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Abstract

Modern web applications replicate their data across the globe

and require strong consistency guarantees for their most

critical data. These guarantees are usually provided via state-

machine replication (SMR). Recent advances in SMR have

focused on leaderless protocols, which improve the avail-

ability and performance of traditional Paxos-based solutions.

We propose Tempo – a leaderless SMR protocol that, in com-

parison to prior solutions, achieves superior throughput and

offers predictable performance even in contended workloads.

To achieve these benefits, Tempo timestamps each applica-

tion command and executes it only after the timestamp be-

comes stable, i.e., all commands with a lower timestamp are

known. Both the timestamping and stability detection mech-

anisms are fully decentralized, thus obviating the need for

a leader replica. Our protocol furthermore generalizes to

partial replication settings, enabling scalability in highly par-

allel workloads. We evaluate the protocol in both real and

simulated geo-distributed environments and demonstrate

that it outperforms state-of-the-art alternatives.

CCSConcepts: •Theory of computation→Distributed

algorithms.
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1 Introduction

Modern web applications are routinely accessed by clients

all over the world. To support such applications, storage

systems need to replicate data at different geographical loca-

tions while providing strong consistency guarantees for the
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most critical data. State-machine replication (SMR) [39] is an

approach for providing such guarantees used by a number

of systems [8, 15, 22, 27, 40, 45]. In SMR, a desired service

is defined by a deterministic state machine, and each site

maintains its own local replica of the machine. An SMR pro-

tocol coordinates the execution of commands at the sites to

ensure that the system is linearizable [19], i.e., behaves as if

commands are executed sequentially by a single site.

Traditional SMR protocols, such as Paxos [29] and

Raft [35], rely on a distinguished leader site that defines the

order in which client commands are executed at the replicas.

Unfortunately, this site is a single point of failure and con-

tention, and a source of higher latency for clients located far

from it. Recent efforts to improve SMR have thus focused

on leaderless protocols, which distribute the task of ordering

commands among replicas and thus allow a client to contact

the closest replica instead of the leader [1, 5, 14, 31, 32, 43].

Compared to centralized solutions, leaderless SMR offers

lower average latency, fairer latency distribution with re-

spect to client locations, and higher availability.

Leaderless SMR protocols also generalize to the setting of

partial replication, where the service state is split into a set

of partitions, each stored at a group of replicas. A client com-

mand can access multiple partitions, and the SMR protocol

ensures that the system is still linearizable, i.e., behaves as

if the commands are executed by a single machine storing

a complete service state. This approach allows implement-

ing services that are too big to fit onto a single machine. It

also enables scalability, since commands accessing disjoint

sets of partitions can be executed in parallel. This has been

demonstrated by Janus [33] which adapted a leaderless SMR

protocol called Egalitarian Paxos (EPaxos) [32] to the setting

of partial replication. The resulting protocol provided bet-

ter performance than classical solutions such as two-phase

commit layered over Paxos.

Unfortunately, all existing leaderless SMR protocols suffer

from drawbacks in the way they order commands. Some pro-

tocols [1, 5, 14, 32] maintain explicit dependencies between

commands: a replica may execute a command only after all

its dependencies get executed. These dependencies may form

arbitrary long chains. As a consequence, in theory the pro-

tocols do not guarantee progress even under a synchronous

network. In practice, their performance is unpredictable, and

in particular, exhibits a high tail latency [5, 37]. Other proto-

cols [11, 31] need to contact every replica on the critical path

of each command. While these protocols guarantee progress
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under synchrony, they make the system run at the speed of

the slowest replica.

All of these drawbacks carry over to the setting of par-

tial replication where they are aggravated by the fact that

commands span multiple machines.

In this paper we propose Tempo, a new leaderless SMR pro-

tocol that lifts the above limitations while handling both full

and partial replication settings. Tempo guarantees progress

under a synchronous network without the need to contact

all replicas. It also exhibits low tail latency even in contended

workloads, thus ensuring predictable performance. Finally,

it delivers superior throughput than prior solutions, such as

EPaxos and Janus. The protocol achieves all these benefits by

assigning a scalar timestamp to each command and executing

commands in the order of these timestamps. To determine

when a command can be executed, each replica waits until

the command’s timestamp is stable, i.e., all commands with

a lower timestamp are known. Ordering commands in this

way is used in many protocols [1, 9, 11, 28]. A key novelty

of Tempo is that both timestamping and stability detection

are fault-tolerant and fully decentralized, which preserves

the key benefits of leaderless SMR.

In more detail, each Tempo process maintains a local clock

from which timestamps are generated. In the case of full

replication, to submit a command a client sends it to the

closest process, which acts as its coordinator. The coordinator

computes a timestamp for the command by forwarding it

to a quorum of replicas, each of which makes a timestamp

proposal, and taking the maximum of these proposals. If

enough replicas in the quorum make the same proposal,

then the timestamp is decided immediately (fast path). If

not, the coordinator does an additional round trip to the

replicas to persist the timestamp (slow path); this may happen

when commands are submitted concurrently. Thus, under

favorable conditions, the replica nearest to the client decides

the command’s timestamp in a single round trip.

To execute a command, a replica then needs to determine

when its timestamp is stable, i.e., it knows about all com-

mands with lower timestamps. The replica does this by gath-

ering information about which timestamp ranges have been

used up by each replica, so that no more commands will get

proposals in these ranges. This information is piggy-backed

on replicas’ messages, which often allows a timestamp of a

command to become stable immediately after it is decided.

The above protocol easily extends to partial replication: in

this case a command’s timestamp is the maximum over the

timestamps computed for each of the partitions it accesses.

We evaluate Tempo in three environments: a simulator, a

controlled cluster environment and using multiple regions

in Amazon EC2. We show that Tempo improves throughput

over existing SMR protocols by 1.8-5.1x, while lowering tail

latency with respect to prior leaderless protocols by an or-

der of magnitude. This advantage is maintained in partial

replication, where Tempo outperforms Janus by 1.2-16x.

2 Partial State-Machine Replication

We consider a geo-distributed system where processes

may fail by crashing, but do not behave maliciously. State-

machine replication (SMR) is a common way of implement-

ing fault-tolerant services in such a system [39]. In SMR, the

service is defined as a deterministic state machine accepting

a set of commands C. Each process maintains a replica of the

machine and receives commands from clients, external to

the system. An SMR protocol coordinates the execution of

commands at the processes, ensuring that they stay in sync.

We consider a general version of SMR where each pro-

cess replicates only a part of the service state – partial SMR

(PSMR) [20, 33, 38]. We assume that the service state is di-

vided into partitions, so that each variable defining the state

belongs to a unique partition. Partitions are arbitrarily fine-

grained: e.g., just a single state variable. Each command

accesses one or more partitions. We assume that a process

replicates a single partition, but multiple processes may be

co-located at the same machine. Each partition is replicated

at 𝑟 processes, of which at most 𝑓 may fail. Following Flexible
Paxos [21], 𝑓 can be any value such that 1 ≤ 𝑓 ≤ � 𝑟−12 �. This

allows using small values of 𝑓 regardless of the replication
factor 𝑟 , which is appropriate in geo-replication [8, 14]. We
write I𝑝 for the set of all the processes replicating a partition

𝑝 , I𝑐 for the set of processes that replicate the partitions
accessed by a command 𝑐 , and I for the set of all processes.
A PSMR protocol allows a process 𝑖 to submit a command 𝑐

on behalf of a client. For simplicity, we assume that each com-

mand is unique and the process submitting it replicates one

of the partitions it accesses: 𝑖 ∈ I𝑐 . For each partition 𝑝 ac-
cessed by 𝑐 , the protocol then triggers an upcall execute𝑝 (𝑐)
at each process storing 𝑝 , asking it to apply 𝑐 to the local
state of partition 𝑝 . After 𝑐 is executed by at least one pro-
cess in each partition it accesses, the process that submitted

the command aggregates the return values of 𝑐 from each

partition and returns them to the client.

PSMR ensures the highest standard of consistency of repli-

cated data – linearizability [19] – which provides an illusion

that commands are executed sequentially by a single ma-

chine storing a complete service state. To this end, a PSMR

protocol has to satisfy the following specification. Given two

commands 𝑐 and 𝑑 , we write 𝑐 ↦→𝑖 𝑑 when they access a

common partition and 𝑐 is executed before 𝑑 at some process
𝑖 ∈ I𝑐 ∩ I𝑑 . We also define the following real-time order:

𝑐 � 𝑑 when the command 𝑐 returns before the command 𝑑
was submitted. Let ↦→ = (

⋃
𝑖∈I ↦→𝑖 ) ∪�. A PSMR protocol

ensures the following properties:

Validity. If a process executes some command 𝑐 , then it
executes 𝑐 at most once and only if 𝑐 was submitted before.

Ordering. The relation ↦→ is acyclic.

Liveness. If a command 𝑐 is submitted by a non-faulty
process or executed at some process, then it is executed at

all non-faulty processes in I𝑐 .
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The Ordering property ensures that commands are exe-

cuted in a consistent manner throughout the system [18]. For

example, it implies that two commands, both accessing the

same two partitions, cannot be executed at these partitions

in contradictory orders. As usual, to ensure Liveness we as-

sume that the network is eventually synchronous, and in

particular, that message delays between non-failed processes

are eventually bounded [12].

