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Abstract The remarkable number of real applications under
dynamic scenarios is driving a novel ability to generate and
gather information. Nowadays, a massive amount of informa-
tion is generated at a high-speed rate, known as data streams.
Moreover, data are collected under evolving environments.
Due to memory restrictions, data must be promptly processed
and discarded immediately. Therefore, dealing with evolving
data streams raises two main questions: (i) how to remember
discarded data? and (ii) how to forget outdated data? To main-
tain an updated representation of the time-evolving data, this
paper proposes fading histograms. Regarding the dynamics
of nature, changes in data are detected through a windowing
scheme that compares data distributions computed by the
fading histograms: the adaptive cumulative windows model
(ACWM). The online monitoring of the distance between
data distributions is evaluated using a dissimilarity measure
based on the asymmetry of the Kullback—Leibler divergence.
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The experimental results support the ability of fading his-
tograms in providing an updated representation of data. Such
property works in favor of detecting distribution changes
with smaller detection delay time when compared with stan-
dard histograms. With respect to the detection of concept
changes, the ACWM is compared with 3 known algorithms
taken from the literature, using artificial data and using pub-
lic data sets, presenting better results. Furthermore, we the
proposed method was extended for multidimensional and the
experiments performed show the ability of the ACWM for
detecting distribution changes in these settings.
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monitoring - Distribution changes - Concept changes

1 Introduction

The most recent developments in science and informa-
tion technology are spreading the computational capacity
of smart devices, which are capable to produce massive
amounts of information at a high-speed rate, known as data
streams. A data stream is a sequence of information in the
form of transient data that arrives continuously (possibly
at varying times) and is potentially infinite. Therefore, it is
unreasonable to assume that machine learning systems have
sufficient memory capacity to store the complete history of
the stream. Indeed, stream learning algorithms must process
data promptly and discard it immediately. In this context, it is
essential to create synopses structures of data, keeping only
a small and finite representation of the gathered information
and allowing the discarded data to be remembered.

Along with this, as data flow continuously for large periods
of time, the process generating data is not strictly stationary
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and evolves over time. Therefore, it is of utmost impor-
tance to maintain a stream learning model consistent with the
most recent data. When dealing with data streams in dynam-
ics environments, besides remembering discarded data, it is
necessary to forget outdated data. To accomplish such assign-
ments, this paper advances fading histograms, which weight
data examples according to their age. Thus, while remember-
ing the discarded data, fading histograms gradually forget old
data.

Moreover, the dynamics of environments faced nowadays
raise the need of performing online change detection tests.
In this context, the delay between the occurrence of a change
and its detection must be minimal. When data flow over time
and for large periods of time, it is unlikely the assumption
that the observations are generated, at random, according to
a stationary probability distribution [5]. As the underlying
distribution of data may change over time, old observations
do not describe the current state of nature and are useless.
Therefore, it is of paramount interest to perceive if and when
there is a change.

Despite aging, the problem of dealing with changes in a
signal has caught the attention of the scientific community in
recent years due to the emergence of real word applications.
The online analysis of the gathered signals is of foremost
importance, especially in those cases where actions must be
taken after the occurrence of a change. From this point of
view, it is essential to detect a change as soon as possible,
ideally immediately after it occurs. Minimizing the detec-
tion delay time is of great importance in applications such
as real-time monitoring in biomedicine and industrial pro-
cesses, automatic control, fraud detection, safety of complex
systems and many others. Widely used in the data stream
context [7,13,25,35], windowing approaches for detecting
changes in data consist of monitoring distributions over two
different time-windows, performing tests to compare distri-
butions and decide if there is a change. This paper proposes
a windowing model for change detection, which evaluates,
through a dissimilarity measure based on the asymmetry of
the Kullback—Leibler divergence, the distance between data
distributions provided by fading histograms.

Previous work, contributions and paper outline

A previous work [37] presented a detailed description of the
construction of fading histograms and compared the per-
formance of these with sliding histograms, both feasible
approaches to cope with the problem of remember data in
the context of high-speed and massive data streams and to
forget outdated data when in dynamic scenarios. Other pre-
vious work [36] introduces an adaptive model for detecting
changes in data distribution, employing this summarization
approach to compute distributions.
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The main contribution of this paper is the detailed descrip-
tion of the adaptive cumulative windows model (ACWM)
for detecting data distribution and concept changes and
the introduction of this model in multidimensional settings.
Moreover, the experimental section evaluates the overall per-
formance of the ACWM in detecting distribution changes in
different evolving scenarios and it is compared with other
algorithms when detecting concept drift.

This paper is organized as follows. It starts with the prob-
lem of constructing fading histograms from data streams.
Section 3 addresses the problem of detecting distribution and
concept changes. In Sect.4 windowing schemes for change
detection are presented and Sect.5 proposes a windowing
model to compare data for detecting changes in data distribu-
tion. Section 6 evaluates the performance of the ACWM with
respect to the ability to detect distribution changes, in artifi-
cial and real-world data sets and compares results with those
obtained with the Page—Hinkley Test (PHT). In Sect.7, the
ability to detect concept changes is assessed and the presented
approach is compared with 3 algorithms: DDM (Drift Detec-
tion Method), ADWIN (ADaptive WINDdowing) and PHT.
The performance of the ACWM when detecting changes
in multidimensional data is also evaluated. Finally, Sect.8
presents conclusions on the ACWM and advances directions
for further research.

2 Data summarization

When very large volumes of data arrive at a high-speed rate,
it is impractical to accumulate and archive in memory all
observations for later use. Nowadays, the scenario of finite
stored data sets is no longer appropriate because information
is gathered assuming the form of transient and infinite data
streams and may not even be stored permanently. Therefore,
it is unreasonable to assume that machine learning systems
have sufficient memory capacity to store the complete history
of the stream.

This implies to create compact representations of data
when dealing with massive data streams. Memory restric-
tions preclude keeping all received data in memory. These
restrictions impose that in the data stream systems, the data
elements are quickly and continuously received, promptly
processed and discarded immediately. Since data elements
are not stored after being processed it is necessary to use
synopses structures to create compact summaries of data,
keeping only a small and finite representation of the received
information. As a result of the summarization process, the
size of a synopsis structure is small in relation to the length
of the data stream represented. Reducing memory occupancy
is of utmost importance when handling a huge amount of
data. Along with this, without the need of accessing the
entire stream, data synopses allow fast and relative approxi-
mations to be obtained in a wide range of problems, such as
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range queries, selectivity estimation, similarity searching and
database applications, classification tasks, change detection
and concept drift.

As for the wide range of problems in which data synopses
are useful, it is of paramount interest that these structures
have broad applicability. This is a fundamental requirement
for using the same data synopsis structure in different applica-
tions, reducing time and space efficiency in the construction
process. The data stream context under which these synopses
are used also imposes that their construction algorithms must
be single pass, time efficient and have, at most, space com-
plexity linear in relation to the size of the stream. Moreover,
in most cases, data are not static and evolves over time. Syn-
opses construction algorithms must allow online updates on
the synopses structures to keep up with the current state of
the stream.

Different kinds of summarization techniques can be con-
sidered in order to provide approximated answers to different
queries. The online update of such structures in a dynamic
scenario is also a required property. Sampling [39], hot lists
[11,30], wavelets [9,18,24], sketches [10] and histograms
[21-23] are examples of synopses methods to obtain fast and
approximated answers.

Fading histograms

A histogram is a synopsis structure that allows accurate
approximations of the underlying data distribution and pro-
vides a graphical representation of a random variable. His-
tograms are widely applied to compute aggregate statistics, to
approximate query answering, query optimization and selec-
tivity estimation [22].

Consisting of a set of k non-overlapping intervals (also
known as buckets or bins), a histogram is visualized as a bar
graph that shows frequency data. The values of the random
variable are placed into non-overlapping intervals, and the
height of the bar drawn on each interval is proportional to
the number of observed values within that interval.

To construct histograms in the stream mining context,
there are some requirements that need to be fulfilled: The
algorithms must be one-pass, supporting incremental main-
tenance of the histograms, and must be efficient in time and
space [20,21]. Moreover, the updating facility and the error
of the histogram are the major concerns to embrace when
constructing online histograms from data streams.

In the proposed histograms, the definition of the number
of buckets is related with the error of the histogram: follow-
ing the equi-width strategy, the number of buckets is chosen
under error constraints [37]. Let € be the admissible error
for the mean square error of a histogram Hj; with k buck-
ets. Then, considering that R is the admissible range of the
variable under study, the mean square error of an equi-width

histogram with at least R buckets is, at most, £. With respect

2

to the binning strategy, the equi-width histograms were cho-
sen based on the following reasons:

— The construction is effortless: It simply divides the
admissible range R of the random variable into k£ non-
overlapping intervals with equal width.

— The updating process is easy: Each time a new data
observation arrives, it just identifies the interval where
it belongs and increments the count of that interval.

— Information visualization is simple: The value axis is
divided into buckets of equal width.

Let i be the current number of observations of a given
variable X from which a histogram is being constructed. A
histogram Hj is defined by a set of k buckets By, ..., B
in the range of the random variable and a set of frequency
counts Fi(i), ..., Fr().

Definition 1 Let k be the number of non-overlapping inter-
vals of a histogram. For each time instance i, the histogram
frequencies are defined as:

F;()

i Cid
ZM, Vi=1,...,k (1)

where C; is the count of bucket B;:

1 if x; € Bj

Ci(i)=
i@ 0 otherwise

Vi=1,....k

A standard histogram attributes the same importance to
all observations. However, in dynamic scenarios, recent data
are usually more important than old data. Therefore, out-
dated data can be gradually forgotten attributing different
weights to data observations. In an exponential approach,
the weight of data observations decreases exponentially with
time. Exponential fading factors have been applied success-
fully in data stream evaluation [16]. Figure 1 illustrates the
weight of examples according to their age, considering an
exponential approach.

Following an exponential forgetting, histograms can be
computed using fading factors, henceforth referred to as fad-
ing histograms. In this sense, data observations with high
weight (the recent ones) contribute more to the fading his-
togram than observations with low weight (the old ones).

