELOPMENTS AND CHALLENGES
The bulk of research initiatives in electrocardiogram-based
biometrics has been focused on the development of biometric
recognition algorithms, generally dividing the algorithms in
the aforementioned stages of signal denoising, preparation,
feature extraction, and decision. Nevertheless, some authors
have devoted efforts to address other important issues, chal-
lenges, and opportunities regarding this biometric trait.

Here, wewill delve into the thosemost relevant, namely the
recent study of deep learning for ECG biometrics, template
and model updates, continuous biometrics, multimodal ECG
biometrics, and spoofing and data security.

Besides these increasingly trending issues, there are other
relevant open questions that should be addressed. While
off-the-person, wearable, and seamlessly integrated
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TABLE 13. Summary of the deep learning state-of-the-art methods proposed for ECG biometrics (ordered by year of publication and first author name,
DR - Dimensionality Reduction, NS - Number of Subjects, OP - Off-the-Person).

acquisition technologies have been studied with the goal of
increasing real-life applicability of ECG biometric systems,
mobile and cloud-based systems are two topics that have been
overlooked, but could provide useful approaches towards
highly competitive ECG biometric systems.

A. DEEP LEARNING IN ECG BIOMETRICS
Deep Learning methodologies are quickly revolutionizing
several fields in pattern recognition, galvanizing the machine
learning community with outstanding results and unfore-
seen robustness to input noise and variability in diverse
tasks [146].

It achieves these milestones mainly due to the flexibility
and robustness of convolutional layers for feature learning,
the selective memory of recurrent layers connected to their
previous instances, and the versatility of fully-connected lay-
ers [20], [146]. Their adaptability to scarce data through
techniques such as data augmentation, fine tuning, transfer
learning, and weakly supervised learning, just add to their
power for pattern recognition applications.

This has been verified in several recent research works.
Using a Recurrent Neural Network (RNN), Hannun et al. [99]
built an end-to-end speech recognition algorithm that offered
increased robustness to speaker variation and background
noise.With a 34-layer Convolutional Neural Network (CNN),
Rajpurkar et al. [30] achieved superior performance in

detection of several arrhythmias in ECG signals, when com-
pared with professional cardiologists. Using one-dimensional
data augmentation, Um et al. [147] reached improved per-
formance with a CNN for classification of motor state of
Parkinson’s patients.

In the topic of ECG biometrics (see Table 13), the study
of deep learning is still a pioneering affair. Initially,
Zhang et al. [20] proposed a multi-scale CNN that receives,
in parallel, selected autocorrelation coefficients of approx-
imation and detail Wavelet transform coefficient sets of
two-second ECG segments. Eduardo et al. [21] replaced the
feature extraction stage using an Autoencoder to learn lower
dimensional representations of segmented heartbeats, which
were ultimately fed to a kNN classifier.

However, most researchers aim to integrate several stages
into the deep learning model. Salloum and Kuo [22], after
signal preprocessing and segmentation, replaced the stages of
feature extraction and decision with a RNN with Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU).
Zhang et al. [65] replaced the stages of feature extraction and
classification, by feeding 2D representations of single-arm
ECG signals to a CNN. Luz et al. [144] also integrated the fea-
ture extraction and decision stages, proposing the combined
use of two separate CNN, one receiving segmented heartbeats
as input and the other receiving the respective heartbeats’
spectrograms, fused at score level.
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More recently, Labati et al. [145] detected, segmented,
and selected QRS complexes from ECG signals, and con-
catenated them into a QRS vector that served as input to a
unidimensional CNN that fulfilled the purposes of feature
extraction and decision. With a softmax output, the method
attained 100% IDR on the PTB database and, with Hamming
distance matching, achieved 2.75% EER with long-term sig-
nals from the E-HOL 24h collection.

As aforementioned, there is still much to study to appro-
priately take advantage of the great potential of deep learning
for ECG biometrics. The integration of all four stages of
denoising, preparation, feature extraction, and decision in
a single model could allow for a much deeper and coordi-
nated optimization for individual recognition. The flexibility
offered by such models, combined with techniques of data
augmentation and regularization, could lead us to new levels
of robustness against noise and variability.

Analyzing the surveyed deep learning methods for ECG
biometrics, the methodology with the most potential should
be RNN, as used by Salloum and Kuo [22], due to the
outstanding performance achieved. Furthermore, deep learn-
ing should be more deeply studied and evaluated in off-the-
person settings. Despite the fact that deep learning brings
significantly increased computational requirements to bio-
metric systems, they should be compensated by a consider-
able boost in performance and robustness.