PSMR is expressive enough to implement a wide spectrum

of distributed applications. In particular, it directly allows

implementing one-shot transactions, which consist of inde-

pendent pieces of code (such as stored procedures), each

accessing a different partition [23, 30, 33]. It can also be used

to construct general-purpose transactions [33, 41].

3 Single-Partition Protocol

For simplicity, we first present the protocol in the case when

there is only a single partition, and cover the general case in

§4.We start with an overview of the single-partition protocol.

To ensure the Ordering property of PSMR, Tempo assigns

a scalar timestamp to each command. Processes execute com-

mands in the order of these timestamps, thus ensuring that

processes execute commands in the same order. To submit a

command, a client sends it to a nearby process which acts

as the coordinator for the command. The coordinator is in

charge of assigning a timestamp to the command and com-

municating this timestamp to all processes. When a process

finds out about the command’s timestamp, we say that the

process commits the command. If the coordinator is sus-

pected to have failed, another process takes over its role

through a recovery mechanism (§5). Tempo ensures that,

even in case of failures, processes agree on the timestamp as-

signed to the command, as stated by the following property.

Property 1 (Timestamp agreement). Two processes cannot

commit the same command with different timestamps.

A coordinator computes a timestamp for a command as

follows (§3.1). It first forwards the command to a fast quorum

of � 𝑟2 � + 𝑓 processes, including the coordinator itself. Each
process maintains a Clock variable. When the process re-

ceives a command from the coordinator, it increments Clock

and replies to the coordinator with the new Clock value as a

timestamp proposal. The coordinator then takes the highest

proposal as the command’s timestamp. If enough processes

have made such a proposal, the coordinator considers the

timestamp decided and takes the fast path: it just commu-

nicates the timestamp to the processes, which commit the

command. The protocol ensures that the timestamp can be

recovered even if the coordinator fails, thus maintaining

Property 1. Otherwise, the coordinator takes the slow path,

where it stores the timestamp at a slow quorum of 𝑓 + 1 pro-
cesses using a variant of Flexible Paxos [21]. This ensures

that the timestamp survives any allowed number of failures.

The slow pathmay have to be taken in cases when commands

are submitted concurrently to the same partition (however,

recall that partitions may be arbitrarily fine-grained).

Since processes execute committed commands in the time-

stamp order, before executing a command a process must

know all the commands that precede it.

Property 2 (Timestamp stability). Consider a command 𝑐
committed at 𝑖 with timestamp 𝑡 . Process 𝑖 can only execute
𝑐 after its timestamp is stable, i.e., every command with a
timestamp lower or equal to 𝑡 is also committed at 𝑖 .

To check the stability of a timestamp 𝑡 (§3.2), each process
𝑖 tracks timestamp proposals issued by other processes. Once
the Clocks at any majority of the processes pass 𝑡 , process 𝑖
can be sure that new commands will get higher timestamps:

these are computed as the maximal proposal from at least a

majority, and any two majorities intersect. Process 𝑖 can then
use the information gathered about the timestamp proposals

from other processes to find out about all the commands that

have got a timestamp lower than 𝑡 .

3.1 Commit Protocol

Algorithm 1 specifies the single-partition commit protocol

at a process 𝑖 replicating a partition 𝑝 . We assume that self-
addressed messages are delivered immediately. A command

𝑐 ∈ C is submitted by a client by calling submit(𝑐) at a pro-
cess 𝑖 that replicates a partition accessed by the command
(line 1). Process 𝑖 then creates a unique identifier id ∈ D

and a mapping Q from a partition accessed by the com-

mand to the fast quorum to be used at that partition. Be-

cause we consider a single partition for now, in what follows

Q contains only one fast quorum, Q[𝑝]. Finally, process 𝑖
sends MSubmit(id, 𝑐,Q) to a set of processes I𝑖𝑐 , which in

the single-partition case simply denotes {𝑖}.
A command goes through several phases at each process:

from the initial phase start, to a commit phase once the

command is committed, and an execute phase once it is

executed. We summarize these phases and allowed phase

transitions in Figure 1. A mapping phase at a process tracks

the progress of a command with a given identifier through

phases. For brevity, the name of the phase written in lower

case denotes all the commands in that phase, e.g., start =
{id ∈ D | phase[id] = start}. We also define pending as

follows: pending = payload ∪ propose ∪ recoverp ∪ recoverr .

Start phase. When a process receives anMSubmitmessage,

it starts serving as the command coordinator (line 5). The

coordinator first computes its timestamp proposal for the

command as Clock + 1. After computing the proposal, the

coordinator sends anMPropose message to the fast quorum

Q[𝑝] and anMPayload message to the remaining processes.

Since the fast quorum contains the coordinator, the coordina-

tor also sends theMProposemessage to itself. As mentioned

earlier, self-addressed messages are delivered immediately.
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Algorithm 1: Commit protocol at process 𝑖 ∈ I𝑝 .

1 submit(𝑐)
2 pre: 𝑖 ∈ I𝑐

3 id ← next_id(); Q ← fast_quorums(𝑖, I𝑐 )

4 sendMSubmit(id, 𝑐,Q) to I𝑖𝑐

5 receive MSubmit(id, 𝑐,Q)

6 𝑡 ← Clock + 1

7 sendMPropose(id, 𝑐,Q, 𝑡) to Q[𝑝]

8 sendMPayload(id, 𝑐,Q) to I𝑝 \ Q[𝑝]

9 receive MPayload(id, 𝑐,Q)

10 pre: id ∈ start

11 cmd[id] ← 𝑐; quorums[id] ← Q; phase[id] ← payload

12 receive MPropose(id, 𝑐,Q, 𝑡) from 𝑗
13 pre: id ∈ start

14 cmd[id] ← 𝑐; quorums[id] ← Q; phase[id] ← propose

15 ts[id] ← proposal(id, 𝑡)

16 send MProposeAck(id, ts[id]) to 𝑗

17 receive MProposeAck(id, 𝑡 𝑗 ) from ∀𝑗 ∈ 𝑄
18 pre: id ∈ propose ∧𝑄 = quorums[id] [𝑝]

19 𝑡 ← max{𝑡 𝑗 | 𝑗 ∈ 𝑄}

20 if count(𝑡) ≥ 𝑓 then sendMCommit(id, 𝑡) to Icmd[id ]

21 else sendMConsensus(id, 𝑡, 𝑖) to I𝑝

22 receive MCommit(id, 𝑡)
23 pre: id ∈ pending

24 ts[id] ← 𝑡 ; phase[id] ← commit

25 bump(ts[id])

26 receive MConsensus(id, 𝑡, 𝑏) from 𝑗
27 pre: bal[id] ≤ 𝑏

28 ts[id] ← 𝑡 ; bal[id] ← 𝑏; abal[id] ← 𝑏

29 bump(𝑡)

30 send MConsensusAck(id, 𝑏) to 𝑗

31 receive MConsensusAck(id, 𝑏) from 𝑄
32 pre: bal[id] = 𝑏 ∧ |𝑄 | = 𝑓 + 1

33 send MCommit(id, ts[id]) to Icmd[id ]

34 proposal(id,𝑚)

35 𝑡 ← max(𝑚,Clock + 1)

36 Detached ← Detached∪ {〈𝑖, 𝑢〉 | Clock+ 1 ≤𝑢 ≤ 𝑡 − 1}

37 Attached[id] ← {〈𝑖, 𝑡〉}

38 Clock ← 𝑡

39 return 𝑡

40 bump(𝑡)
41 𝑡 ← max(𝑡,Clock)

42 Detached ← Detached ∪ {〈𝑖, 𝑢〉 | Clock+ 1 ≤ 𝑢 ≤ 𝑡}

43 Clock ← 𝑡

Payload phase. Upon receiving an MPayload message

(line 9), a process simply saves the command payload in

a mapping cmd and sets the command’s phase to payload.

It also saves Q in a mapping quorums. This is necessary for

the recovery mechanism to know the fast quorum used for

the command (§5).

start

payloadrecover-r propose recover-p

commit

execute

����
�� ��

�� ���� ��

��

Figure 1. Command journey through phases in Tempo.

Propose phase. Upon receiving an MPropose message

(line 12), a fast-quorum process also saves the command pay-

load and fast quorums, but sets its phase to propose. Then

the process computes its own timestamp proposal using

the function proposal and stores it in a mapping ts. Finally,

the process replies to the coordinator with anMProposeAck

message, carrying the computed timestamp proposal.

The function proposal takes as input an identifier id

and a timestamp𝑚 and computes a timestamp proposal as

𝑡 = max(𝑚,Clock + 1), so that 𝑡 ≥ 𝑚 (line 35). The function

bumps the Clock to the computed timestamp 𝑡 and returns 𝑡
(lines 38-39); we explain lines 36-37 later. As we have already

noted, the coordinator computes the command’s timestamp

as the highest of the proposals from fast-quorum processes.

Proactively taking the max between the coordinator’s pro-

posal𝑚 and Clock + 1 in proposal ensures that a process’s

proposal is at least as high as the coordinator’s; as we ex-

plain shortly, this helps recovering timestamps in case of

coordinator failure.

Commit phase. Once the coordinator receives an

MProposeAck message from all the processes in the fast

quorum 𝑄 = Q[𝑝] (line 17), it computes the command’s
timestamp as the highest of all timestamp proposals:

𝑡 = max{𝑡 𝑗 | 𝑗 ∈ 𝑄}. Then the coordinator decides to

either take the fast path (line 20) or the slow path (line 21).