Definition 2 Let £ be the number of buckets of a fading
histogram. For each observation x; of a given variable X, the
histogram «-frequencies are defined as:

i eI
Yo Xm0
D YRR 0,

1—a!
-«

Fcc,j(i) =

Ni=1,...,k 2)
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Fig. 1 The weight of examples as a function of age, in an exponential
approach

where «, real number parameter, is the exponential fading
factor such that 0 <« o < 1.

According to this definition, old data are forgotten grad-
ually, since it contributes less than recent data. Assuming
that the observation x; belongs to bin m (with 1 <m < k),
the recursive form enables the construction of the fading his-
tograms counts in the flow:

Cj =(¥*Cj7],Vj=1,...,k
Cn=Cn+1,1<m=<k 3

To exemplify the forgetting ability of fading histograms
with respect to histograms constructed over the entire stream,
artificial data were generated from two normal distributions.
The initial 2500 observations follow a normal distribution
with mean 5 and standard deviation 1 and the remaining 2500
observations follow a normal distribution with mean 10 and
the same standard deviation.

For illustrative purposes, the number of buckets in each
histogram was set to 20 (considering an admissible error ¢ =
0.1 for the mean square error of the histograms and using the
approach proposed in [37]) and the value of the fading factor
for the fading histograms was set to « = 0.997.

Figure?2 (top) shows the artificial data with a change at
observation 2500. The remaining plots display fading his-
tograms and histograms constructed over the entire stream,
at different observations: 2000, 3000 and 4000.

From the first representations, while in the presence of
a stationary distribution, it turns out that both histograms
produce similar representations of the data distribution. The
second and the third representations present a different sce-
nario. At observation 3000, after the change occurred at
observation 2500, the representations provided by both his-
tograms strategies become quite different. It can be observed
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that in the fading histogram representation, the buckets for
the second distributions are reinforced, which does not occur
on the histogram constructed over the entire stream. Indeed,
contrary to the histograms constructed over the entire stream,
fading histograms capture the change better as there is an
enhancement of the fulfillment of the buckets for the second
distribution. At observation 4000, it can be seen that the fad-
ing histogram produces a representation that keeps up with
the current state of nature, forgetting outdated data (it must
be pointed out that although they appear to be empty, the
buckets for the first distribution present very low frequen-
cies). At the same observation, in the histogram constructed
over the entire stream, the buckets for the first distribution
still quite filled, which is not in accordance with the current
observations. From these representations, it can be observed
the ability of fading histograms to forget outdated data, since
the buckets from the initial distribution presented smaller
values than the corresponding ones in the histogram con-
structed over the entire data, while the buckets from the
second distribution have higher values. Indeed, fading his-
tograms reinforces the capture of changes in evolving stream
scenarios.

3 The change detection problem

A data stream is a sequence of information in the form of
transient data that arrives continuously (possibly at varying
times) and is potentially infinite. Along with this, as data flow
for long periods of time, the process generating data is not
strictly stationary and evolves over time.

Despite aging, the problem of detecting changes in a sig-
nal has caught the attention of the scientific community in
recent years due to the emergence of real-world applications.
Such applications require the online analysis of the gathered
signals: especially in those cases where actions must be taken
after the occurrence of a change. From this point of view, it is
essential to maintain a stream learning model consistent with
the most recent data, forgetting outdated data. Moreover, it is
of utmost importance to detect a change as soon as possible,
ideally immediately after it occurs. This reduces the delay
time between the occurrence of the change and its detection.
Minimizing the detection delay time is of great importance
in applications such as real-time monitoring in biomedicine
and industrial processes, automatic control, fraud detection,
safety of complex systems and many others.

3.1 Distribution changes

In the dynamic scenarios faced nowadays, it is an unlikely
the assumption that the observations are generated, at ran-
dom, according to a stationary probability distribution [5].
Changes in the distribution of the data are expected. As the
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Fig. 2 Comparison of histograms computed with a fading factor of @ = 0.997 (FH) and histograms constructed over the entire stream (AH)

underlying distribution of data may change over time, it is of
utmost importance to perceive if and when there is a change.

The distribution change detection problem is concerned
with the identification of the time of occurrence of a change
(or several changes) in the probability distribution of a data
sequence. Figure 3 illustrates this problem. In this example,
Py is the probability distribution of the observations seen in
the past and Pj is the probability distribution of the most
recent observed data.

Consider that xp, x3, ... is a sequence of random obser-
vations, such that x;, € R, r = 1, 2, ... (unidimensional data
stream). Consider that there is a change point at time t*
with t* > 1, such that the subsequence xi, x2, ...
is generated from a distribution Py and the subsequence
Xpx, Xpx41, - . . 1S generated from a distribution P;.

A change is assigned if the distribution Py differs signifi-
cantly from the distribution P;. In this context, it means that
the distance between both distributions is greater than a given
threshold.

The change detection problem relies on testing the hypoth-
esis that the observations are generated from the same
distribution and the alternative hypothesis that they are gen-
erated from different distributions: Hy : Py = P; versus
Hp : Py = P;. The goal of a change detection method is to
decide whether or not to reject Hy.

Whenever the alternative hypothesis is verified, the change
detection method reports an alarm. The correct detection of
a change is a hit; a non-detection of an occurred change is a
miss or a false positive. Incorrectly detecting a change that
does not occur is a false alarm or false negative. An effective
change detection method must present few false events and
detect changes with a short delay time.

» Xx—1

The essence of a distribution change can be categorized
according to three main characteristics:

— Rate The rate of a change (also known as speed) is
extremely important in a change detection problem,
describing whether a signal changes between distribu-
tions suddenly, incrementally, gradually or recurrently.
Besides the intrinsic difficulties that each of these kinds
of rates impose to change detection methods, real data
streams often present several combinations of different
rates of change.

— Magnitude The magnitude of change (also known as
severity) is also a characteristic of paramount importance.
In the presence of a change, the difference between dis-
tributions of the signal can be high or low. Despite being
closely related, the magnitude and the rate of a change
describe a different pattern of a change. Abrupt changes
are easily observed and detected. Hence, in most cases,
they do not pose great difficulties to change detection
methods. What is more, these changes are the most criti-
cal ones because the distribution of the signal changes
abruptly. However, smooth changes are more difficult
to be identified. At least in the initial phases, smooth
changes can easily be confused with noise [14]. Since
noise and examples from another distribution are differ-
entiated by permanence, the detection of a smooth change
in an early phase, tough to accomplish, is of foremost
interest.

— Source Besides other features that also describe a distri-
bution of a data set (such as skewness, kurtosis, median,
mode), in most cases, a distribution is characterized by
the mean and variance. In this sense, a change in data

@ Springer



188

Int J Data Sci Anal (2017) 3:183-212

Fig. 3 Illustration of a P P
distribution change 0.6 ¢ 0.6 .
Unknown o 0
Distributions
0.2 0.2
92 o 2 4 6 00 2 a4 6 8
Old Data Recent Data
g
Problem: P, =P,

distribution can be translated by a change in the mean or
by a change in variance. While a change in the mean does
not pose great challenges to a change detection method,
a change in the variance tends to be more difficult to
detect (considering that both presented similar rate and
magnitude).

3.2 Concept changes

The concept change problem is found in the field of machine
learning and is closely related to the distribution change
problem. A change in the concept means that the underly-
ing distribution of the target concept may change over time
[40]. In this context, concept change describes changes that
occur in a learned structure.

Consider a learning scenario, where a sequence of
instances X1, X, ... is being observed (one at a time and
possibly at varying times), such that X, € R?,r =1,2,...
is an instance p-dimensional feature vector and y; is the
corresponding label, y; € {Cy, Ca, ..., Ct}. Each example
X¢, ), t = 1,2,... is drawn from the distribution that
generates the data P(X;, y;). The goal of a stream learn-
ing model is to output the label y,;| of the target instance
X, +1, minimizing the cumulative prediction errors during the
learning process. This is remarkably challenging in environ-
ments where the distribution that is generating the examples
changes: P(X;+1, yr4+1) may be different from P(X;, y;).

For evolving data streams, some properties of the prob-
lem might change over time, namely the target concept on
which data are obtained may shift from time to time, on each
occasion after some minimum of permanence [ 14]. This time
of permanence is known by context and represents a set of
examples from the data stream where the underlying distribu-
tion is stationary. In learning scenarios, changes may occur
due to modifications in the context of learning (caused by
changes in hidden variables) or in the intrinsic properties of
the observed variables.

@ Springer

Concept change can be formalized as a change in the joint
probability distribution P (X, y):

P(X,y) = P(yIX) x P(X)

Therefore, a concept change can be explained through
a change in the class-conditional probability (conditional
change) and/or in the feature probability (feature change)
[17].

Concept changes can be addressed by assessing changes
in the probability distribution (class-conditional distributions
or prior probabilities for the classes), changes due to differ-
ent feature relevance patterns, modifications in the learning
model complexity and increases in the classification accuracy
[27].

In a supervised learning problem, at each time stamp ¢,
the class prediction y; of the instance X, is outputted. After
checking the class y;, the error of the algorithm is computed.
For consistent learners, according to the Probability Approx-
imately Correct (PAC) learning model [31] if the distribution
of examples is stationary, the error rate of the learning model
will decrease when the number of examples increases.

Detecting concept changes under non-stationary environ-
ments is, in most of the cases, inferred by monitoring the
error rate of the learning model [4,15,33]. In such problems,
the key to figuring out if there is a change in the concept is to
monitor the evolution of the error rate. A significant increase
in the error rate suggests a change in the process generat-
ing data. For long periods of time, it is reasonable to assume
that the process generating data will evolve. When there is
a concept change, the current learning model no longer cor-
responds to the current state of the data. Indeed, whenever
new concepts replace old ones, the old observations become
irrelevant and thus the model will become inaccurate. There-
fore, the predictions outputted are no longer correct and the
error rate will increase. In such cases, the learning model
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must be adapted in accordance with the current state of the
phenomena under observation.

