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Abstract: Anomaly detection has been an active research area for decades, with high application
potential. Recent work has explored deep learning approaches to the detection of abnormal behaviour
and abandoned objects in outdoor video surveillance scenarios. The extension of this recent work
to in-vehicle monitoring using solely visual data represents a relevant research opportunity that
has been overlooked in the accessible literature. With the increasing importance of public and
shared transportation for urban mobility, it becomes imperative to provide autonomous intelligent
systems capable of detecting abnormal behaviour that threatens passenger safety. To investigate the
applicability of current works to this scenario, a recapitulation of relevant state-of-the-art techniques
and resources is presented, including available datasets for their training and benchmarking. The
lack of public datasets dedicated to in-vehicle monitoring is addressed alongside other issues not
considered in previous works, such as moving backgrounds and frequent illumination changes.
Despite its relevance, similar surveys and reviews have disregarded this scenario and its specificities.
This work initiates an important discussion on application-oriented issues, proposing solutions to
be followed in future works, particularly synthetic data augmentation to achieve representative
instances with the low amount of available sequences.

Keywords: anomaly detection; deep learning; computer vision; anomaly locality; in-vehicle monitoring

1. Introduction

The proliferation of cameras and the growing availability of cheap storage, coupled
with the increasing demand for security, have fuelled the development of ever more
complex video surveillance systems. While the task of capturing the images of possible
transgressions has been greatly facilitated, appointing human controllers (e.g., a security
guard) with the duty of analysing repetitive and monotonous images, as well as a multiple-
camera perspective, represents a critical flaw. Such an exhausting human effort makes it
very difficult for the controller to remain vigilant at all times, which might lead to abnormal
events going unnoticed. In safety-critical domains, such as the detection of suspect packages
in airports or train stations, neglected occurrences may have dangerous results.

The identification of unexpected events, behaviours or objects can be recast as an
anomaly detection problem [1,2]. The application of deep anomaly detection methods is
essential to develop new surveillance and monitoring systems that do not rely solely on
human supervision, reducing the risk of the aforementioned drawbacks. Despite years of
research and development, the detection of anomalies in videos remains challenging, and it
differs from the traditional classification problem in two large aspects. Firstly, new kinds of
anomalies are constantly arising, making it virtually impossible to list all of them. Secondly,
the task of collecting sufficient negative samples is costly due to their rarity. A popular
method for deep anomaly detection consists of using videos of normal events as training
data. A test set is then used to detect the abnormal events which would not conform to the
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model that was trained [3,4]. This approach aims to circumvent the difficulty of gathering
sufficient samples representing anomalies. Most of the frames that these systems analyse
represent normal scenarios; hence, the gathered data are representative of this low ratio of
abnormal snippets, and fully supervised approaches are not viable.

Deep learning approaches to the detection of visual data instances that markedly
digress from regular sequences have been mostly focusing on outdoor video-surveillance
scenarios, mainly regarding abnormal behaviour and suspicious or abandoned object
detection. A pertinent research opportunity for anomaly detection that has been overlooked
in the accessible literature is posed by in-vehicle monitoring specially using solely visual
data. With the increasing relevance of public transport in urban mobility, several funded
projects aiming to develop autonomous surveillance systems in this area have appeared.
For instance, Prevent PCP involves some of the biggest transport operators in Europe,
which consider that a concerted effort is required to develop systems capable of detecting
abnormal behaviours that put passengers’ safety at risk. In the initial stages of this project,
the lack of task-oriented datasets has been noted; an effort to acquire and label the required
footage to build a dedicated dataset has been programmed. However, in-vehicle monitoring
is not limited to public transport, in which large crowds must be monitored; the advent of
Shared Autonomous Vehicles [5], which do not have a driver responsible for maintaining
the well-being of passengers, must be accompanied by competent and reliable autonomous
in-vehicle surveillance systems.

The development of robust solutions for in-vehicle monitoring is not straightforward,
as the conditions in which it must operate are very challenging and different from those
that the methods that cover outdoor video surveillance face. Nonetheless, a recapitulation
of relevant state-of-the-art techniques and available resources is essential to investigate
their applicability and to achieve a deeper understanding of the potential issues raised by
the new scenario that these methods did not contemplate. Furthermore, the same principle
must be applied to the analysis of available datasets to train and benchmark such models.
It is essential to acknowledge if any portion of the available datasets is representative of
the real-world settings that the systems will face; if not, the possibility of repurposing
and adapting these instances should be studied. The current challenges of developing an
application-oriented solution to in-vehicle monitoring have two distinct origins. On the
one hand, there are potential issues that are directly linked to the characteristics of the
application, which are specifically manifested by the absence of public datasets explicitly
dedicated to in-vehicle monitoring. Additionally, the importance of actor independence
in Shared Autonomous Vehicles, moving backgrounds and frequent illumination changes
caused by the movement of the vehicle are important factors to consider. On the other hand,
there are current limitations that are transversal to every anomaly detection technique that
has been proposed. As Pang et al. [6] denote, a series of complex detection challenges
remain largely unsolved and are yet to be fully addressed by deep anomaly detection.
The first of these challenges is the low anomaly detection recall rate caused by their rare and
heterogeneous nature; as they are difficult to identify, sophisticated anomalies are missed.
Additionally, since the candidate pool of anomalies is often unbounded, the strategies that
these methods employ to deal with novelty must not be overlooked.