Both paths end with the coordinator sending anMCommit

message containing the command’s timestamp. Since

|𝑄 | = � 𝑟2 � + 𝑓 and 𝑓 ≥ 1, we have the following property

which ensures that a committed timestamp is computed

over (at least) a majority of processes.

Property 3. For any message MCommit(id, 𝑡), there is a
set of processes 𝑄 such that |𝑄 | ≥ � 𝑟2 � + 1 and 𝑡 = max{𝑡 𝑗 |
𝑗 ∈ 𝑄}, where 𝑡 𝑗 is the output of function proposal(id, _)
previously called at process 𝑗 ∈ 𝑄 .

This property is also preserved if 𝑡 is computed by a pro-
cess performing recovery in case of coordinator failure (§5).

Once a process receives anMCommit message (line 22),

it saves the command’s timestamp in ts[id] and moves the

command to the commit phase. It then bumps the Clock to

the committed timestamp using a function bump (line 40).

We next explain the fast and slow paths, as well as the con-

ditions under which they are taken.

Fast path. The fast path can be taken if the highest proposal

𝑡 is made by at least 𝑓 processes. This condition is expressed
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by count(𝑡) ≥ 𝑓 in line 20, where count(𝑡) = |{ 𝑗 ∈ 𝑄 | 𝑡 𝑗 =
𝑡}|. If the condition holds, the coordinator immediately sends
anMCommit message with the computed timestamp1. The

protocol ensures that, if the coordinator fails before sending

all the MCommit messages, 𝑡 can be recovered as follows.
First, the condition count(𝑡) ≥ 𝑓 ensures that the timestamp
𝑡 can be obtained without 𝑓 − 1 fast-quorum processes (e.g.,

if they fail) by selecting the highest proposal made by the

remaining quorum members. Moreover, the proposal by the

coordinator is also not necessary to obtain 𝑡 . This is because
fast-quorum processes only propose timestamps no lower

than the coordinator’s proposal (line 15). As a consequence,

the coordinator’s proposal is only the highest proposal 𝑡
when all processes propose the same timestamp, in which

case a single process suffices to recover 𝑡 . It follows that 𝑡
can be obtained without 𝑓 fast-quorum processes including

the initial coordinator by selecting the highest proposal sent

by the remaining (� 𝑟2 � + 𝑓 ) − 𝑓 = � 𝑟2 � quorummembers. This

observation is captured by the following property.

Property 4. Any timestamp committed on the fast path

can be obtained by selecting the highest proposal sent in

MPropose by at least � 𝑟2 � fast-quorum processes distinct

from the initial coordinator.

Fast path examples. Table 1 contains several examples that

illustrate the fast-path condition of Tempo and Property 4.

All examples consider 𝑟 = 5 processes. We highlight time-

stamp proposals in bold. Process A acts as the coordinator

and sends 6 in its MPropose message. The fast quorum 𝑄
is {A,B,C} when 𝑓 = 1 and {A,B,C,D} when 𝑓 = 2. The

example in Table 1 𝑎) considers Tempo 𝑓 = 2. Once process B

receives theMPropose with timestamp 6, it bumps its Clock

from 6 to 7 and sends a proposal 7 in theMProposeAck. Sim-

ilarly, processes C and D bump their Clock from 10 to 11

and propose 11. Thus, A receives proposals 𝑡A = 6, 𝑡B = 7,

𝑡C = 11 and 𝑡D = 11, and computes the command’s time-

stamp as 𝑡 = max{6, 7, 11} = 11. Since count(11) = 2 ≥ 𝑓 ,
the coordinator takes the fast path, even though the pro-

posals did not match. In order to understand why this is

safe, assume that the coordinator fails (before sending all the

MCommit messages) along with another fast-quorum pro-

cess. Independently of which � 𝑟2 � = 2 fast-quorum processes

survive ({B,C} or {B,D} or {C,D}), timestamp 11 is always
present and can be recovered as stated by Property 4. This is

not the case for the example in Table 1 𝑏). Here A receives

𝑡A = 6, 𝑡B = 7, 𝑡C = 11 and 𝑡D = 6, and again computes

𝑡 = max{6, 7, 11} = 11. Since count(11) = 1 < 𝑓 , the coordi-
nator cannot take the fast path: timestamp 11 was proposed

solely by C and would be lost if both this process and the

coordinator fail. The examples in Table 1 𝑐) and 𝑑) consider
𝑓 = 1, and the fast path is taken in both, independently of

1In line 20 we send the message to I𝑐 even though this set is equal to

I𝑝 in the single-partition case. We do this to reuse the pseudocode when

presenting the multi-partition protocol in §4.

Table 1. Tempo examples with 𝑟 = 5 processes while toler-

ating 𝑓 faults. Only 4 processes are depicted, A, B, C and D,

with A always acting as the coordinator.

A B C D match fast path

𝑎) 𝑓 = 2 6 6 → 7 10 → 11 10 → 11 � �
𝑏) 𝑓 = 2 6 6 → 7 10 → 11 5 → 6 � �
𝑐) 𝑓 = 1 6 6 → 7 10 → 11 � �
𝑑) 𝑓 = 1 6 5 → 6 1 → 6 � �

the timestamps proposed. This is because Tempo fast-path

condition count(max{𝑡 𝑗 | 𝑗 ∈ 𝑄}) ≥ 𝑓 trivially holds with
𝑓 = 1, and thus Tempo 𝑓 = 1 always takes the fast path.

Note that when the Clock at a fast-quorum process is

below the proposal𝑚 sent by the coordinator, i.e.,Clock < 𝑚,
the process makes the same proposal as the coordinator.

This is not the case when Clock ≥ 𝑚, which can happen
when commands are submitted concurrently to the partition.

Nonetheless, Tempo is able to take the fast path in some of

these situations, as illustrated in Table 1.

Slow path. When the fast-path condition does not hold, the

timestamp computed by the coordinator is not yet guaran-

teed to be persistent: if the coordinator fails before sending

all the MCommit messages, a process taking over its job

may compute a different timestamp. To maintain Property 1

in this case, the coordinator first reaches an agreement on

the computed timestamp with other processes replicating

the same partition. This is implemented using single-decree

Flexible Paxos [21]. For each identifier we allocate ballot

numbers to processes round-robin, with ballot 𝑖 reserved for
the initial coordinator 𝑖 and ballots higher than 𝑟 for pro-
cesses performing recovery. Every process stores for each

identifier id the ballot bal[id] it is currently participating in

and the last ballot abal[id] in which it accepted a consensus

proposal (if any). When the initial coordinator 𝑖 decides to go
onto the slow path, it performs an analog of Paxos Phase 2: it

sends anMConsensus message with its consensus proposal

and ballot 𝑖 to a slow quorum that includes itself. Following

Flexible Paxos, the size of the slow quorum is only 𝑓 +1, rather
than a majority like in classical Paxos. As usual in Paxos, a

process accepts anMConsensus message only if its bal[id]

is not greater than the ballot in the message (line 27). Then

it stores the consensus proposal, sets bal[id] and abal[id]

to the ballot in the message, and replies to the coordinator

with MConsensusAck. Once the coordinator gathers 𝑓 + 1

such replies (line 31), it is sure that its consensus proposal

will survive the allowed number of failures 𝑓 , and it thus
broadcasts the proposal in anMCommit message.

3.2 Execution Protocol

A process executes committed commands in the timestamp

order. To this end, as required by Property 2, a process exe-

cutes a command only after its timestamp becomes stable, i.e.,

all commands with a lower timestamp are known. To detect
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Algorithm 2: Execution protocol at process 𝑖 ∈ I𝑝 .

44 periodically

45 sendMPromises(Detached,Attached) to I𝑝

46 receive MPromises(𝐷,𝐴)
47 𝐶 ←

⋃
{𝑎 | 〈id, 𝑎〉 ∈ 𝐴 ∧ id ∈ commit ∪ execute}

48 Promises ← Promises ∪ 𝐷 ∪𝐶

49 periodically

50 ℎ ← sort{highest_contiguous_promise( 𝑗) | 𝑗 ∈ I𝑝 }

51 ids ← {id ∈ commit | ts[id] ≤ ℎ[ � 𝑟2 � ]}

52 for id ∈ ids ordered by 〈ts[id], id〉
53 execute𝑝 (cmd[id]); phase[id] ← execute

54 highest_contiguous_promise( 𝑗)
55 max{𝑐 ∈ N | ∀𝑢 ∈ {1 . . . 𝑐} · 〈 𝑗, 𝑢〉 ∈ Promises}

stability, Tempo tracks which timestamp ranges have been

used up by each process using the following mechanism.

Promise collection. A promise is a pair 〈 𝑗, 𝑢〉 ⊆ I𝑝 × N

where 𝑗 is a process and 𝑢 a timestamp. Promises can be

attached to some command or detached. A promise 〈 𝑗, 𝑢〉
attached to command 𝑐 means that process 𝑗 proposed time-
stamp𝑢 for command 𝑐 , and thus will not use this timestamp
again. A detached promise 〈 𝑗, 𝑢〉 means that process 𝑗 will
never propose timestamp 𝑢 for any command.
The function proposal is responsible for collecting the

promises issued when computing a timestamp proposal 𝑡
(line 34). This function generates a single attached promise

for the proposal 𝑡 , stored in a mapping Attached (line 37).