As well as for the distribution changes, concept change
can also be categorized according to the rate, magnitude and
source of concept change. Although, regarding the source, a
change in the concept can be translated as a change in the
mean, variance and correlation of the feature value distri-
bution. Moreover, the literature categorizes concept changes
into concept drift and concept shift according to the rate and
magnitude of the change. A concept drift occurs when the
change presents a sudden rate and an high magnitude, while
a concept shift designates a change with gradual rate and low
magnitude.

4 Windowing methods for change detection

A windows-based change detection method consists of
monitoring distributions over two different time-windows,
performing tests to compare distributions and decide if there
is a change. It assumes that the observations in the first win-
dow of length L( are generated according to a stationary
distribution Py and that the observations in the second win-
dow of length L are generated according to a distribution
P). A change is assigned if the distribution Py differs signif-
icantly from the distribution P;:

Dy (Py||P1) = Igla)§ D;(Py||P1) > X, where A is known

o<

as the detection threshold.

The method outputs that distribution changes at the change
point estimate #*. In this context, it means that the distance
between both distributions is greater than a given threshold.

In such models, the data distribution on a reference win-
dow, which usually represents past information, is compared
to the data distribution computed over a window from recent
examples [13,25,35]. Within a different conception, Bifet
and Gavalda [7] propose an adaptive windowing scheme
to detect changes: the ADaptive WINDdowing (ADWIN)
method. The ADWIN keeps a sliding window W with the
most recently received examples and compares the distribu-
tion in two sub-windows (W, and W) of the former. Instead
of being fixed a priori, the size of the sliding window W is
determined online according to the rate of change observed
in the window itself (growing when the data are stationary
and shrinking otherwise). Based on the use of the Hoeffding
bound, whenever two large enough sub-windows, Wy and
W1, exhibit distinct enough averages, the older sub-window
is dropped and a change in the distribution of examples is
assigned. When a change is detected, the examples inside
Wy are thrown away and the window W slides keeping the
examples belonging to W;. With the advantage of providing
guarantees on the rates of false positives and false negatives,
the ADWIN is computationally expensive, as it compares all
possible sub-windows of the recent window. To cutoff the

number of possible sub-windows in the recent window, the
authors have enhanced ADWIN. Using a data structure that is
a variation of exponential histograms and a memory param-
eter, ADWIN?2 reduces the number of possible sub-windows
within the recent window.

The windows-based approach proposed by Kifer et al. [25]
provides statistical guarantees on the reliability of detected
changes and meaningful descriptions and quantification of
these changes. The data distributions are computed over an
ensemble of windows with different sizes, and the discrep-
ancy of distributions between two pairs of windows (with
the same size) is evaluated performing statistical hypothesis
tests, such as Kolmogorov—Smirnov and Wilcoxon, among
others. Avoiding statistical tests, the adjacent windows model
proposed by Dasu et al. [ 13] measures the difference between
data distributions by the Kullback—Leibler distance and
applies bootstrapping theory to determine whether such dif-
ferences are statistically significant. This method was applied
to multidimensional and categorical data, showing to be effi-
cient and accurate in higher dimensions.

Addressing concept change detection, the method pro-
posed by Nishida and Yamauchi [33] detects concept changes
in online learning problems, assuming that the concept is
changing if the accuracy of the classifier in a recent win-
dow of examples decreases significantly compared to the
accuracy computed over the stream hitherto. This method
is based on the comparison of a computed statistic, equiva-
lent to the Chi-square test with Yates’s continuity correction
and the percentile of the standard normal distribution. Using
two levels of significance, the method stores examples in
short-term memory during a warning period. If the detection
threshold is reached, the examples stored are used to rebuild
the classifier and all variables are reset. Later, Bach and Mal-
oof [3] propose paired learners to cope with concept drifts.
The stable learner predicts based on all examples, while the
active learner predicts based on a recent window of examples.
Using differences in accuracy between the two learners over
the recent window, drift detection is performed and whenever
the target concept changes the stable learner is replaced by
the reactive one.

The work presented in Kuncheva[27] goes beyond the
methods addressed in this section. Instead of using a change
detector, it proposes an ensemble of windows-based change
detectors. Addressing adaptive classification problems, the
proposed approach is suitable for detecting concept changes
either in labeled and unlabeled data. For the labeled data,
the classification error is recorded and a change is signaled
comparing the error on a sliding window with the mean error
hitherto. For labeled data, computing the classification error
is straightforward; hence, it is quite common to monitor the
error or some error-based statistic to detect concept drift on
the assumption that an increase in the error results from a
change. However, when the labels of the data are not avail-
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able, the error rate cannot be used as a performance measure
of drifts. Therefore, changes in unlabeled data are handled
by comparing cluster structures from windows with different
length sizes. The advantage of an ensemble of change detec-
tors is disclosed by their ability to effectively detect different
kinds of changes.

The evaluation of the performance of change detection
methods in time-changing environments is quantitatively
assessed by measuring the following standard criteria:

— Detection delay time The number of examples required
to detect a change after the occurrence of one.

— Missed detections Ability to not fail the detection of real
changes.

— False alarms Resilience to false alarms when there is no
change, which means that the change detection method
is not detecting changes under static scenarios.

5 Adaptive cumulative windows model (ACWM)

The ACWM for change detection is based on online monitor-
ing of the distance between data distributions (provided by
fading histograms), which is evaluated using the Kullback—
Leibler divergence (KLD) [26]. Within this approach, the
reference window (RW) has a fixed length and reflects the
data distribution observed in the past. The current window
(CW) is cumulative, and it is updated sliding forward and
receiving the most recent data. The evaluation step is deter-
mined automatically depending on the data similarity.

In change detection problems, it is mandatory to detect
changes as soon as possible, minimizing the delay time in
detection. Along with this, the false and the missed detec-
tions must be minimal. Therefore, the main challenge when
proposing an approach for change detection is reaching a
trade-off between the robustness to false detections (and
noise) and sensitivity to true changes.

It must be pointed out that the ACWM is a nonparamet-
ric approach, which means that it makes no assumptions
on the form of the distribution. This is a property of major
interest, since real data streams rarely follow known and well-
behavior distributions.

Figure4 shows the workflow of the ACWM for change
detection. The histograms representations were constructed
from the observed data, with different number of observa-
tions. At every evaluation step, the data distribution in the
Current Window (CW) is compared with the distribution of
the data in the Reference Window (RW). If a change in the
distribution of the data in the CW with respect to the dis-
tribution of the data in the RW is not detected, the CW is
updated with more data observations. Otherwise, if a change
is detected, the data in both windows are cleaned, new data
are used to fulfill both windows and a new comparison starts.
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5.1 Distance between distributions

From information theory [6], the relative entropy is one of the
most general ways of representing the distance between two
distributions [13]. Contrary to the mutual information, this
measure assesses the dissimilarity between two variables.
Also known as the Kullback—Leibler divergence, it measures
the distance between two probability distributions and there-
fore is suitable for use in comparison purposes.

Assuming that the data in the reference window have dis-
tribution Prw and that data in the current window have
distribution Pcy, the Kullback-Leibler divergence (KLD)
is used as a measure to detect whenever a change in the dis-
tribution has occurred.

Considering two discrete distributions with empirical
probabilities Prw (i) and Pcw (i), the relative entropy of
Prw with respect to Pcw is defined by:

Prw (i)
Pew (i)’

KLD(Prwl|[Pcw) =) Prw(i)log

Since it is asymmetric, the Kullback—Leibler divergence
is a quasi-metric:

KLD(Prwl||Pcw) # KLD(Pcw/||Prw).

Nevertheless, it satisfies many important mathematical prop-
erties: is a nonnegative measure, it is a convex function of
Prw (i) and equals zero only if Prw (i) = Pcw (i).

Consider a reference window with empirical probabili-
ties Prw (i), and a current sliding window with probabilities
Pcw (i). Taking into account the asymmetric property of
the Kullback—Leibler divergence and that the minimal value
of the absolute difference between K L D(Pgrw||Pcw) and
KLD(Pcw||Prw), which is zero, is achieved when P=Q:
Smaller values of this difference correspond to smaller dis-
persion between both data distributions, meaning that the
data are similar; and higher values of this difference suggest
that distributions are further apart. Other metrics, namely the
entropy absolute difference and the cosine distance, were
considered in Sebastiio and Gama [35]. When compared
with the Kullback—Leibler divergence, this measure outper-
forms the others.

5.2 Decision rule

Consider a reference window with empirical probabilities
Prw (i) and a current sliding window with probabilities
Pcw (i): Lower values of K LD(Prw||Pcw) correspond to
smaller dispersion between both data distributions, meaning
that the data are similar. A higher value of K L D(Prw || Pcw)
suggests that distributions are further apart. Therefore, due to
the asymmetric property of the KLD, if the distributions are
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Fig. 4 Workflow of the
adaptive cumulative windows
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Fig. 5 Behavior of the dissimilarity measure for detecting changes

similar, the absolute difference between K L D(Pgw || Pcw)
and K LD(Pcw||Prw) is small. In the ACWM, the decision
rule used to assess changes in data distribution is a dissimilar-
ity measure based on the asymmetry of the Kullback—Leibler
divergence. It is defined that a change has occurred in the data
distribution of the current window relatively to the data dis-
tribution of the reference window, if:

|[KLD(PrwllPcw) — KLD(Pcw!|Prw)| > 6,

where § is a user defined threshold, empirically defined and
that establishes a trade-off between the false alarms and the

RwW l}WL

Distributions
Comparison I”
L

751i|

missed detections. Increasing § will entail fewer false alarms,
but might miss or delay some changes.

If a change in the distribution of the data in the CW
with respect to the distribution of the data in the RW is not
detected, the CW is updated with more data observations.
Otherwise, if a change is detected, the data in both windows
are cleaned, new data are used to fulfill both windows and a
new comparison starts.

Figure5 presents the dissimilarity measure against the
detection threshold to detect a change. As desired, it can
be observed that this dissimilarity highly increases in the
presence of a change.