B. TEMPLATE OR MODEL UPDATES
Minding the goal of developing a biometric system that is
both accurate and robust, it is paramount to acknowledge
the variability of the ECG over time. As aforementioned,
Labati et al. [52] have shown, using twenty-four-hour-
long Holter recordings, that even in such short periods,
the ECG varies enough to impact the biometric recognition
performance.

It is expectable, after weeks and months of use, that a
biometric system decision models and/or stored templates do
not adequately represent the enrolled subjects anymore. This
further emphasizes the need for data, during development and
evaluation, that is acquired from the same subjects in diverse
moments over long time periods, but also requires the systems
to include techniques to ensure the models or templates are
up-to-date and continue to adequately represent the enrolled
subjects.

For this, some researchers have proposed template update
methods, reliable ways to ensure the system maintains the
capability of recognizing the enrolled subjects. In order
to keep up with their constant variability, the proposed
methods frequently update the respective templates stored
in the database [10], [63], [92]. Specifically, the method
proposed by Agrafioti et al. [10] updates the stored tem-
plates based on the detected emotional state of the subject:
when the physiological state of the subject changes (and
the system outputs weaker matching scores), the most
recent acquisitions of the subject are used for template
update.

Although template update is far more common in ECG
biometrics than model update, this can only be applied to
nearest neighbour classifiers or decision based in metrics.
For other decision methods (e.g., the more successful SVM),
there is no access to templates to update, and the update
must be performed on the model. This, for SVM classifiers,
requires the separate storage of the templates and means
the re-training of the algorithm, and for Neural Networks,
difficults the control of the influence of new samples relative
to original templates. Hence, given the obvious advantages
and current issues, it is clear that research should devote
efforts into more effective, widely applicable, and control-
lable techniques for template or model update.

C. CONTINUOUS BIOMETRICS
Generally, biometric systems maintain a session open after a
favorable decision, until the user terminates it. This generates
security flaws, as the system becomes vulnerable to attackers
when the user momentarily leaves the system unattended
without closing the session. This can be avoided by setting
time limits or closing the session after some idle time, but
this impacts usability and productivity as it requires the user
to frequently re-open the session, e.g., when reading a docu-
ment or watching a video without interacting with the system
for a long time [104].

Continuous biometric systems, also referred to as on-
line or real-time biometrics, are those that quickly output a
first decision and frequently update it. With this, current users
are frequently recognized and the session is effortlessly kept
open for them, but when attackers or impostors try to take
advantage of a session left open, the system detects them
and closes the session [104]. The electrocardiogram, as a
continuously available biometric trait with low processing
requirements, is especially fitted for such systems.

The first continuous approach was proposed by
Guennoun et al. [104], that frequently generated a compari-
son score to assess if the authenticated user was, still, the one
using the system. Louis et al. [90] devised a similar approach,
by allowing for three different results in each cycle: blocking
out any impostors (reject), maintaining the system open for
the authenticated user (accept), or, in doubt, simply delay the
decision for the next cycle (continue).

Matta et al. [109] was the first to focus on continuous iden-
tification, performing it every five seconds. Matos et al. [56]
performed a real-time recognition process on 100 ms sliding
windows over a continuously received ECG signal. More
recently, Camara et al. [122] opted to consider the elec-
trocardiographic signals as continuous data streams, focus-
ing on ensuring the method’s applicability in real-time.
Additionally, the authors have remarked the enhanced capa-
bilities of continuous systems, continuously receiving new
trait data, to adapt and ensure reliability over long time
periods.

Along with increased security, the frequent decision
renewal by continuous biometric systems bring two other
advantages. The first is the possibility to combine the most
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TABLE 14. Summary of the state-of-the-art multimodal biometric methods using ECG biometrics (ordered by year of publication and first author name,
NS - Number of Subjects, OP - Off-the-Person ECG acquisition).

recent past decisions to support the current decision, as stud-
ied by Pinto et al. [19], which improves performance by
reducing influence of single wrong decisions. Other advan-
tage is the greater amount of trait data available, being contin-
uous acquired from the users, which could be useful for more
frequent, thorough, and effective template or model update
procedures [122].

Nevertheless, continuous ECGbiometric systems currently
present several limitations. Although the ECG signal is,
as aforementioned, a biometric trait that presents low pro-
cessing requirements, the need for quick and frequently
renewed decisions in continuous systems requires the com-
putational cost to be low and the hardware to be adequately
powerful.

Furthermore, to frequently renew the decision, the system
should also be able to perform accurately and robustly with
short ECG segments, which can be difficult to achieve.
However, continuous ECG biometric systems present
significant advantages for several applications, and cer-
tainly merit the devotion of future efforts towards their
development.