The function also generates detached promises for the times-

tamps ranging from Clock + 1 up to 𝑡 − 1 (line 36): since the

process bumps the Clock to 𝑡 (line 38), it will never assign a
timestamp in this range. Detached promises are accumulated

in the Detached set. In Table 1 𝑑), process B generates an

attached promise 〈B, 6〉, while C generates 〈C, 6〉. Process B
does not issue detached promises, since its Clock is bumped

only by 1, from 5 to 6. However, process C bumps its Clock

by 5, from 1 to 6, generating four detached promises: 〈C, 2〉,
〈C, 3〉, 〈C, 4〉, 〈C, 5〉.
Algorithm 2 specifies the Tempo execution protocol at a

process replicating a partition 𝑝 . Periodically, each process
broadcasts its detached and attached promises to the other

processes replicating the same partition by sending them in

anMPromises message (line 45)2. When a process receives

the promises (line 46), it adds them to a set Promises. De-

tached promises are added immediately. An attached promise

associated with a command identifier id is only added once

id is committed or executed (line 47).

Stability detection. Tempo determines when a timestamp

is stable (Property 2) according to the following theorem.

2To minimize the size of these messages, a promise is sent only once in the

absence of failures. Promises can be garbage-collected as soon as they are

received by all the processes within the partition.

Theorem 1. A timestamp 𝑠 is stable at a process 𝑖 if the
variable Promises contains all the promises up to 𝑠 by some
set of processes 𝑄 with |𝑄 | ≥ � 𝑟2 � + 1.

Proof. Assume that at some time 𝜏 the variable Promises at a

process 𝑖 contains all the promises up to 𝑠 by some set of pro-
cesses𝑄 with |𝑄 | ≥ � 𝑟2 � +1. Assume further that a command

𝑐 with identifier id is eventually committed with timestamp
𝑡 ≤ 𝑠 at some process 𝑗 , i.e., 𝑗 receives anMCommit(id, 𝑡).
We need to show that command 𝑐 is committed at 𝑖 at time
𝜏 . By Property 3 we have 𝑡 = max{𝑡𝑘 | 𝑘 ∈ 𝑄 ′}, where

|𝑄 ′ | ≥ � 𝑟2 �+1 and 𝑡𝑘 is the output of function proposal(id, _)
at a process 𝑘 . As 𝑄 and 𝑄 ′ are majorities, there exists some

process 𝑙 ∈ 𝑄 ∩ 𝑄 ′. Then this process attaches a promise

〈𝑙, 𝑡𝑙 〉 to 𝑐 (line 37) and 𝑡𝑙 ≤ 𝑡 ≤ 𝑠 . Since the variable Promises

at process 𝑖 contains all the promises up to 𝑠 by process 𝑙 , it
also contains the promise 〈𝑙, 𝑡𝑙 〉. According to line 47, when
this promise is incorporated into Promises, command 𝑐 has
been already committed at 𝑖 , as required. �

A process periodically computes the highest contiguous

promise for each process replicating the same partition, and

stores these promises in a sorted array ℎ (line 50). It deter-
mines the highest stable timestamp according to Theorem 1

as the one at index � 𝑟2 � in ℎ. The process then selects all the
committed commands with a timestamp no higher than the

stable one and executes them in the timestamp order, break-

ing ties using their identifiers. After a command is executed,

it is moved to the execute phase, which ends its journey.

To gain more intuition about the above mechanism, con-

sider Figure 2, where 𝑟 = 3. There we represent the variable

Promises of some process as a table, with processes as col-

umns and timestamps as rows. For example, a promise 〈A, 2〉
is in Promises if it is present in column A, row 2. There are

three sets of promises, 𝑋 , 𝑌 and 𝑍 , to be added to Promises.

For each combination of these sets, the right hand side of Fig-

ure 2 shows the highest stable timestamp if all the promises

in the combination are in Promises. For instance, assume

that Promises = 𝑌 ∪𝑍 , so that the set contains promise 2 by
A, all promises up to 3 by B, and all promises up to 2 by C.

As Promises contains all promises up to 2 by the majority

{B,C}, timestamp 2 is stable: any uncommitted command 𝑐
must be committed with a timestamp higher than 2. Indeed,

since 𝑐 is not yet committed, Promises does not contain any

promise attached to 𝑐 (line 47). Moreover, to get committed,
𝑐 must generate attached promises at a majority of processes
(Property 3), and thus, at either B or C. If 𝑐 generates an
attached promise at B, its coordinator will receive at least

proposal 4 from B; if at C, its coordinator will receive at least

proposal 3. In either case, and since the committed timestamp

is the highest timestamp proposal, the committed timestamp

of 𝑐 must be at least 3 > 2, as required.

In our implementation, promises generated by fast-

quorum processes when computing their proposal for a com-

mand (line 34) are piggybacked on theMProposeAck mes-
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3 〈B, 3〉 〈C, 3〉
2 〈A, 2〉 〈B, 2〉 〈C, 2〉
1 〈A, 1〉 〈B, 1〉 〈C, 1〉

A B C

processes

𝑋 = {〈A, 1〉, 〈C, 3〉} → 0

𝑌 = {〈B, 1〉, 〈B, 2〉, 〈B, 3〉} → 0

𝑍 = {〈A, 2〉, 〈C, 1〉, 〈C, 2〉} → 0

𝑋 ∪ 𝑌 → 1

𝑋 ∪ 𝑍 and 𝑌 ∪ 𝑍 → 2

𝑋 ∪ 𝑌 ∪ 𝑍 → 3

Figure 2. Stable timestamps for different sets of promises.

sage, and then broadcast by the coordinator in theMCommit

message (omitted from the pseudocode). This speeds up sta-

bility detection and often allows a timestamp of a command

to become stable immediately after it is decided. Notice that

when committing a command, Tempo generates detached

promises up to the timestamp of that command (line 25).

This helps ensuring the liveness of the execution mecha-

nism, since the propagation of these promises contributes to

advancing the highest stable timestamp.

3.3 Timestamp Stability vs Explicit Dependencies

Prior leaderless protocols [1, 5, 14, 32, 44] commit each com-

mand 𝑐 with a set of explicit dependencies dep[𝑐]. In contrast,
Tempo does not track explicit dependencies, but uses time-

stamp stability to decide when to execute a command. This

allows Tempo to ensure progress under synchrony. Protocols

using explicit dependencies do not offer such a guarantee,

as they can arbitrarily delay the execution of a command. In

practice, this translates into a high tail latency.

Figure 3 illustrates this issue using four commands

𝑤, 𝑥,𝑦, 𝑧 and 𝑟 = 3 processes. Process A submits w and x, B

submits y, and C submits z. Commands arrive at the pro-

cesses in the following order: w, x, z at A; y, w at B; and z, y at

C. Because in this example only process A has seen command

𝑥 , this command is not yet committed. In Tempo, the above
command arrival order generates the following attached

promises: {〈A, 1〉, 〈B, 2〉} for𝑤 , {〈A, 2〉} for 𝑥 , {〈B, 1〉, 〈C, 2〉}
for 𝑦, and {〈C, 1〉, 〈A, 3〉} for 𝑧. Commands 𝑤 , 𝑦 and 𝑧 are
then committed with the following timestamps: ts[𝑤] = 2,

ts[𝑦] = 2, and ts[𝑧] = 3. On the left of Figure 3 we present

the Promises variable of some process once it receives the

promises attached to the three committed commands. Given

these promises, timestamp 2 is stable at the process. Even

though command 𝑥 is not committed, timestamp stability
ensures that its timestamp must be greater than 2. Thus,

commands 𝑤 and 𝑦, committed with timestamp 2, can be
safely executed. We now show how two approaches that use

explicit dependencies behave in the above example.

Dependency-based ordering. EPaxos [32] and follow-

ups [5, 14, 44] order commands based on their committed

dependencies. For example, in EPaxos, the above command

arrival order results in commands𝑤 ,𝑦 and 𝑧 committed with
the following dependencies: dep[𝑤] = {𝑦}, dep[𝑦] = {𝑧},
dep[𝑧] = {𝑤, 𝑥}. These form the graph shown on the top
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1 〈A, 1〉 〈B, 1〉 〈C, 1〉

A B C

processes

w y z x

“depends on”

�� ��
		

��

��

w y z x

“blocked on”

�� �� ��

��

Figure 3. Comparison between timestamp stability (left) and

two approaches using explicit dependencies (right).

right of Figure 3. Since the dependency graph may be cyclic

(as in Figure 3), commands cannot be simply executed in

the order dictated by the graph. Instead, the protocol waits

until it forms strongly connected components of the graph

and then executes these components one at a time. As we

show in [13, §D], the size of such components is a priori

unbounded. This can lead to pathological scenarios where

the protocol continuously commits commands but can never

execute them, even under a synchronous network [32, 37].

It may also significantly delay the execution of committed

commands, as illustrated by our example: since command

𝑥 has not yet been committed, and the strongly connected
component formed by the committed commands 𝑤 , 𝑦 and
𝑧 depends on 𝑥 , no command can be executed – unlike in
Tempo. As we demonstrate in our experiments (§6), execu-

tion delays in such situations lead to high tail latencies.