5.3 Evaluation step for data distributions comparison

In the ACWM, the evaluation step is the increment of the
cumulative current window. When comparing data distri-
butions over sliding windows, at each evaluation step the
change detection method is induced by the examples that are
included in the sliding window. Here, the key difficulty is
how to select the appropriate evaluation step. A small eval-
uation step may ensure fast adaptability in phases where the
data distribution changes. However, a small evaluation step
implies that more data comparisons are made. Therefore, it
tends to be computationally costly, which can affect the over-
all performance of the change detection method. On the other
hand, with a large evaluation step, the number of data distri-
bution comparisons decreases, increasing the performance of
the change detection method in stable phases but not allowing
quick reactions when a change in the distribution occurs.
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350 Algorithm 1 ACWM
300
S 250¢
5 Input: Data set: x, x2, ...
c 200} Number of buckets in the histogram n Buckets
.g Length of the Reference window: L gw
S 150¢ Initial evaluation step Ini EvalStep
§ Change detection threshold §
w 100} Output: Time of the detected changes: ¢*
ti <0
50} Init < True
0 ) ) ) ) | ) while not at the end of the stream do
0 002 004 006 008 01 012 if in.it. = True t.hen . )
| KLD(PRW Il Pcw) - KLD(PCW Il PRW) | Initialize the histogram in the reference window ( Prw ) as empty

Fig. 6 Representation of the evaluation step for data distribu-
tions comparison with respect to the absolute difference between
KLD(Prw!||Pcw) and KLD(Pcw||Prw) (for a change detection
threshold of § = 0.1)

Therefore, the a priori definition of the evaluation step
to perform data distribution comparisons is a compromise
between computational costs and detection delay time. In the
proposed approach, the evaluation step, instead of being fixed
and selected by the user, is automatically defined accord-
ing to the data stationarity and to the distance between
data distributions. Starting with an initial evaluation step of
Ini EvalStep, the step length is increased if the distance
between distributions is small (which suggests that data are
generated according to a similar distribution, hence it is a
stationary phase) and is decreased if the distance between
distributions is high (which means that data from both win-
dows are further apart), according to the following relation:

1
EvalStep = max <1, round (IniEvalStep * (1 - 5) *

|KLD(PrwllPcw) — KLD(Pcw!||Prw)I)) .

Figure 6 illustrates the dependency of the evaluation step
on the distance between data distributions of an artificial data
set (for a change detection threshold § = 0.1).

5.4 Pseudocode

The presented adaptive cuamulative windows model (ACWM)
was designed to detect changes online in the distribution of
streams of data. The data distribution is computed by the his-
tograms presented in Sect. 2. In order to detect changes, the
data distributions in two time-windows are compared using
the Kullback—Leibler divergence. Algorithm 1 presents the
pseudocode for this ACWM.
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Initialize the histogram in the current window (Pcw )as empty

Define the first evaluation point: EvalPoint = Lgw +
Ini EvalStep
Init < False
end if
if 1 <t; + Lrw then
Init < False
Compute the histogram in the RW: Pry
Compute the histogram counts for the CW
else if 1 = Eval Point then
Compute the histogram in the CW: Pcw
Compute the next evaluation step:
EvalStep = max (1, round(Ini Eval Step(1 — %) *

|[KLD(PRw IIPCw) = KLD(Pcyw lIPRW)])
Compute the next evaluation point:
Eval Point = Eval Point + EvalStep
if [KLD(Prw||Pcw) — KLD(Pcw||Prw)| > 4 then
ti <1
report a change at time 7: t* =t
Init < True
end if
else
Compute the histogram counts for the CW
end if
end while

5.5 Complexity analysis

The complexity of the proposed CWM is linear with the
number of observations (n). To show that the CWM is O (n),
experiments were performed using artificial data with and
without changes. The data set without change was generated
according to a normal distribution with zero mean and stan-
dard deviation equals to 1. The data set with changes (which
was forced at the middle of the data set) was generated from
anormal distribution with standard deviation equals to 1 and
with zero mean in the first part and with mean equals to 10 in
the second part. For both cases, with and without changes, the
size was increased from 1.000 to 10.000.000 examples, and
10 different data streams were generated with different seeds.
Table 1 shows that the execution time increases linearly with
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Table 1 Execution time of the . ..

FCWM and ACWM when Data size Execution time (s)

detecting changes in artificial Fixed step Adaptive step

data with different sizes, with

and without changes (average No change Change No change Change

and standard deviation of 10

runs) 1000 0.04 +0.04 0.01+0 0.02 £ 0.01 0.01+0
10,000 0.23 +£0.01 0.10+0 0.25 £ 0.01 0.11+£0
100,000 2.30 £ 0.04 1.02 £ 0.01 2.35+0.11 1.06 + 0.04
1,000,000 22.70 £0.24 10.19 £0.04 22.89 £0.94 10.31 £0.22
10,000,000 215.51 +4.49 102.29 +0.94 241.55 £43.32 104.19 +2.55

the size of the data (average and standard deviation of 10
runs on data generated with different seeds), either for the
cases with or without changes and using a fixed or an adap-
tive evaluation step. Moreover, it can be observed that the
execution time when using fixed or adaptive evaluation step
is similar.

5.6 Multidimensional setting

The proposed approach for detecting changes in multidimen-
sional data assumes the independence between the features.
For multidimensional data sets, the ACWM is computed as
follows:

— For each dimension:

— computes the probabilities Prw (i) and Pcw (i) in the
reference and in the current sliding windows, respec-
tively;

— computes

absKLDy; = |[KLD(Prw||Pcw)
—KLD(Pcwl||Prw)I;

— Computes the mean of the abs K L D4, considering all the
dimensions:

D
> absKLDy
M _absKLD ==
D

where D is the number of dimensions.
— Signals a change if M_absKLD > § , where § is the
change detection threshold.

6 Results on distribution change detection

This section presents the performance of the cumulative win-
dows model (CWM) in detecting distribution changes, using
a fixed and an adaptive evaluation step. To detect distribution

changes, the model is evaluated using artificial data, present-
ing distribution changes with different magnitudes and rates,
and using real-world data from an industrial process and a
medical field. The efficiency of ACWM is also compared
with the PHT when detecting distribution changes on a real
data set.

The artificial data were obtained in MATLAB [29]. All
the experiments were implemented in MATLAB, as well as
the graphics produced.

6.1 Experiments with artificial data

The data sets and the experimental designs were outlined in
order to evaluate the overall performance of the ACWM in
detecting distribution changes in different evolving scenar-
ios, namely to:

1. Evaluate the advantage of using an adaptive evaluation
step instead of a fixed one.

2. Evaluate the benefit, in detection delay time, of using
fading histograms when comparing data distributions to
detect changes.

3. Evaluate robustness to detect changes against different
amounts of noise.

4. Evaluate the stability in static phases with different
lengths and how it affects the ability to detect changes.

The data sets were generated according to a normal dis-
tribution with certain parameters. Both the mean and the
standard deviation parameters were varied, generating 2 dif-
ferent problems according to the source of the change. Each
data stream consists of 2 parts, where the size of the second
isN.

Two data sets were generated. In the first data set, the
length of the first part of data streams was set to N. In the
second data set, the length of the first part was set to 1N,
2N,3N 4N and 5N, in order to simulate different lengths of
static phases.

The first data set was used to carry out the first, the sec-
ond and the third experimental designs, and the second data
set was used to perform the fourth experimental design,
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Table 2 Magnitude levels of

the desiened data sets Parameter Value of the Parameter varia- Magnitude
18 changed fixed parameter tion of change
(before — after
change)
% o=1 nu=0—-u=>5 High
nw=0—->u=3 Medium
o n=0 oc=1—>0=5 High
co=1—>0=3 Medium
o=1—->0=2 Low

evaluating the effect of different extensions of the station-
ary phase on the performance of the ACWM in detecting
changes.

Within each part of the data streams, the parameters
stay the same, which means that only 1 change happens
between both parts and different changes were simulated
by varying among 3 levels of magnitude (or severity) and
3 rates (or speed) of change, obtaining a total of 9 types
of changes for each changing source (therefore, a total of
18 data streams with different kind of changes). Although
there is no golden rule to classify the magnitude lev-
els, they were defined in relation to one another, as high,
medium and low according to the variation of the distribu-
tion parameter, as shown in Table 2. For each type of changes,
30 different data streams were generated with different
seeds.

The rates of change were defined assuming that the exam-
ples from the first part of data streams are from the old
distribution and the N — ChangeLength last examples are
from the new distribution, where ChangeLength is the num-
ber of examples required before the change is complete.
During the length of the change, the examples from the
new distribution are generated with probability p,e, (f) =
nggth and the examples from the old distribution are
generated with probability p,g(t) = 1 — ppew(t), Where
N <t < N+ ChangeLength. As for the magnitude levels,
the rates of change were defined in relation to one another,
as sudden, medium and low, for a ChangeLength of 1,
0.25N and 0.5N, respectively. The value of N was set to
1000.

Therefore, the first data set is composed by a total of 540
data streams with 2000 examples each, and the second data
set consists of a total of 2700 data streams with five different
lengths, 540 data streams of each length.

Setting the parameters of the CWM and of the online
histograms

The CWM and the online histograms require the setting of
the following parameters:
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— Lgw Length of the reference window (CWM);
Ini Eval Step Initial evaluation step (CWM);

& Change detection threshold (CWM);

— & Admissible mean square error of the histogram;

As stated before, the number of buckets is chosen under
error constraints [37] and is computed as k = %, where R
is the admissible range of the variable and ¢ is the admissible
mean square error of the histogram. It was established that
5% was an admissible mean square error of the histogram.
To investigate the values for the remaining parameters, an
experiment was performed on a training data set with the
same characteristics as the first data set, varying the Lgw
within 1k, 2k, ... 10k (where k is the number of buckets
in the online histograms) and § within 0.01, 0.05, 0.1, 0.2.
However, in this training data set, only 10 data streams were
generated with different seeds for each type of drift, obtain-
ing a total of 118 data streams with length 2N (N = 1000).
In this experiment, the CWM was performed with a uni-
tary evaluation step and the summary results were analyzed.
Table 3 presents the precision, recall and F; score for a ref-
erence window of length 50k and 10k and for a change
detection threshold of 0.05 and 0.1, for a total of 180 true
changes. Although compromising the delay time in change
detection, the best F| score is obtained for a reference win-
dow of 10k examples and a change detection threshold of
0.05.