D. MULTIMODAL ECG BIOMETRICS
As research moves towards more acceptable ECG acqui-
sition settings, multimodal biometric systems are placing
themselves as a good alternative to unimodal ECG biometric
systems. This is mainly due to noise and variability in the
acquired signals, enhanced by the trending off-the-person,
wearable, and seamless acquisition techniques, that impact
performance and robustness. Multimodal systems generally
offer significant advantages in terms of representation, cer-
tainty, accuracy, and completeness [155].

Some authors have developed ECG multimodal sys-
tems (see Table 14), acquiring one or more traits alongside
the ECG, to take advantage of its desirable universality,
uniqueness, and continuous availability, and diminish the
undesirable effects of its variability.

To the extent of our knowledge, Israel et al. [148] were
the first to propose an ECG multimodal system, using ECG

to improve face biometric identification, fusing both traits at
feature, decision, and score levels. They found that, while the
sole use of face images was a better alternative than a uni-
modal ECG algorithm, the fusion of face with ECG at feature
level brought significant improvements to the identification
rate, from 91% to 99%.

Boumbarov et al. [149] used face images to improve ECG
biometric performance, studying diverse score level fusion
rules, and reported the improvement of IDR from 95.7% to
99.5%, when using product rule. Singh et al. [150] also fused
traits at the score level, opting to use three traits regarded as
least obtrusive – ECG, face, and fingerprint – for authentica-
tion. While separate, the ECG, face, and fingerprint authen-
tication algorithms presented, respectively, 10.8%, 4.52%,
and 2.12% EER. However, fusing ECG and face gave 3.02%
EER, fusing ECG and fingerprint gave 1.52% EER, and
fusing all three traits offered 0.22% EER.

Bugdol andMitas [151] opted to combine the ECGwith the
non-invasive and socially acceptable voice trait. While ECG
and voice offered, respectively, 28% and 72% IDR, the fusion
of both at feature level allowed for an improvement to 77%
IDR. Pouryayevali [152] was the first to use off-the-person
ECG acquisitions in multimodal biometrics, resorting to the
UofTDB database. With fingerprint acquisition, the author
reported the improvement of EER in across-session acquisi-
tions from 3.12% (using only ECG) to 0.08%.

Arteaga-Falconi et al. [154] opted to fuse fingerprint
and ECG at the decision level. While their fingerprint uni-
modal algorithm offered 1.18% EER in authentication tasks,
the fusion with ECG reduced EER to 0.46%. Regarding the
fusion rule, they found it was best to give preference to the
fingerprint results, considering ECG a weaker biometric trait.

It should be noted that miBEAT [66], mentioned in sub-
section III-A, reports being capable of multimodal biomet-
ric identification in seamlessly integrated settings, using
ECG and PPG signals. Nevertheless, despite preliminary
tests on heart rate variability measurements, no identifica-
tion or authentication tests were performed.

Following the findings of the surveyed works, the most
lucrative path in multimodal ECG biometrics could be the
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fusion of ECG with more than one other trait, considering,
naturally, their harmonious integration and potential for
unobtrusive acquisition. Face appears to be the most appli-
cable trait, especially for seamless and continuous biometric
systems, as it does not require contact, but fingerprint has
reported better performance.

Moreover, it would be beneficial to study multimodal
ECG biometrics with larger sets of subjects, following the
current trends in unimodal ECG biometrics. To this end,
efforts should be devoted towards the development of large
public datasets with diverse traits, especially face and fin-
gerprint, alongside ECG acquired from off-the-person, wear-
able, or seamless settings.

E. SPOOFING AND DATA SECURITY
Despite all the advantages offered by biometrics when
compared with traditional authentication systems, there are
two highly relevant issues that remain to be completely
solved: spoofing and data security. These problems have been
recently studied by researchers so, below, we delve into what
has been done and what lies ahead.

1) SPOOFING AND COUNTERFEITING
In the case of keys and passwords, either they corre-
spond or not to their stored counterparts. However, biometric
traits are variable, they have a fuzzy nature that requires
systems to allow some leeway when granting access. This
allows attackers to be successful if they can acquire the trait
from a victim and store it for later use, or mimic their trait
with sufficient similarity.