Dependency-based stability. Caesar [1] associates each

command 𝑐 not only with a set of dependencies dep[𝑐], but
also with a unique timestamp ts[𝑐]. Commands are executed
in timestamp order, and dependencies are used to determine

when a timestamp is stable, and thus when the command

can be executed. For this, dependencies have to be consis-

tent with timestamps in the following sense: for any two

commands 𝑐 and 𝑐 ′, if ts[𝑐] < ts[𝑐 ′], then 𝑐 ∈ dep[𝑐 ′]. Then
the timestamp of a command can be considered stable when

the transitive dependencies of the command are committed.

Caesar determines the predecessors of a command while

agreeing on its timestamp. To this end, the coordinator of a

command sends the command to a quorum together with

a timestamp proposal. The proposal is committed when

enough processes vote for it. Assume that in our example A

proposes𝑤 and 𝑥 with timestamps 1 and 4, respectively, B
proposes 𝑦 with 2, and C proposes 𝑧 with 3. When B receives

command𝑤 with timestamp proposal 1, it has already pro-

posed 𝑦 with timestamp 2. If these proposals succeed and are
committed, the above invariant is maintained only if𝑤 is a

dependency of 𝑦. However, because 𝑦 has not yet been com-
mitted, its dependencies are unknown and thus B cannot yet

ensure that𝑤 is a dependency of 𝑦. For this reason, B must

block its response about 𝑤 until 𝑦 is committed. Similarly,
command 𝑦 is blocked at C waiting for 𝑧, and 𝑧 is blocked at
A waiting for 𝑥 . This situation, depicted in the bottom right

of Figure 3, results in no command being committed – again,

unlike in Tempo. In fact, as we show in [13, §D], the blocking
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mechanism of Caesar allows pathological scenarios where

commands are never committed at all. Similarly to EPaxos,

in practice this leads to high tail latencies (§6). In contrast

to Caesar, Tempo computes the predecessors of a command

separately from agreeing on its timestamp, via background

stability detection. This obviates the need for artificial delays

in agreement, allowing Tempo to offer low tail latency (§6).

Limitations of timestamp stability. Protocols that track

explicit dependencies are able to distinguish between read

and write commands. In these protocols writes depend on

both reads and writes, but reads only have to depend on

writes. The latter feature improves the performance in read-

dominated workloads. In contrast, Tempo does not distin-

guish between read and write commands, so that its perfor-

mance is not affected by the ratio of reads in the workload.

We show in §6 that this limitation does not prevent Tempo

from providing similar throughput as the best-case scenario

(i.e., a read-only workload) of protocols such as EPaxos and

Janus. Adapting techniques that exploit the distinction be-

tween reads and writes is left as future work.

4 Multi-Partition Protocol

Algorithm 3 extends the Tempo commit and execution pro-

tocols to handle commands that access multiple partitions.

This is achieved by submitting a multi-partition command

at each of the partitions it accesses using Algorithm 1. Once

committed with some timestamp at each of these partitions,

the command’s final timestamp is computed as the maxi-

mum of the committed timestamps. A command is executed

once it is stable at all the partitions it accesses. As previously,

commands are executed in the timestamp order.

In more detail, when a process 𝑖 submits a multi-partition
command 𝑐 on behalf of a client (line 1), it sends anMSubmit

message to a set I𝑖𝑐 . For each partition 𝑝 accessed by 𝑐 , the set
I𝑖𝑐 contains a responsive replica of 𝑝 close to 𝑖 (e.g., located
in the same data center). The processes in I𝑖𝑐 then serve as

coordinators of 𝑐 in the respective partitions, following the
steps in Algorithm 1. This algorithm ends with the coordi-

nator in each partition sending an MCommit message to

I𝑐 , i.e., all processes that replicate a partition accessed by 𝑐
(lines 20 and 33; note that I𝑐 ≠ I𝑝 because 𝑐 accesses multi-
ple partitions). Hence, each process in I𝑐 receives as many

MCommits as the number of partitions accessed by 𝑐 . Once
this happens, the process executes the handler at line 56 in

Algorithm 3, which replaces the previousMCommit handler

in Algorithm 1. The process computes the final timestamp

of the multi-partition command as the highest of the times-

tamps committed at each partition, moves the command to

the commit phase and bumps the Clock to the computed

timestamp, generating detached promises.

Commands are executed using the handler at line 60,

which replaces that at line 49. This detects command stabil-

ity using Theorem 1, which also holds in the multi-partition

Algorithm 3: Multi-partition protocol at process 𝑖 ∈ I𝑝 .

56 receiveMCommit(id, 𝑡 𝑗 ) from 𝑗 ∈ I𝑖
cmd[id ]

57 pre: id ∈ pending

58 ts[id] ← max{𝑡 𝑗 | 𝑗 ∈ 𝑃}; phase[id] ← commit

59 bump(ts[id])

60 periodically

61 ℎ ← sort{highest_contiguous_promise( 𝑗) | 𝑗 ∈ I𝑝 }

62 ids ← {id ∈ commit | ts[id] ≤ ℎ[ � 𝑟2 � ]}

63 for id ∈ ids ordered by 〈ts[id], id〉
64 sendMStable(id) to Icmd[id ]

65 wait receiveMStable(id) from ∀𝑗 ∈ I𝑖
cmd[id ]

66 execute𝑝 (cmd[id]); phase[id] ← execute

67 receiveMPropose(id, 𝑐,Q, 𝑡) from 𝑗
. . .

68 sendMBump(id, ts[id]) to I𝑖𝑐

69 receiveMBump(id, 𝑡)
70 pre: id ∈ propose

71 bump(𝑡)

case. The handler signals that a command 𝑐 is stable at a par-
tition by sending anMStable message (line 64). Once such a

message is received from all the partitions accessed by 𝑐 , the
command is executed. The exchange ofMStable messages

follows the approach in [4] and ensures and the real-time

order constraint in the Ordering property of PSMR (§2).

Example. Figure 4 shows an example of Tempo 𝑓 = 1 with

𝑟 = 5 and 2 partitions. Only 3 processes per partition are

depicted. Partition 0 is replicated at A, B and C, and partition

1 at F, G and H. Processes with the same color (e.g., B and G)

are located nearby each other (e.g., in the same machine or

data center). Process A and F are the coordinators for some

command that accesses the two partitions. At partition 0,

A computes 6 as its timestamp proposal and sends it in an

MPropose message to the fast quorum {A,B,C} (the down-
ward arrows in Figure 4). These processes make the same

proposal, and thus the command is committed at partition 0

with timestamp 6. Similarly, at partition 1, F computes 10 as

its proposal and sends it to {F,G,H}, all of which propose

the same. The command is thus committed at partition 1

with timestamp 10. The final timestamp of the command is

then computed as max{6, 10} = 10.

Assume that the stable timestamp at A is 5 and at F

is 9 when they compute the final timestamp for the com-

mand. Once F receives the attached promises by the majority

{F,G,H}, timestamp 10 becomes stable at F. This is not the

case at A, as the attached promises by the majority {A,B,C}
only make timestamp 6 stable. However, processes A, B and

C also generate detached promises up to timestamp 10 when

receiving theMCommitmessages for the command (line 59).

When A receives these promises, it declares timestamp 10 sta-

ble. This occurs after two extramessage delays: anMCommit
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A

6

6 → 10

F

10

B

5 → 6

6 → 10

G

9 → 10

C

5 → 6

6 → 10

H

9 → 10

Figure 4. Example of Tempo with 2 partitions. Next to each

process we show the clock updates upon receivingMPropose

messages and, in dashed boxes, the updates upon receiving

MCommit orMBump messages (whichever occurs first).

from A and F to B and C, and thenMPromises from B and C

back to A. Since the command’s timestamp is stable at both

A and F, once these processes exchangeMStable messages,

the command can finally be executed at each.

Faster stability. Tempo avoids the above extra delays by

generating the detached promises needed for stability ear-

lier than in the MCommit handler. For this we amend the

MPropose handler as shown in Algorithm 3. When a process

receives anMProposemessage, it follows the same steps as in

Algorithm 1. It then additionally sends anMBump message

containing its proposal to the nearby processes that replicate

a partition accessed by the command (line 68). Upon receiv-

ing this message (line 69), a process bumps its Clock to the

timestamp in the message, generating detached promises.

In Figure 4,MBump messages are depicted by horizontal

dashed arrows. When G computes its proposal 10, it sends

anMBumpmessage containing 10 to process B. Upon recep-

tion, B bumps its Clock to 10, generating detached promises

up to that value. The same happens at A and C. Once the

detached promises by the majority {A,B,C} are known at A,
the process again declares 10 stable. In this case, A receives

the required detached promises in twomessage delays earlier

than when these promises are generated viaMCommit. This

strategy often reduces the number of message delays neces-

sary to execute amulti-partition command. However, it is not

always sufficient (e.g., imagine that H proposed 11 instead of

10), and thus, the promises issued in theMCommit handler

(line 59) are still necessary for multi-partition commands.

Genuineness and parallelism. The above protocol is gen-

uine: for every command 𝑐 , only the processes in I𝑐 take

steps to order and execute 𝑐 [17]. This is not the case for
existing leaderless protocols for partial replication, such as

Janus [33]. With a genuine protocol, partitioning the ap-

plication state brings scalability in parallel workloads: an

increase in the number of partitions (and thereby of avail-

able machines) leads to an increase in throughput. When

partitions are colocated in the same machine, the message

passing in Algorithm 3 can be optimized and replaced by

shared-memory operations. Since Tempo runs an indepen-

dent instance of the protocol for each partition replicated at

the process, the resulting protocol is highly parallel.