Figure7 shows the detection delay time (average of 10
runs) and the total number of false alarms (FA) and missed
detections (MD), for a total of 180 true changes, depending
on the length of reference window of length (L pw) and on
the change detection threshold (§). It can be observed that
an increase in the detection delay time, controlled by the
value of &, is followed by a decrease in the number of false
alarms (and an increase in the number of missed detections).
However, for Lrw = 10k and § = 0.05, the false alarm
rate (3/180) and the miss detection rate (5/180) are admis-
sible.

From now forward, unless otherwise stated, the settings
for the parameters of the CWM were the following:
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Table 3 Precision, recall and Fj score, obtained when performing the
CWM, with a reference window of length 5k and 10k and a change
detection threshold of 0.05 and 0.1

Lrw

Sk 10k

8

0.05
Precision = 0.87 Precision = 0.98
Recall =1 Recall =0.97
F; =0.93 F1 =098

0.1
Precision = 0.97 Precision =1
Recall =0.96 Recall =0.88
F1 =0.97 F; =0.93

— The length of the reference window was set to 10k
(Lrw = 10k);

— The initial evaluation interval was set to k (/niEval
Step = k);

— The threshold for detecting changes was set to 5% (8§ =
0.05);

Evaluate the advantage of using an adaptive evaluation
step instead of a fixed one

This experiment was designed to study the advantage of
performing the CWM with an adaptive evaluation step

Detection Delay Time

Length(RW)

2k-

FA

0.2
0.1 0.050.01 10k 5k

5 Length(RW)

(ACWM) against a fixed evaluation step (FCWM). Figure 8
shows the advantage, in detection delay time, of an adap-
tive evaluation step over the fixed one (average results for
30 runs on data generated with different seeds). Except
for the distribution change in the mean parameter, with
low magnitude and sudden rate, the detection delay time
is shorter when performing the ACWM. This decrease
in the detection delay time, when performing ACWM, is
obtained without compromising the false alarm and miss
detection rates (except for one case: change with low
magnitude and sudden rate, in the mean parameter, see
Table 4).

Using the results of the 30 replicas of the data, a paired,
two-sided Wilcoxon signed-rank test was performed to assess
the statistical significance of the comparison results. It
was tested the null hypothesis that the difference between
the detection delay times of the ACWM and the FCWM
comes from a continuous, symmetric distribution with zero
median, against the alternative that the distribution does
not have zero median. For all types of changes in both
mean and standard deviation parameters, the null hypoth-
esis of zero median in the differences was rejected, at a
significance level of 1%. Therefore, considering the very
low p values obtained, there is strong statistical evidence
that the detection delay time of ACWM is smaller than of
FCWM.

In Table4, besides the detection delay time using the
CWM with an adaptive and a fixed evaluation steps, the total
number of missed detections and the total number of false

3
N

48
[=]
=22

10k N 5

“oo7 005 1
Length(RW) : 5

Fig. 7 Detection delay time, total number of false alarms (FA) and missed detections (MD), depending on the L gy and §
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Fig. 8 Detection delay time (average of 30 runs) using the CWM with an adaptive (ACWM) and a fixed (FCWM) evaluation steps

alarms are also presented. The results report the average and
standard deviation of 30 runs.

As expected, greater distribution changes (high magni-
tudes and sudden rates) are easier to detect by the CWM,
either using an adaptive or a fixed evaluation step. On the
other hand, for smaller distribution changes (low magni-
tudes and low rates) the detection delay time increases. The
decrease in the detection delay time in this experiment sus-
tains the use of an adaptive evaluation step, when performing
the CWM. Although the decrease in detection delay time is
small, these results must be taken into account that the length
of the data was also small. With data with higher length,
the decrease in detection delay time will be reinforced.
Moreover, for both strategies, the execution time of perform-
ing the CWM is comparable.
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Evaluate the advantage, in detection delay time, of using
fading histograms when comparing data distributions to
detect changes

As stated before, fading histograms attribute more weight to
recent data. In an evolving scenario, this could be a huge
advantage since it enhances small changes. Therefore, when
comparing data distributions to detect changes, the detec-
tion of such changes will be easier. This experimental design
intends to evaluate the advantage of using fading histograms
as a synopsis structure to represent the data distributions that
will be compared, for detecting changes, within the ACWM
(which will be referred to as ACWM-fh). Thus, data distri-
butions, within the reference and the current windows, were
computed using fading histograms with different values of
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Table 4 Detection delay time (DDT) using the ACWM and the FCWM

Parameter changed Mag. Rate Adaptive step DDT (u £ o) Fixed step DDT (u £ o)
Mean High Low 260 £ 57 275 £ 53 (0;0)
Medium 153 £ 24 (1;1) 178 £ 59 (0;1)
Sudden 19 £4 (0;1) 24 + 0 (0;1)
Medium Low 410 £ 131 (0;1) 424 + 138 (0;1)
Medium 242 £+ 125 (0;1) 259 £+ 122 (0;1)
Sudden 36 £ 22 (0;1) 52 £ 26 (0;1)
Low Low 516 £ 171 (7;2) 535 £ 177 (7;2)
Medium 371 £ 233 (5;0) 389 £ 232 (5;0)
Sudden 233 £ 229 (1;0) 223 £ 193 (3;0)
STD High Low 240 + 34 284 + 42
Medium 168 £ 16 198 £ 30
Sudden 71 £ 10 104 £0
Medium Low 368 £ 87 399 £93
Medium 213 +28 245 £ 32
Sudden 65+ 15 83 £27
Low Low 517 £ 158 542 + 154
Medium 362 + 127 387 + 129
Sudden 162 + 60 (1;0) 189 + 63 (1;0)

The results report the average and standard deviation of 30 runs. In parenthesis is the number of runs, if any, where the algorithm misses detection

or signals a false alarm: They are in the form (Miss; False Alarm)

fading factors: 1 (no forgetting at all), 0.9994, 0.9993, 0.999,
0.9985 and 0.997.

Using the results of the 30 replicas of the data, a paired,
two-sided Wilcoxon signed-rank test (with Bonferroni cor-
rection for multiple comparisons) was performed to assess
the statistical significance of differences between ACWM
and ACWM-fth. With the exception of the change in the mean
parameter with high magnitude and sudden rate (for the fad-
ing factors tested except 0.997), for all the other types of
changes in both mean and standard deviation parameters, the
null hypothesis of zero median in the differences between
detection delay times was rejected, at a significance level of
1%. Therefore, considering the very low p values obtained,
there is strong statistical evidence that the detection delay
time of ACWM-fh is smaller than of ACWM.

Table 5 presents a summary of the detection delay time
(average and standard deviation from 30 runs on data gener-
ated with different seeds) using the ACWM-fh for comparing
the data distributions. The total number of missed detec-
tions and the total number of false alarms are also presented.
This experiment underlines the advantage of using fading
histograms to compute the data distributions: The detection
delay time decreases by decreasing the fading factor and
without compromising the number of missed detections and
false alarms (except when using a fading factor of 0.997).
The increase in false alarms when using a fading factor of
0.997 suggests that fading histograms computed with this

value are over reactive; therefore, fading factors of values
equal or smaller than 0.997 are not suitable for use in this
data set.

The detection delay time (average of 30 runs on data
generated with different seeds) of this experimental design
is shown in Fig.9. It can be observed that the advantage
of using fading histograms is strengthened when detecting
small changes, which is explained by the greater importance
attributed to recent examples that enhances a change and
eases its detection by the ACWM.

Evaluate the robustness to detect changes against
different amounts of noise

Within this experimental design, the robustness of the
ACWM against noise was evaluated. Noisy data were gener-
ated by adding different percentages of Gaussian noise with
zero mean and unit variance to the original data set. Figure 10
shows the obtained results by varying the amount of noise
from 10% to 50%.

The detection delay time (average of 30 runs on data gen-
erated with different seeds) of this experimental design is
shown in Fig. 10. The ACWM presents a similar performance
along the different amounts of noise, with the exception of a
change in the standard deviation parameter with high mag-
nitude and medium and sudden rates (for a level of noise
of 30%). In these cases, the average detection delay time
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Fig. 9 Detection delay time (average of 30 runs) of the ACWM-th

increases when compared with other amounts of noise. This
experiment sustains the argument that the ACWM is robust
against noise while effectively detects distribution changes
in the data.

Table 6 presents a summary of the detection delay time
(average and standard deviation from 30 runs on data gener-
ated with different seeds) using the ACWM for comparing
the data distributions in the first data set. The total number
of missed detections and the total number of false alarms are
also presented. Regarding the total number of missed detec-
tions and false alarms, with an amount of 50% of noise a
slight increase is noticeable for both, mainly for changes in
the mean parameter.

To assess the statistical significance of differences between
the detection delay time of the ACWM when performed
on data without and with different amounts of noise, a
paired, two-sided Wilcoxon signed-rank test (with Bonfer-

Change in the standard deviation parameter
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roni correction for multiple comparisons) was performed.
For most of the cases, at a significance level of 1%, there are
no statistical evidence to reject the null hypothesis of zero
median in the differences (exceptions are indicated in Table 6
with **). This experiment sustains the argument that the
ACWM is robust against noise, while effectively detects dis-
tribution changes in the data.

Evaluate the stability in static phases with different
lengths and how it affects the ability to detect changes

This experiment was carried out with the second data set.
The performance of the ACWM was evaluated varying the
length of stationary phases from 1N to SN (N = 1000).
Overall, it can be observed that the detection delay time
for the ACWM increases within the increase in the stationary
phase. This is even more evident in distribution changes with
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Fig. 10 Detection delay time (average of 30 runs) of the ACWM with different amounts of noise

sudden rates. Indeed, the stability of the ACWM in stationary
phases compromises the ability to effectively detect changes.
However, this can be overthrown by using fading histograms
to compute the data distributions, as shown in Fig. 11.