Although the electrocardiogram’s power against spoofing
has been consistently praised in state-of-the-art publications,
it has only recently been adequately tested. Eberz et al. [23]
showcased the vulnerabilities of the commercial Nymi Band,
and proved that it is possible to acquire ECG signals from a
victim and inexpensively use them to attack the authentica-
tion wearable, with significant success rates. Although their
spoofing technique still required contact with both hands of
the victim, which is a protection other traits do not offer,
it serves as a warning to researchers and developers of bio-
metric systems to start studying and implementing strong
spoofing prevention measures.

The vulnerabilities of the ECG biometric systems have
been further confirmed by Karimian et al. [24], who studied a
systematic mapping function that allows any attacker to trans-
form his own signals into a victim’s. The authors reported
over 90% success rate in online spoofing attacks.

Researchers have already started to address the problem of
spoofing in ECGbiometrics. Specifically, Komeili et al. [156]
has studied an algorithm to strengthen multimodal biometric
systems, using the liveness information of the ECG com-
bined with the high authentication performance offered by
fingerprints. However, there is still much to do to ensure the
inviolability of ECG biometric systems.

2) DATA SECURITY
Much more than a different type of key or password, a bio-
metric trait is a piece of the user: it carries sensitive personal
information that is closely connected to its identity. By requir-
ing the storage of biometric trait measurements (templates) of
the enrolled subjects, biometric systems are a vulnerability
to the user privacy and security, which must be adequately
addressed with advanced storage protection methods.

Although some works in ECG biometrics have included
encryption or compression based techniques [119],
[118], [63], these have been chosen not specifically for
security but to obtain more meaningful and robust features.
Nevertheless, Nandi et al. [157] has separately proposed a
method for generation of hash codes for ECG signals, based
on cellular automata. The authors state that the obtained
encryption enhances trait security for human authentication
systems.

When applying ECG for healthcare monitoring, some
researchers have specifically devoted efforts to stored data
security. Sufi et al. [158] were among the first to address
this topic, by developing an ECG encryption technique based
on chaos theory, to ensure patient privacy in time-critical
telecardiology. Son et al. [159] proposed a signal scrambling
method to secure transmitted data and anonymous identity
schemes to preserve privacy in an intelligent arrhythmia
detection system. However, there is still a long way to go until
we secure the personal information stored in ECG biometric
systems.

3) CHALLENGES AND OPPORTUNITIES
Spoofing and data security, two real and pressing issues that
remain to be solved in ECG biometrics, appear even more
urgent when we consider that, unlike passwords or keys,
we do not have the option to change our biometric traits when
they are stolen [155], [160].

As the topic of ECG biometrics evolves from research
knowledge to widespread commercial products, and already
with some deployed commercial systems, storing sensitive
information on the enrolled users, the need to appropriately
and completely address the problems of spoofing and data
security is more pressing than ever.

Future research endeavors should further study ways
to pinpoint and reduce vulnerabilities and prevent spoof-
ing attacks. Also, techniques such as cancellable biomet-
rics or cryptosystems [155], [161], already studied for other
traits, should be explored and adapted for ECG signals,
to ensure the security of stored data.

X. CONCLUSION
As shown by this survey, through a detailed presentation
and discussion of the evolution of electrocardiogram-based
biometrics, the ECG has the potential to be one of the
main biometric traits. However, some challenges are still to
be solved, especially regarding acquisition, deep learning,
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multimodal biometrics, public data, spoofing, and data secu-
rity, that raise new and exciting research opportunities for the
near future.

First, it is remarkable how the electrocardiogram, com-
monly acquired through medical-grade equipment, is now
measurable by wearable gadgets and seamlessly integrated
systems, significantly increasing acquisition comfort and
acceptability. Research should continue exploring seamless
acquisition settings, and should address the possibility of
measuring ECG without contact, to further enable real ECG
biometric applications.

Then, to address noise and variability, enhanced by increas-
ingly acceptable acquisition settings, multimodal systems
should be further studied. Traits to be further explored would
include face, that would be easily applicable in most real
settings, the fingerprint, that offers the best accuracy improve-
ments, or the PPG, that can be easily acquired alongside
the ECG. Also, efforts should be devoted to build new
publicly available multimodal datasets, including ECG sig-
nals, to offer more challenging settings for research and
development.

Finally, vulnerability to spoofing attacks should be a main
concern in all proposed biometric systems and algorithms.
The protection of the users and their privacy should always
include their data, through the study of new and improved
encryption techniques and storage protection methods to
avoid malicious access to biometric templates.

In these changing times for biometrics, quality research
is key to affirm the ECG as a viable alternative to the most
famous traits. Hopefully, following the challenges discussed
in this survey, research can address the open issues, taking
advantage of current opportunities, and propose increasingly
competitive and applicable ECG biometric systems.
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