5 Recovery Protocol

The initial coordinator of a command at some partition 𝑝
may fail or be slow to respond, in which case Tempo allows

a process to take over its role and recover the command’s

timestamp. We now describe the protocol Tempo follows

in this case, which is inspired by that of Atlas [14]. This

protocol at a process 𝑖 ∈ I𝑝 is given in Algorithm 4. We

use initial𝑝 (id) to denote a function that extracts from the

command identifier id its initial coordinator at partition 𝑝 .
A process takes over as the coordinator for some com-

mand with identifier id by calling function recover(id) at

line 72. Only a process with id ∈ pending can take over as

a coordinator (line 73): this ensures that the process knows

the command payload and fast quorums. In order to find

out if a decision on the timestamp of id has been reached

in consensus, the new coordinator first performs an analog

of Paxos Phase 1. It picks a ballot number it owns higher

than any it participated in so far (line 74) and sends anMRec

message with this ballot to all processes.

As is standard in Paxos, a process accepts anMRec mes-

sage only if the ballot in the message is greater than its

bal[id] (line 77). If bal[id] is still 0 (line 78), the process

checks the command’s phase to decide if it should compute

its timestamp proposal for the command. If phase[id] =
payload (line 79), the process has not yet computed a time-

stamp proposal, and thus it does so at line 80. It also sets

the command’s phase to recover-r, which records that the

timestamp proposal was computed in theMRec handler. Oth-

erwise, if phase[id] = propose (line 82), the process has al-

ready computed a timestamp proposal at line 15. In this case,

the process simply sets the command’s phase to recover-p,

which records that the timestamp proposal was computed

in theMPropose handler. Finally, the process sets bal[id] to

the new ballot and replies with anMRecAck message con-

taining the timestamp (ts), the command’s phase (phase) and

the ballot at which the timestamp was previously accepted

in consensus (abal). Note that abal[id] = 0 if the process

has not yet accepted any consensus proposal. Also note that

lines 79 and 82 are exhaustive: these are the only possible

phases when id ∈ pending (line 77) and bal[id] = 0 (line 78),

as recovery phases have non-zero ballots (line 84).

In the MRecAck handler (line 86), the new coordinator

computes the command’s timestamp given the information

in the MRecAck messages and sends it in an MConsensus

message to all processes. As in Flexible Paxos, the new co-

ordinator waits for 𝑟 − 𝑓 such messages. This guarantees
that, if a quorum of 𝑓 +1 processes accepted anMConsensus

message with a timestamp (which could have thus been sent

in anMCommit message), the new coordinator will find out
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Algorithm 4: Recovery protocol at process 𝑖 ∈ I𝑝 .

72 recover(id)

73 pre: id ∈ pending

74 𝑏 ← 𝑖 + 𝑟 (� bal[id ]−1𝑟 � + 1)

75 sendMRec(id, 𝑏) to I𝑝

76 receive MRec(id, 𝑏) from 𝑗
77 pre: id ∈ pending ∧ bal[id] < 𝑏

78 if bal[id] = 0 then

79 if phase[id] = payload then

80 ts[id] ← proposal(id, 0)

81 phase[id] ← recover-r

82 else if phase[id] = propose then

83 phase[id] ← recover-p

84 bal[id] ← 𝑏

85 send MRecAck(id, ts[id], phase[id], abal[id], 𝑏) to 𝑗

86 receive MRecAck(id, 𝑡 𝑗 , ph 𝑗 , ab 𝑗 , 𝑏) from ∀𝑗 ∈ 𝑄

87 pre: bal[id] = 𝑏 ∧ |𝑄 | = 𝑟 − 𝑓

88 if ∃𝑘 ∈ 𝑄 · ab𝑘 ≠ 0 then

89 let 𝑘 be such that ab𝑘 is maximal

90 send MConsensus(id, 𝑡𝑘 , 𝑏) to I𝑝

91 else

92 𝐼 ← 𝑄 ∩ quorums[id] [𝑝]

93 𝑠 ← initial𝑝 (id) ∈ 𝐼 ∨ ∃𝑘 ∈ 𝐼 · ph𝑘 = recover-r

94 𝑄 ′ ← if 𝑠 then 𝑄 else 𝐼

95 𝑡 ← max{𝑡 𝑗 | 𝑗 ∈ 𝑄 ′}

96 send MConsensus(id, 𝑡, 𝑏) to I𝑝

about this timestamp. To maintain Property 1, if any process

previously accepted a consensus proposal (line 88), by the

standard Paxos rules [21, 29], the coordinator selects the

proposal accepted at the highest ballot (line 89).

If no consensus proposal has been accepted before, the

new coordinator first computes at line 92 the set of processes

𝐼 that belong both to the recovery quorum 𝑄 and the fast

quorum quorums[id] [𝑝]. Then, depending on whether the
initial coordinator replied and inwhich handler the processes

in 𝐼 have computed their timestamp proposal, there are two
possible cases that we describe next.

1) The initial coordinator replies or some process in 𝐼 has com-

puted its timestamp proposal in the MRec handler (𝑠 = true,

line 93). In either of these two cases the initial coordinator

could not have taken the fast. If the initial coordinator replies

(initial𝑝 (id) ∈ 𝐼 ), then it has not taken the fast path before
receiving theMRec message from the new one, as it would

have id ∈ commit ∪ execute and theMRec precondition re-

quires id ∈ pending (line 77). It will also not take the fast

path in the future, since when processing theMRecmessage

it sets the command’s phase to recover-p (line 83), which

invalidates theMProposeAck precondition (line 18). On the

other hand, even if the initial coordinator replies but some

fast-quorum process in 𝐼 has computed its timestamp pro-
posal in the MRec handler, the fast path will not be taken

either. This is because the command’s phase at such a process

is set to recover-r (line 81), which invalidates theMPropose

precondition (line 13). Then, since theMProposeAck precon-

dition requires a reply from all fast-quorum processes, the

initial coordinator will not take the fast path. Thus, in either

case, the initial coordinator never takes the fast path. For

this reason, the new coordinator can choose the command’s

timestamp in any way, as long as it maintains Property 3.

Since |𝑄 | = 𝑟 − 𝑓 ≥ 𝑟 − � 𝑟−12 � ≥ � 𝑟2 � + 1, the new coordina-

tor has the output of proposal by a majority of processes,

and thus it computes the command’s timestamp with max

(line 95), respecting Property 3.

2) The initial coordinator does not reply and all processes in

𝐼 have computed their timestamp proposal in the MPropose

handler (𝑠 = false, line 93). In this case the initial coordi-

nator could have taken the fast path with some timestamp

𝑡 = max{𝑡 𝑗 | 𝑗 ∈ quorums[id] [𝑝]} and, if it did, the new
coordinator must choose that same timestamp 𝑡 . Given that
the recovery quorum 𝑄 has size 𝑟 − 𝑓 and the fast quo-

rum quorums[id] [𝑝] has size � 𝑟2 � + 𝑓 , the set of processes
𝐼 = 𝑄 ∩ quorums[id] [𝑝] contains at least � 𝑟2 � processes
(distinct from the initial coordinator, as it did not reply).

Furthermore, recall that the processes from 𝐼 have the com-
mand’s phase set to recover-p (line 83), which invalidates

the MPropose precondition (line 13). Hence, if the initial

coordinator took the fast path, then each process in 𝐼 must
have processed itsMPropose before theMRec of the new co-

ordinator, and reported in the latter the timestamp from the

former. Then using Property 4, the new coordinator recovers

𝑡 by selecting the highest timestamp reported in 𝐼 (line 95).

Additional liveness mechanisms. As is standard, to en-

sure the progress of recovery, Tempo nominates a single

process to call recover using a partition-wide failure detec-

tor [6], and ensures that this process picks a high enough bal-

lot. Tempo additionally includes a mechanism to ensure that,

if a correct process receives anMPayload or anMCommit

message, then all correct process do; this is also necessary for

recovery to make progress. For brevity, we defer a detailed

description of these mechanisms to [13, §B].

Correctness. We have rigorously proved that Tempo satis-

fies the PSMR specification (§2), even in case of failures. Due

to space constraints, we defer the proof to [13, §C].

6 Performance Evaluation

In this section we experimentally evaluate Tempo in deploy-

ments with full replication (i.e., each partition is replicated

at all processes) and partial replication. We compare Tempo

with Flexible Paxos (FPaxos) [21], EPaxos [32], Atlas [14],

Caesar [1] and Janus [33]. FPaxos is a variant of Paxos that,

like Tempo, allows selecting the allowed number of failures

𝑓 separately from the replication factor 𝑟 : it uses quorums of
size 𝑓 + 1 during normal operation and quorums of size 𝑟 − 𝑓
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during recovery. EPaxos, Atlas and Caesar are leaderless

protocols that track explicit dependencies (§3.3). EPaxos and

Caesar use fast quorums of size � 3𝑟4 � and � 3𝑟4 �, respectively.