Actually, in stationary phases, the ability of the fading
histograms to forget outdated data works in favor of the
change detection model, by decreasing the detection delay
time. However, a decrease in the value of the fading factor
results in the increase in the number of false alarms. Table 7
presents the detection delay time (average and standard devi-
ation of 30 runs on data generated with different seeds for
the 9 types of changes for each source parameter) using the
ACWM-fh in different stationary phases. The total number
of missed detections and the total number of false alarms are
also presented. From the results presented, it can be noted
that a decrease in the detection delay time is achieved, estab-
lishing a commitment with respect to the number of false
alarms and missed detections.

@ Springer

6.2 Experiments with an industrial data set

This industrial data set was obtained within the scope of the
work presented in Correa et al.[12], with the objective of
designing different machine learning classification methods
for predicting surface roughness in high-speed machining.
Data were obtained by performing tests in a Kondia HS1000
machining center equipped with a Siemens 840D open-
architecture CNC. The blank material used for the tests was
170 x 100 x 25 aluminum samples with hardness rang-
ing from 65 to 152 Brinell, which is a material commonly
used in automotive and aeronautical applications. These tests
were done with different cutting parameters, using sensors
for registry vibration and cutting forces. A multi-component
dynamometer with an upper plate was used to measure the in-
process cutting forces and piezoelectric accelerometers in the
X and Y axis for vibrations measures. Each record includes
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Fig. 11 Detection delay time (average of 30 runs for the 9 types of changes) of the ACWM-fh with different lengths of stationary phases

Table 7 Detection delay time (average and standard deviation) using the ACWM-fh in different stationary phases

Parameter changed

Fading factor

Length of stationary phase

3k

4k

Sk

1k 2k
Mean 1 249 4 166 (14;7) 282 & 172 (25;11)
0.9994 228 4+ 163 (8;8) 248 + 163 (12;14)
0.9993 224 4+ 159 (8;9) 246 £ 170 (9;16)
0.999 219 £ 160 (5;10) 228 + 161 (9;17)
0.9985 206 £ 146 (2;11) 221 + 157 (4;20)
0.997 176 + 125 (0;34) 188 £ 121 (0;79)
Standard deviation 1 241 4+ 150 (1;0) 317 £+ 185 (4;0)
0.9994 207 £ 131 (1;0) 235 £ 141 (1;0)
0.9993 204 £+ 127 227 + 137 (1;0)
0.999 193 + 122 208 £+ 128 (1;0)
0.9985 179 £ 116 188 £ 118
0.997 151 +£99 (0;2) 155 £ 96 (1;10)

300 + 171 (31;7)
260 + 159 (14:15)
247 £ 151 (14:18)
229 + 150 (10:23)
219 + 162 (3;33)
182 4 127 (3;121)
385 4+ 203 (11;0)
251 + 148 (1;0)
238 + 142 (1;0)
212 + 130 (1;0)
186 & 117 (1;1)
160 & 97 (1;21)

334 + 183 (31;7)
258 + 164 (12:17)
252 + 162 (10:21)
227 + 153 (10;30)
228 + 164 (1:47)
177 £ 131 (0;146)
441 £ 208 (23;0)
257 £ 151 (1;0)
243 £ 143 (1,0)
213 £ 129 (1;1)
189 + 124 (2:6)
162 £ 105 (4:42)

365 + 189 (35;7)
254 + 159 (15:21)
250 & 162 (11:24)
208 + 155 (11:34)
223 + 163 (4;60)
187 + 122 (0;182)
495 -+ 220 (34;0)
263 + 152 (1;0)
246 £ 144 (1;0)
214 £ 131 (1;1)
187 & 118 (0;9)
162 £ 103 (3;60)

The results report the average and standard deviation of 30 runs for the 9 types of changes for each source parameter. In parenthesis is the number

of runs, if any, where the ACWM-th misses detection or signals a false alarm: They are in the form (Miss; False Alarm)

Cutting Speed on X axis

600 ; : ; ( ;
400t :
200} .
. ol
0 0.5 1 15 2 25 3 35 4 45

Examples x1 04

Fig. 12 The cutting speed on X axes from 7 tests sequentially joined

information on several variables used in a cutting process,
and the measurements for each test were saved individually.

For change detection purposes, the measurements of the
cutting speed on X axes from 7 tests were joined sequentially
in order to have only one data set with 6 changes with different
magnitudes and sudden and low rates. Figure 12 shows this
data set.

The goal of this experiment is to evaluate the feasibility of
the proposed ACWM with an industrial problem and com-
paring the advantage of using fading histograms. To this end,

@ Springer

data distributions, within the reference and the current win-
dows, were computed using fading histograms with different
values of fading factors: 1 (no forgetting at all), 0.999994
and 0.99999. Furthermore, the ability for detecting changes
in data distribution of the ACWM-fh was also compared with
the Page—Hinkley Test (PHT) [34].

The PHT is a sequential analysis technique typically used
for monitoring change detection in the average of a Gaussian
signal [32]. The two-sided PHT tests increases and decreases
in the mean of a sequence. For testing online changes, it runs
two tests in parallel, considering a cumulative variable Ur
defined as the accumulated difference between the observed
values and their mean until the current moment. The tests
performed are the following:

At every observation, the two P H statistics (P Hy and
P H}) are monitored and a change is reported whenever one
of them rises above a given threshold A. The threshold A
depends on the admissible false alarm rate. A higher A will
guarantee few false alarms, but it may lead to missed detec-
tions or delay them.
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For increase cases: For decrease cases:

Uyp=0 Lo=0

Ur = (Ur-1+xr — X1 —9) Ly = (L7-1+x7 — X1 +9)
(x7 is the mean of the signal until the current example.)

mr =min(Us, t =1...T) My =max(L;,t =1...T)

PHy =Ur —mr PH; =My — Lt

To adjust the PHT input parameters, an analysis was
previously conducted on collected data with similar char-
acteristics. From that the parameters § and A were set equal
to 1 and 1000, respectively.

The ACWM-th is able to detect the 6 changes in the
data with smaller detection delay time than when using his-
tograms constructed over the entire data. Moreover, with both
approaches for data representations, the model did not miss
any change. Although data have different kinds of changes,
either ACWM or ACWM-fh presented a performance which
was highly resilient to false alarms. Although detecting all
changes, the PHT presented 18 false alarms in this experi-
ment. Moreover, the average detection delay time obtained
with the PHT is greater than when performing the ACWM-fh.
Concerning the fourth change, all methods require too much
examples to detect it. This is reasonable since before and after
the fourth change, the average of the data is similar and the
change in the standard deviation is also small. Therefore, all
methods analyzed several examples before signed a change.
Although, it should be noticed that the PHT detected this
change with almost half the examples than the others. With
respect to the third and the fifth change, the PHT required
much more examples than ACWM or ACWM-fh to detect
these changes, which are similar: The average of data before
and after the change is similar and the standard deviation
slightly increases. Therefore, the high delay in detecting these
kind of changes is due to the design of the PHT.

Regarding the delay between the occurrence of changes
and the detections, the number of false alarms and the missed
detections, the ACWM-fh outperforms the ACWM and the
PHT.

Table 8 presents the detection delay time of the compared
methods when applied to this industrial data set. It can be
observed that ACWM presents a high delay time when detect-
ing the fourth change (with low magnitude).

6.3 Experiments with a medical data set—CTGs

The CWM was evaluated on five fetal cardiotocographic
(CTG) problems, collected at the Hospital de Sdo Jodo, in
Porto. Fetal cardiotocography is one of the most important
methods of assessment of fetal well-being. CTG signals con-
tain information about the fetal heart rate (FHR) and uterine
contractions (UC).

Table 8 Detection delay time of the ACWM, of the ACWM-th and of
the PHT, on the industrial data set

True change  ACWM  ACWM-fh PHT
a=0.999994 o =0.99999
45,000 906 910 959 190
90,000 988 1331 988 270
210,000 2865 2100 1749 7060
255,000 9142 8452 7900 4500
375,000 2496 1806 1493 8890
420,000 1340 1018 1268 500
Average 2956 2603 2393 3568

Five antepartum FHR with a median duration of 70 min
(min—max: 59-103) were obtained and analyzed by the
SisPorto® system. These cases corresponded to a median
gestational age of 39 weeks and 5 days (min—max: 35 weeks
and 4 days—42 weeks and 1 day).

The SisPorto® system, developed at INEB (Instituto
Nacional de Engenharia Biomédica), starts the computer
processing of CTG features automatically after 11 min of
tracing acquisition and updates it every minute [2], provid-
ing the FHR baseline estimation, identifying accelerations
and decelerations and quantifying short-term and long-term
variability according to algorithms described in Ayres-de
Campos et al. [1]. Along with these features, the system also
triggers alerts, such as “Normality criteria met alert”, “Non-
reassuring alerts” and “Very non-reassuring alerts” (further
details can be founded in Ayres-de Campos et al.[1]). How-
ever, the system usually takes about 10 min to detect these
different behaviors. In the “Normal” stage of FHR tracing
four different patterns may be considered [19]:

— A Corresponding to calm or non-eye movement (REM)
sleep;

B Active or rapid eye movement (REM) sleep;

— C Calm wakefulness;

D Active wakefulness;

Figure 13 shows an example of the analysis of a CTG exam
exactly as it is produced by the SisPorto® system. The FHR
and UC tracings are represented at the top and at the bottom,
respectively. The FHR baseline estimation, accelerations and
decelerations and different alerts stages also can be observed
in this figure. The “Normal” stage is represented with a green
bar in between the FHR and UC tracings. The “Suspicious”
stage is represented with yellow and orange bars and the
“Problematic” stage with a red bar.

The aim is to apply the FCWM and the ACWM for this
clinical data and assess whether the changes detected are
in accordance with the changes identified by the SisPorto®

@ Springer
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Fig. 13 FHR (top) and UC (bottom) tracings. This figure also includes the FHR baseline estimation, accelerations and decelerations and patterns

classification

system. Ideally, these changes should be detected earlier with
CWM. The CWM was applied to the FHR tracings.