Atlas uses fast quorums of the same size as Tempo, i.e., � 𝑟2 �+𝑓 .
Atlas also improves the condition EPaxos uses for taking the

fast path: e.g., when 𝑟 = 5 and 𝑓 = 1, Atlas always processes

commands via the fast path, unlike EPaxos. To avoid clutter,

we exclude the results for EPaxos from most of our plots

since its performance is similar to (but never better than)

Atlas 𝑓 = 1. Janus is a leaderless protocol that generalizes

EPaxos to the setting of partial replication. It is based on an

unoptimized version of EPaxos whose fast quorums contain

all replicas in a given partition. Our implementation of Janus

is instead based on Atlas, which yields quorums of the same

size as Tempo and a more permissive fast-path condition.

We call this improved version Janus*. This protocol is repre-

sentative of the state-of-the-art for partial replication, and

the authors of Janus have already compared it extensively

to prior approaches (including MDCC [26], Tapir [46] and

2PC over Paxos [8]).

6.1 Implementation

To improve the fairness of our comparison, all protocols

are implemented in the same framework which consists

of 33K lines of Rust and contains common functional-

ity necessary to implement and evaluate the protocols.

This includes a networking layer, an in-memory key-value

store, dstat monitoring, and a set of benchmarks (e.g.

YCSB [7]). The source code of the framework is available at

github.com/vitorenesduarte/fantoch.

The framework provides three execution modes: cloud,

cluster and simulator. In the cloud mode, the protocols run in

wide area on Amazon EC2. In the cluster mode, the protocols

run in a local-area network, with delays injected between

the machines to emulate wide-area latencies. Finally, the sim-

ulator runs on a single machine and computes the observed

client latency in a given wide-area configuration when CPU

and network bottlenecks are disregarded. Thus, the output

of the simulator represents the best-case latency for a given

scenario. Together with dstat measurements, the simulator
allows us to determine if the latencies obtained in the cloud

or cluster modes represent the best-case scenario for a given

protocol or are the effect of some bottleneck.

6.2 Experimental Setup

Testbeds. As our first testbed we use Amazon EC2 with

c5.2xlarge instances (machines with 8 virtual CPUs and 16GB

of RAM). Experiments span up to 5 EC2 regions, which we

call sites: Ireland (eu-west-1), Northern California (us-west-

1), Singapore (ap-southeast-1), Canada (ca-central-1), and

São Paulo (sa-east-1). The average ping latencies between

these sites range from 72ms to 338ms; we defer precise num-

bers to [13, §A]. Our second testbed is a local cluster where

we inject wide-area delays similar to those observed in EC2.

The cluster contains machines with 6 physical cores and

32GB of RAM connected by a 10GBit network.

Benchmarks. We first evaluate full replication deploy-

ments (§6.3) using a microbenchmark where each command

carries a key of 8 bytes and (unless specified otherwise) a

payload of 100 bytes. Commands access the same partition

when they carry the same key, in which case we say that they

conflict. To measure performance under a conflict rate 𝜌 of
commands, a client chooses key 0 with a probability 𝜌 , and
some unique key otherwise. We next evaluate partial replica-

tion deployments (§6.4) using YCSB+T [10], a transactional

version of the YCSB benchmark [7]. Clients are closed-loop

and always deployed in separate machines located in the

same regions as servers. Machines are connected via 16 TCP

sockets, each with a 16MB buffer. Sockets are flushed every

5ms or when the buffer is filled, whichever is earlier.

6.3 Full Replication Deployment

Fairness. We first evaluate a key benefit of leaderless SMR,

its fairness: the fairer the protocol, the more uniformly it

satisfies different sites. We compare Tempo, Atlas and FPaxos

when the protocols are deployed over 5 EC2 sites under two

fault-tolerance levels: 𝑓 ∈ {1, 2}. We also compare with
Caesar which tolerates 𝑓 = 2 failures in this setting. At each

site we deploy 512 clients that issue commands with a low

conflict rate (2%).

Figure 5 depicts the per-site latency provided by each

protocol. The FPaxos leader site is Ireland, as we have deter-

mined that this site produces the fairest latencies. However,

evenwith this leader placement, FPaxos remains significantly

unfair. When 𝑓 = 1, the latency observed by clients at the

leader site is 82ms, while in São Paulo and Singapore it is

267ms and 264ms, respectively. When 𝑓 = 2, the clients in

Ireland, São Paulo and Singapore observe respectively the la-

tency of 142ms, 325ms and 323ms. Overall, the performance

at non-leader sites is up to 3.3x worse than at the leader site.

Due to their leaderless nature, Tempo, Atlas and Caesar

satisfy the clients much more uniformly. With 𝑓 = 1, Tempo

and Atlas offer similar average latency – 138ms for Tempo

and 155ms for Atlas. However, with 𝑓 = 2 Tempo clearly

outperforms Atlas – 178ms versus 257ms. Both protocols

use fast quorums of size � 𝑟2 � + 𝑓 . But because quorums for
𝑓 = 2 are larger than for 𝑓 = 1, the size of the dependency

sets in Atlas increases. This in turn increases the size of the

strongly connected components in execution (§3.3). Larger

components result in higher average latencies, as reported

in Figure 5. Caesar provides the average latency of 195ms,

which is 17ms higher than Tempo 𝑓 = 2. Although Caesar

and Tempo 𝑓 = 2 have the same quorum size with 𝑟 =
5, the blocking mechanism of Caesar delays commands in

the critical path (§3.3), resulting in slightly higher average

latencies. As we now demonstrate, both Caesar and Atlas

have much higher tail latencies than Tempo.
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Figure 5. Per-site latency with 5 sites and 512 clients per

site under a low conflict rate (2%).

Tail latency. Figure 6 shows the latency distribution of var-

ious protocols from the 95th to the 99.99th percentiles. At

the top we give results with 256 clients per site, and at the

bottom with 512, i.e., the same load as in Figure 5.

The tail of the latency distribution in Atlas, EPaxos and

Caesar is very long. It also sharply deteriorates when the

load increases from 256 to 512 clients per site. For Atlas

𝑓 = 1, the 99th percentile increases from 385ms to 586ms

while the 99.9th percentile increases from 1.3s to 2.4s. The

trend is similar for Atlas 𝑓 = 2, making the 99.9th percentile

increase from 4.5s to 8s. The performance of EPaxos lies

in between Atlas 𝑓 = 1 and Atlas 𝑓 = 2. This is because

with 5 sites EPaxos has the same fast quorum size as Atlas

𝑓 = 1, but takes the slow path with a similar frequency to

Atlas 𝑓 = 2. For Caesar, increasing the number of clients also

increases the 99th percentile from 893ms to 991ms and 99.9th

percentile from 1.6s to 2.4s. Overall, the tail latency of Atlas,

EPaxos and Caesar reaches several seconds, making them

impractical in these settings. These high tail latencies are

caused by ordering commands using explicit dependencies,

which can arbitrarily delay command execution (§3.3).

In contrast, Tempo provides low tail latency and pre-

dictable performance in both scenarios. When 𝑓 = 1, the

99th, 99.9th and 99.99th percentiles are respectively 280ms,

361ms and 386ms (averaged over the two scenarios). When

𝑓 = 2, these values are 449ms, 552ms and 562ms. This rep-

resents an improvement of 1.4-8x over Atlas, EPaxos and

Caesar with 256 clients per site, and an improvement of 4.3-

14x with 512. The tail of the distribution is much shorter

with Tempo due to its efficient execution mechanism, which

uses timestamp stability instead of explicit dependencies.

We have also run the above scenarios in our wide-area

simulator. In this case the latencies for Atlas, EPaxos and

Caesar are up to 30% lower, since CPU time is not accounted

for. The trend, however, is similar. This confirms that the

latencies reported in Figure 6 accurately capture the effect

of long dependency chains and are not due to a bottleneck

in the execution mechanism of the protocols.

Increasing load and contention. We now evaluate the

performance of the protocols when both the client load and
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Figure 6. Latency percentiles with 5 sites and 256 (top) and

512 clients (bottom) per site under a low conflict rate (2%).

contention increases. This experiment, reported in Figure 7,

runs over 5 sites. It employs a growing number of clients per

site (from 32 to 20K), where each client submits commands

with a payload of 4KB. The top scenario of Figure 7 uses

the same conflict rate as in the previous experiments (2%),

while the bottom one uses a moderate conflict rate of 10%.

The heatmap shows the hardware utilization (CPU, inbound

and outbound network bandwidth) for the case when the

conflict rate is 2%. For leaderless protocols, we measure the

hardware utilization averaged across all sites, whereas for

FPaxos, we only show this measure at the leader site. The

experiment runs on a local cluster with emulated wide-area

latencies, to have a full control over the hardware.

As seen in Figure 7, the leader in FPaxos quickly becomes

a bottleneck when the load increases since it has to broadcast

each command to all the processes. For this reason, FPaxos

provides the maximum throughput of only 53K ops/s with

𝑓 = 1 and of 45K ops/s with 𝑓 = 2. The protocol saturates

at around 4K clients per site, when the outgoing network

bandwidth at the leader reaches 95% usage. The fact that the

leader can be a bottleneck in leader-based protocol has been

reported by several prior works [14, 24, 25, 32, 44].