The achieved results are consistent with the system anal-
ysis and the CWM detects the changes between the different
stages earlier than the SisPorto® system. Further than the
analysis of this program, the method is able to detect some
changes between different patterns of the “Normal” stage.
Due to difficulties in ascertaining the exact change points
between these behaviors it is not possible to perform a detec-
tion delay evaluation. However, the preference of the ACWM
is again supported by the detections results in this data set.

7 Results on concept change detection

Concerning the detection of concept changes, a comparison
of the ACWM with three well-known methods taken from
the literature was undertaken, namely:

— Drift Detection Method (DDM), presented by Gama et
al.[15];

— ADaptive WINDdowing (ADWIN) method, introduced
by Bifet and Gavalda [7];

— Page—Hinkley Test (PHT), described in Page [34];

Such comparison was done using artificial data and public
data sets. This section ends presenting results on the ability
to detect changes of the ACWM under multidimensional set-
tings.

The artificial data were obtained in MATLAB, and all the
experiments were implemented in MATLAB, as well as the
graphics produced.

Drift Detection Method (DDM)

This online drift detection method monitors the trace of the
error rate of an online classifier, for streaming observations,

@ Springer

and considers that the error rate follows the binomial distribu-
tion. At each time ¢, the error rate of the online classifier is the
probability of misclassifying, p;, with a standard deviation
s; = «/pi(I — p;)/t. According to the Probability Approxi-
mately Correct (PAC) learning model, this method assumes
that in a stationary concept, the error rate decreases with the
number of observations. Therefore, an increase in the error
rate indicates a change in the concept. While monitoring the
error rate, the DDM stores py,i,, and s,,i,, which correspond
to the minimum probability and minimum standard devia-
tion (respectively), and are obtained when p, + s; reaches its
minimum value. Based on these minimum values, the DDM
establishes two levels as follows:

— The warning level: when p; + 8 = pmin + 2Smin;
— The drift level: p; + s; > pmin + 3Smin;

When the error rate exceeds the lower threshold, the sys-
tem enters in a warning mode and stores the observations
within the warning level in a short-term memory. If the error
drops below the threshold again, the warning mode is can-
celed. However, if the error increases reaching the second
(higher) threshold, a change in the concept is assigned. The
online classifier is retrained using only the observations in
the buffer and reinitializes the variables.

ADaptive WINdowing (ADWIN)

The ADaptive WINDdowing method keeps a sliding window
W (with length n) with the most recently received exam-
ples and compares the distribution on two sub-windows of
W. Whenever two large enough sub-windows, W, and Wy,
exhibit distinct enough averages, the older sub-window is
dropped and a change in the distribution of examples is
assigned. The window cut threshold is computed as follows:
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Table 9 Average detection delay time (DDT), number of false alarms (#FA) and the number of missed detections (#MD), for the four methods,

using the data streams with lengths 2.000, 5.000 and 10.000 and with different slopes in the Bernoulli parameter distribution

Length Slope ADWIN DDM PHT ACWM-fh (o = 0.9994)
DDT #FA #MD DDT #FA #MD DDT #FA #MD DDT #FA #MD
2.000 0 (n.a.) 5 (n.a.) (n.a.) 0 (n.a.) (n.a.) 4 (n.a.) (n.a.) 0 (n.a.)
1x10~* 582 0 3 627 0 2 573 0 3 629 100 5
2% 1074 578 0 0 687 0 16 523 0 0 620 0 0
3x107% 428 0 0 537 0 0 397 0 0 550 0 0
4x107* 359 0 0 534 0 0 331 0 0 430 0 0
5.000 0 (n.a.) 17 (n.a.) (n.a.) 17 (n.a.) (n.a.) 41 (n.a.) na 0 (n.a.)
1 %10~ 722 16 30 866 21 77 650 23 13 849 0 27
2x 107 512 13 13 732 19 37 463 25 0 632 0 0
3x 107 383 14 14 668 20 17 337 32 0 539 0 0
4x10™* 320 10 10 587 9 12 279 29 0 273 0 0
10.000 0 (n.a.) 15 (n.a.) (n.a.) 44 (n.a.) (n.a.) 68 (n.a.) (n.a.) 20 (n.a.)
1x107* 722 19 35 829 39 94 650 60 10 828 14 54
2% 1074 505 19 19 843 56 57 466 71 0 678 15 5
3x 107 401 17 17 720 29 53 344 68 0 576 16 1
4x107* 327 23 23 642 52 41 280 66 0 507 22 6

For slope = 0 (no change) the measurements DDT and #MD are not applicable

Eeut = ,/ﬁln%, with m = m, where ng and n;
denote the lengths of Wy and Wj.

A confidence value D is used within the algorithm, which
establishes a bound on the false positive rate. However, as
this first version was computationally expensive, the authors
propose to use a data structure (a variation of exponential
histograms), in which the information on the number of
I’s is kept as a series of buckets (in the Boolean case). It
keeps at most M buckets of each size 2! where M is a user
defined parameter. For each bucket, two (integer) elements
are recorded: capacity and content (size or the number of 1s
it contains).

Page Hinkley Test (PHT)

To detect increases, the Page—Hinkley Test (PHT) com-
putes the minimum value of cumulative variable: mr =
min(U;,t = 1...T) and monitors the difference between
Ur andmp: PHr = Ur —mp. When the difference P Hr is
greater than a given threshold (A) a change in the distribution
is assigned. Controlling this detection threshold parameter
makes it possible to establish a trade-off between the false
alarms and the missed detections.

7.1 Experiments with artificial data
To assess the performance of these methods in detecting con-

cept changes in different scenarios, different experiments
were carried out. The number of false alarms, the missed

detections and detection delay time were evaluated using data
underlying a Bernoulli distribution and public data sets.
This set of experiments uses data streams of lengths L =
2.000, 5.000 and 10.000, underlying a stationary Bernoulli
distribution of parameter i = 0.2 during the first L — 1.000
examples. During the last 1.000 examples, the parameter is
linearly increased to simulate concept drifts with different
magnitudes. The following slopes were used: 0 (no change),
1074,2.107%,3.10~* and 4.10~*. For each type of simulated
drift, 100 data streams were generated with different seeds.
These experiments also allow to analyze the influence, in the
delay time until detections, of the length of the stationary part
(the first L — 1.000 samples). With respect to the ACWM-
fh, since in this experiment data were binary, the number of
bins in the histograms is k = % = 3 and, therefore, the
length of the reference window was set as L/5 (instead as k)
and the initial evaluation step (/ni EvalStep) was set to 50.
Note that the choice of Ini EvalStep does not great affect the
detection delay time results. The change detection threshold
(8) was set to 10~4. The parameters § and X of the PHT were
set equal to 0.05 and 10, respectively. For the ADWIN, the
values of 5 and 0.05 were used for the parameters M and §,
in order to present similar false alarm rates to DDM. These
parameters values were decided using similar training data.
Table 9 shows a summary of the performance of the four
methods compared: ADWIN, DDM, PHT and ACWM-fh
(with fading factor o« = 0.9994). The rows are indexed by
the value of L and corresponding slope, presenting the delay
time (DDT) until the detection of the change that occurs at
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Fig. 14 Evolution of the error
rate and the delay times in drift
detection using the four
presented methods (ACWM was
performed using fading
factors—a = 0.9994). Vertical
dashed lines indicate drift in
data, and vertical solid lines
indicate when drift was detected
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time stamp L — 1.000 (averaged over the 100 runs), the total
number of missed detections (#MD) and the total number of
false alarms (#FA).

For different stream lengths, the first row (slope 0) gives
the number of false alarms. The PHT tends to present more
false alarms than any of the other methods. The ACWM-fh
only presents false alarms for streams with alength of 10.000.
For these cases, the number of false alarms of ACWM-fth and
ADWIN is similar.

In general, the increase in the data streams length leads to
an increase in the number of false alarms and missed detec-
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tions. As is reasonable for all the methods, the increase in
the slope of Bernoulli’s parameter contributes to a decrease
in the time until the change is detected. Fewer false alarms
and missed detections resulted also from slope increases. For
all the streams and looking at the detection delay time, the
ADWIN wins over DDM, presenting a similar number of
false alarms and missed detections. For detection delay time,
in all the cases, the PHT outperforms the ADWIN. Addition-
ally, in most cases, PHT does not miss changes. However,
PHT results are compromised with the highest number of
false alarms among the four methods. In a concept drift prob-
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Table 10 Detection delay time of the compared methods, when per-
formed in the SEA data set

# Drift Detection delay time
ADWIN DDM PHT ACWM-th
826 3314 1404 553
115 607 118 234
242 489 258 288

lem, when a change detector is embedded in a learning algo-
rithm, this is a huge drawback. The occurrence of a concept
drift implies the relearning of a new model in order to keep
up with the current state of nature. In the presence of a false
detection, the model, which is updated, will be unnecessarily
replaced by a new one. On the other hand, in learning scenar-
ios, missed detections are also harmful. They entail outdated
models that are not describing the new evolving data.
Regarding this trade-off between false alarms and missed
detections, the ACWM-fh presents the best results, with
detection delay times almost as low as the ADWIN.

7.2 Experiments on a public data set

In the previous experiment, the data set did not allow the
performance of the different change detection methods to be
evaluated in large problems, which is important since con-
cept drift mostly occurs in huge amounts of data arriving in
the form of streams. To overcome this drawback, an eval-
uation of the change detection algorithms was performed
using the SEA concepts data set [38], a benchmark problem
for concept drift. Figure 14 shows the error rate (computed
using a naive-Bayes classifier), which presents three drifts.
The drifts and the corresponding detections, signed by the
analyzed methods, are represented by dashed and solid lines,
respectively. Concerning the ACWM-th, since k = 3 and
considering the length of the stream, the length of the refer-
ence window was set as 1000k (instead as k) and the initial
evaluation step (/ni EvalStep) was set to 100k. The change
detection threshold (8) was set to 10~*. The input parame-
ters for the other three methods remain the same as in the
previous experiment.