FPaxos is not affected by contention and the protocol

has identical behavior for the two conflict rates. On the

contrary, Atlas performance degrades when contention in-

creases. With a low conflict rate (2%), the protocol provides

the maximum throughput of 129K ops/s with 𝑓 = 1 and of

127K ops/s with 𝑓 = 2. As observed in the heatmap (bot-

tom of Figure 7), Atlas cannot fully leverage the available

hardware. CPU usage reaches at most 59%, while network

utilization reaches 41%. This low value is due to a bottleneck

in the execution mechanism: its implementation, which fol-

lows the one by the authors of EPaxos, is single-threaded.

Increasing the conflict rate to 10% further decreases hard-

ware utilization: the maximum CPU usage decreases to 40%

and network to 27% (omitted from Figure 7). This sharp de-

crease is due to the dependency chains, whose sizes increase

with higher contention, thus requiring fewer clients to bot-

tleneck execution. As a consequence, the throughput of Atlas

decreases by 36% with 𝑓 = 1 (83K ops/s) and by 48% with
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Figure 7. Throughput and latency with 5 sites as the load

increases from 32 to 20480 clients per site under a low (2% –

top) and moderate (10% – bottom) conflict rate. The heatmap

shows the hardware utilization when the conflict rate is 2%.

𝑓 = 2 (67K ops/s). As before, EPaxos performance (omitted

from Figure 7) lies between Atlas 𝑓 = 1 and 𝑓 = 2.

As we mentioned in §3.3, Caesar exhibits inefficiencies

even in its commit protocol. For this reason, in Figure 7

we study the performance of Caesar in an ideal scenario

where commands are executed as soon as they are committed.

Caesar’s performance is capped respectively at 104K ops/s

with 2% conflicts and 32K ops/s with 10% conflicts. This

performance decrease is due to Caesar’s blockingmechanism

(§3.3) and is in line with the results reported in [1].

Tempo delivers the maximum throughput of 230K ops/s.

This value is independent of the conflict rate and fault-

tolerance level (i.e., 𝑓 ∈ {1, 2}). Moreover, it is 4.3-5.1x better
than FPaxos and 1.8-3.4x better than Atlas. Saturation occurs

with 16K clients per site, when the CPU usage reaches 95%.

At this point, network utilization is roughly equal to 80%.

Latency in the protocol is almost unaffected until saturation.

Batching. Wenow compare the effects of batching in leader-

based and leaderless protocols. Figure 8 depicts themaximum

throughput of FPaxos and Tempo with batching disabled and

enabled. In this experiment, a batch is created at a site af-

ter 5ms or once 105 commands are buffered, whichever is

earlier. Thus, each batch consists of several single-partition

commands aggregated into one multi-partition command.

We consider 3 payload sizes: 256B, 1KB and 4KB. The num-

bers for 4KB with batching disabled correspond to the ones

in Figure 7. Because with 4KB and 1KB FPaxos bottlenecks
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Figure 8. Maximum throughput with batching disabled

(OFF) and enabled (ON) for 256, 1024 and 4096 bytes.
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Figure 9.Maximum throughput with 3 sites per shard under

low (zipf = 0.5) and moderate contention (zipf = 0.7). Three

workloads are considered for Janus*: 0% writes as the best-

case scenario, 5% writes and 50% writes.

in the network (Figure 7), enabling batching does not help.

When the payload size is reduced further to 256B, the bot-

tleneck shifts to the leader thread. In this case, enabling

batching allows FPaxos to increase its performance by 4x.

Since Tempo performs heavier computations than FPaxos,

the use of batches in Tempo only brings a moderate improve-

ment: 1.6x with 256B and 1.3x with 1KB. In the worst case,

with 4KB, the protocol can even perform less efficiently.

While batching can boost leader-based SMR protocols, the

benefits are limited for leaderless ones. However, because

leaderless protocols already efficiently balance resource us-

age across replicas, they can match or even outperform the

performance of leader-based protocols, as seen in Figure 8.

6.4 Partial Replication Deployment

We now compare Tempo with Janus* using the YCSB+T

benchmark. We define a shard as set of several partitions

co-located in the same machine. Each partition contains a

single YCSB key. Each shard holds 1M keys and is replicated

at 3 sites (Ireland, N. California and Singapore) emulated

in our cluster. Clients submit commands that access two

keys picked at random following the YCSB access pattern

(a zipfian distribution). In Figure 9 we show the maximum

throughput for both Tempo and Janus* under low (zipf = 0.5)

and moderate contention (zipf = 0.7). For Janus*, we consider

3 YCSB workloads that vary the percentage of write com-

mands (denoted byw): read-only (w = 0%, YCSB workload C),

read-heavy (w = 5%, YCSB workload B), and update-heavy
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(w = 50%, YCSB workload A). The read-only workload is a

rare workload in SMR deployments. It represents the best-

case scenario for Janus*, which we use as a baseline. Since

Tempo does not distinguish between reads and writes (§3.3),

we have a single workload for this protocol.

Janus* performance is greatly affected by the ratio of

writes and by contention. More writes and higher contention

translate into larger dependency sets, which bottleneck ex-

ecution faster. This is aggravated by the fact that Janus* is

non-genuine, and thus requires cross-shard messages to or-

der commands. With zipf = 0.5, increasing w from 0% to 5%

reduces throughput by 25-26%. Increasing w from 0% to 50%

reduces throughput by 49-56%. When contention increases

(zipf = 0.7), the above reductions on throughput are larger,

reaching 36-60% and 87%-94%, respectively.

Tempo provides nearly the same throughput as the best-

case scenario for Janus* (w = 0%). Moreover, its performance

is virtually unaffected by the increased contention. This

comes from the parallel and genuine execution brought by

the use of timestamp stability (§4). Overall, Tempo provides

385K ops/s with 2 shards, 606K ops/s with 4 shards, and 784K

ops/s with 6 shards (averaged over the two zipf values). Com-

pared to Janus* w = 5% and Janus* w = 50%, this represents

respectively a speedup of 1.2-2.5x and 2-16x.

The tail latency issues demonstrated in Figure 6 also carry

over to partial replication. For example, with 6 shards, zipf

= 0.7 and w = 5%, the 99.99th percentile for Janus* reaches

1.3s, while Tempo provides 421ms. We also ran the same set

of workloads for the full replication case and the speed up

of Tempo with respect to EPaxos and Atlas is similar.

7 Related Work

Timestamping (aka sequencing) is widely used in distributed

systems. In particular, many storage systems orchestrate

data access using a fault-tolerant timestamping service [2,

3, 36, 42, 47], usually implemented by a leader-based SMR

protocol [29, 35]. As reported in prior works, the leader is a

potential bottleneck and is unfair with respect to client loca-

tions [14, 24, 25, 32, 44]. To sidestep these problems, leader-

less protocols order commands in a fully decentralized man-

ner. Early protocols in this category, such as Mencius [31],

rotated the role of leader among processes. However, this

made the system run at the speed of the slowest replica.

More recent ones, such as EPaxos [32] and its follow-ups

[5, 14, 44], order commands by agreeing on a graph of de-

pendencies (§3.3). Tempo builds on one of these follow-ups,

Atlas [14], which leverages the observation that correlated

failures in geo-distributed systems are rare [8] to reduce the

quorum size in leaderless SMR. As demonstrated by our eval-

uation (§6.3), dependency-based leaderless protocols exhibit

high tail latency and suffer from bottlenecks due to their

expensive execution mechanism.

Timestamping has been used in two previous leaderless

SMR protocols. Caesar [1], which we discussed in §3.3 and

§6, suffers from similar problems to EPaxos. Clock-RSM [11]

timestamps each newly submitted command with the co-

ordinator’s clock, and then records the association at 𝑓 + 1
processes using consensus. Stability occurs when all the pro-

cesses indicate that their clocks have passed the command’s

timestamp. As a consequence, the protocol cannot transpar-

ently mask failures, like Tempo; these have to be handled via

reconfiguration. Its performance is also capped by the speed

of the slowest replica, similarly to Mencius [31].

Partial replication is a common way of scaling services

that do not fit on a single machine. Some partially replicated

systems use a central node to manage access to data, made

fault-tolerant via standard SMR techniques [16]. Spanner [8]

replaces the central node by a distributed protocol that layers

two-phase commit on top of Paxos. Granola [9] follows a

similar schema using Viewstamped Replication [34]. Other

approaches rely on atomic multicast, a primitive ensuring the

consistent delivery of messages across arbitrary groups of

processes [17, 38]. Atomic multicast can be seen as a special

case of PSMR as defined in §2.

Janus [33] generalizes EPaxos to the setting of partial repli-

cation. Its authors shows that for a large class of applications

that require only one-shot transactions, Janus improves upon

prior techniques, including MDCC [26], Tapir [46] and 2PC

over Paxos [8]. Our experiments demonstrate that Tempo

significantly outperforms Janus due to its use of timestamps

instead of explicit dependencies. Unlike Janus, Tempo is also

genuine, which translates into better performance.

8 Conclusion

We have presented Tempo – a new SMR protocol for geo-

distributed systems. Tempo follows a leaderless approach,

ordering commands in a fully decentralized manner and thus

offering similar quality of service to all clients. In contrast to

previous leaderless protocols, Tempo determines the order

of command execution solely based on scalar timestamps,

and cleanly separates timestamp assignment from detecting

timestamp stability. Moreover, this mechanism easily extends

to partial replication. As shown in our evaluation, Tempo’s

approach enables the protocol to offer low tail latency and

high throughput even under contended workloads.
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