Table 10 presents the delay time in detecting concept drifts
in this data set. In can be seen that all the algorithms require
too many examples to detect the first drift. The exception is
ACWM-fh (¢ = 0.9994), which takes only almost half the
examples of the second “best” method (ADWIN) to detect the
first drift. For all the methods, the resilience to false alarms
and the ability to reveal changes without missing detections
must be stressed.

Comparing the results in detecting the first drift, the
ACWM-fh has a clear advantage, significantly reducing the

Table 11 MATLAB execution time when performing the methods ana-
lyzed

# Drift Execution time
ADWIN DDM PHT ACWM-fh
0.9424 0.9387 2.4780 0.0607
0.6145 0.4774 1.2605 0.2386
0.7360 0.6219 1.8829 0.0715

detection delay time. For the second drift, with respect to
detection delay times, the performance of ADWIN and PHT
is similar, and smaller than the one presented by ACWM-fh.
Concerning the third drift, the performance of ADWIN, PHT
and ACWM-th is similar. These three methods clearly per-
form better than DDM. It must be pointed out that, with the
exception of PHT (which presents 1 false alarm), the other
three methods were resilient to false alarms.

In evolving learning scenarios, the time required to pro-
cess examples plays an important role. When comparing the
MATLAB execution time of these methods, the ACWM-th
presents smaller execution time against the other methods
(for the three drifts), as shown it Table 11. It must be pointed
out that ADWIN was performed in MATLAB, but the code
was implemented in JAVA, which may increase the execution
time.

7.3 Experiments on generated data streams

To compare the performance of the different change detec-
tion methods in drift scenarios, several data streams were
generated. The data stream generators are Waveform, LED,
RT and RBF as implemented in MOA [8]. The Waveform
stream is a three class problem defined by 21 numerical
attributes, the RBF and the RT streams are two-class prob-
lems defined by 10 attributes. The data were generated by
emulating a concept drift event as a combination of two dis-
tributions. For the Waveform and RBF data sets, the first
distribution was generated with the WaveformGenerator and
the RandomRBFGenerator (respectively) and the second dis-
tribution was generated with the WaveformGeneratorDrift
and the RandomRBFGeneratorDrift (respectively). For sec-
ond stream of Waveform data set, the number of attributes
with drift was set to 21. The second RBF stream was gener-
ated setting the seed for the random generation of the model
to 10 and adding speed drift to the centroids of the model
(0.01). For the RT data set, both distributions were gener-
ated with the RandomTreeGenerator, varying the seed of the
second concept. For all the streams, the change occurs at
example 32k. The learning algorithms are VFDT majority
class (VFDT-MC) and VFDT Naive-Bayes adaptive (VFDT-
NBa) as implemented in MOA. Figure 15 presents, for both
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Fig. 15 Prequential error, for VFDT-MC and VFDT-NBa learning algorithms, for the 3 data sets considered

learning algorithms, the prequential error in each data set.
After an initial and abrupt decrease, it is possible to observe
that around example 32k, the prequential error increases as
expected and as a result of the concept drift emulated.

Table 12 presents a summary of the performance of the
four methods compared: ADWIN, DDM, PHT and ACWM-
fh (with fading factor « = 0.9994). Besides the detection
delay time and the execution time, the total number of missed
detections and the total number of false alarms are also
shown. The results report the average and standard devia-
tion of 5 runs.

From Table 12 it can be noticed that the drift in the RBF
data set is the most difficult to detect, since when using the
error from both the learning algorithms, all the 4 methods
presented higher detection delay time (with the exception of
the ACWM-fh, with fading factor « = 0.9994, when applied
to the error of the VFDT-NBa algorithm). It also be stressed
out the ability of the 4 change detection methods in detecting
drifts and their resilience to false alarms (only the DDM pre-
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sented 3 false alarms when detecting drifts on the waveform
error of the VFDT-NBa algorithm). It can also be observed
that for the 3 data sets and both learning algorithms, the
ADWIN outperforms the other 3 methods, presenting smaller
detection delay time. However, it requires more time to pro-
cess the data than the other 3 methods (it must be pointed
out that ADWIN was performed in MATLAB, but the code
was implemented in JAVA, which may increase the execu-
tion time). With respect to the other 3 methods, regarding the
detection delay and execution times, the ACWM-{f presents
the smallest results.

Moreover, as stated before, when learning in dynamic sce-
narios, the time required to process examples is of utmost
importance. When embedding a change detection method in
a learning algorithm it must be taking into account the trade-
off between detection delay and execution times. The overall
accuracy of the learning algorithm will depend of the ear-
lier adaptation in the presence of drifts. On the other hand,
the time required to process examples must be minimal to
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Table 12 Detection delay time (DDT) and execution time for the 4 compared change detection methods

ADWIN DDM PHT ACWD-th (0.994)

DDT ExTime (av.) DDT ExTime DDT ExTime DDT ExTime
VETD-MC
RBF 109 + 56 6.09 1144 £ 139 4.94 767 + 156 1.53 365 + 117 0.41
RT 31+ 14 4.73 436 £ 78 5.51 317 £ 57 1.64 249 £ 71 0.53
WAVE 46 + 16 3.82 787 + 120 5.53 458 + 89 1.74 361 +£ 125 0.65
VFTD-Nba
RBF 36 £ 16 5.52 615 + 67 5.07 443 £ 55 1.35 206 + 64 0.22
RT 26 + 15 4.47 351 +£38 5.51 280 + 26 1.67 302 + 157 0.12
WAVE 22+ 10 3.36 220 + 186 (0;3) 5.01 281 + 202 1.30 189 + 102 0.62

The results report the average and standard deviation of 5 runs. In parenthesis is the number of runs, if any, where the algorithm misses detection

or signals a false alarm: They are in the form (Miss; False Alarm)
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Fig. 16 Data distribution of each attribute in the MAGIC gamma telescope data set

guarantee that the process is performed at the arrival rate of
data. Considering the results from this experiment, it seems
that the ACWM is the best method to embed in a learning
algorithm.

7.4 Numerical high dimensional data set: MAGIC
gamma telescope benchmark

To evaluate the performance of the ACWM in multidimen-
sional data, the UCI MAGIC gamma telescope [28] data set

was used. The use of such data set has the advantage of con-
sisting of two known classes, allowing an easy validation of
the splits. This data set, which consists of 19,020 data points
in 2 classes with 10 numerical (real) attributes (’fLength’,
"fWidth’, *fSize’, *fConc’, fConcl’, *fAsym’, ’fM3Long’,
"fM3Trans’, ’fAlpha’ and *fDist’). To transform this data set
into a data stream with a change, the data set was split on
class label, simulating a single stream composed first by the
examples of class *gamma’ (12,332 data points) and followed
by the examples of class "hadron’ (6688 data points), and the
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Fig. 17 Detection delay time (average over 100 runs) in the MAGIC
gamma telescope data set

class labels were removed. Figure 16 shows the modified data
for each attribute in this data set, in some attributes the change
is easily observed, while for other is not noticeable.

Since the data are not "time labeled” and to obtain results
independent from the examples order, for each attribute, the
examples within each class were shuffled. This strategy was
repeated obtaining 100 different ordered data sets.

This approach for detecting changes was evaluated in
all these simulated data sets. Performing the change detec-
tion test (using ACWM and FCWM), it was expected to
detect changes around the class change point (12,332). In
multidimensional settings, the comparison of distributions
must be performed at the same evaluation point for each
attribute. Therefore, the initial evaluation step was set to
IniEvalStep = nllinD(ki), where D is the number of

i=l1,..

dimensions. In this experiment, the length of the reference
window needed to be adjusted because the range of attribute
"fAsym’ was around 1000. Therefore, the Lgw was set to
3k. The remaining parameters were not adjusted.

Figures 17 and 18 present the detection delay time (aver-
age results for 100 runs) and execution time, respectively, of
the CMW when performed in this multidimensional data set.
It can be observed that, along the different fading factors used
in the histograms, the ACWM outperforms FCWM (with
similar execution time, as show in Fig. 18). The use of fading
factors reveals to be advantageous, significantly reducing the
detection delay time. It must be pointed out that this decrease
in the detection delay time was obtained in similar execution
time as presented in Fig. 18. The resilience to false alarms
and the ability to reveal changes without missing detections
must be stressed (only in the ACWM-fh with @ = 0.9994
was obtained 2 false alarms and 2 missed detections).

8 Conclusions and further research
This paper presents a windowing scheme to detect distri-

bution and concept changes. The ACWM is based on the
online monitoring of the distance between data distributions,
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Fig. 18 Execution time (over 100 runs) in the MAGIC gamma tele-
scope data set

which is evaluated through a dissimilarity measure based
on the asymmetry of the Kullback-Leibler divergence. The
novelty relies on the approach that provides the representa-
tion of the data distribution. The fading histograms provide a
more updated representation of the data since outdated data
are gradually forgotten. The advantage of such a represen-
tation structure works in favor of the detection of changes.
The experimental results on artificial and real data show that
when using fading histograms to represent data instead of
standard histograms, the time to detect a change is signif-
icantly reduced. The obtained results also sustain that the
ACWM to detect distribution changes is robust to noise and
exhibit a good performance under several stationary phases.
Moreover, the experiments carried out with respect to the
detection of concept changes show that, considering both the
false alarms and the missed detections, the ACWM-fh outper-
forms the other methods and presents detection delay times
similar to ADWIN. The advantage of using fading histograms
to compare data distributions is also disclosed in a multi-
dimensional data set. Overall, the ACWM-th presented a
performance which was highly resilient to false alarms, under
different kinds of distribution changes. However, this win-
dowing model detects changes but does not provide insights
on the description of a change. Nowadays, data are becoming
increasingly evolved, making mandatory to go beyond the
detection of changes and performing change analysis. For
instance, it is important to identify if a change is an increase
or adecrease and explore if there are relations or explanations
on the occurrence of changes. Furthermore, the construction
of the fading histograms must take into consideration that in
dynamic scenarios, the range of the variable may shrinks or
stretches over time. Therefore, the intervals must be adaptive,
evolving over time. Moreover, when embracing the multi-
dimensional data, the ACWM must take into consideration
possible correlations between features.
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