As a consequence of the previously mentioned difficulty of gathering abnormal sam-
ples for training or validation, there is a significant effort to achieve high data efficiency for
learning normality and abnormality. Fully supervised anomaly detection is, for the time
being, a virtually impossible endeavour, mainly due to the high cost of collecting large-scale
data or generating sufficiently broad artificial dataset solutions. When some labels for
anomaly classes are available, they might be incomplete, inexact (e.g., coarse-grained) or
inaccurate. The subject of actor independence is relevant as well, as the ones present in
the training data could generate a bias due to their lack of representativity (e.g., height,
gender, age, type of clothes). In addition to learning expressive representations with a small
amount of data, it is also essential to learn models that are generalisable to novel anomalies.
This theme also extends to noise-resilient anomaly detection, with noise being equivalent to
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mislabelled data or unlabelled anomalies. The amount of noise not only differs significantly
from dataset to dataset, but it is also irregularly distributed in the data space. Noise-resilient
models can leverage this incomplete data to achieve better performance and robustness.

Most currently developed methods are committed to detecting individual instances
that are anomalous, which are often regarded as point anomalies. However, more complex
anomalies, such as conditional and group anomalies, comprise objectively different dynam-
ics and behaviours. Conditional anomalies also refer to individual anomalous instances,
but they only represent abnormal behaviour when they occur in a specific context. Group
anomalies are anomalous as a whole, although the isolated behaviour of every member
might not be abnormal. Furthermore, many applications require the detection of anomalies
with multiple data sources, heterogeneous (e.g., video and audio) or not (e.g., multiple
surveillance cameras). The complexity of these systems is yet to be properly addressed
by deep anomaly detection strategies, even though high-dimensional anomaly detection
has been a long-standing problem [7]. Identifying intricate feature interactions and cou-
plings is already a challenge when temporal and spatial interdependency relationships
are considered.

The success of Machine Learning (ML) has led to a growing interest in the devel-
opment of Artificial Intelligence (AI) applications capable of providing explanations to
their decisions, which are often called Explainable AI [8]. This information is essential for
users to trust, understand and manage these applications. However, every explanation
is set within a context that depends on what is expected of the AI system. For in-vehicle
monitoring, anomaly identification should be one of the main points of interest, and it
should generally be paired with anomaly classification. The detected anomalies should be
coupled with cues that demonstrate why a specific data instance is abnormal. The simplest
implementation of this practice is to spatially identify the anomaly in a frame (e.g., with a
bounding box or a GradCAM activation map). However, most anomaly detection studies
focus on detection performance only, ignoring the capability of illustrating the identified
anomalies. The complexity of the anomalies calls for developing visually interpretable
anomaly detection models, as the provided cues could be essential to identify problems
such as under-represented groups. That said, this work appears as the first aggregated crit-
ical review on the applicability of deep video anomaly detection to in-vehicle monitoring,
making the following three major contributions:

• Review of a large number of state-of-the-art methods for deep video anomaly detection,
aiming to explain their framework and implementation, thus providing a deeper
understanding of potential issues raised by the new scenario that these methods did
not contemplate. Benchmarks for their performance were compiled as well as publicly
accessible source codes to evaluate the ease of applicability;

• Review of a large number of datasets with real anomalies that are used to benchmark
state-of-the-art models, investigating if any portion of the available datasets is repre-
sentative of the real-world settings for in-vehicle monitoring or if the sequences can
be repurposed for this matter. As public datasets dedicated to in-vehicle monitoring
are lacking, this analysis is vital;

• This work initiates an important discussion on application-oriented issues related
to deep anomaly detection for in-vehicle monitoring. Other surveys and reviews
have disregarded this scenario and its specificities, despite its relevance, as shown
by the listed funded projects that seek application-oriented solutions for in-vehicle
monitoring. Possible solutions were proposed, aiming to follow up on future work.

This document is organised as follows: Section 2 presents the working principles,
different approaches, and state-of-the-art works in deep anomaly detection for video se-
quences. Section 3 reviews currently used datasets to train and benchmark models for
anomaly detection. Moreover, Section 4 discusses funded projects that seek the exploration
of in-vehicle monitoring, listing available resources that serve as a starting point for de-
veloping application-oriented solutions. Section 5 examines the challenges that this new



Appl. Sci. 2022, 12, 10011 4 of 22

scenario of application faces as well as the opportunities that arise with its exploration.
Finally, Section 6 presents the main conclusions of this review.

2. Literature Review on Deep Anomaly Detection

Anomaly detection in videos is commonly framed as a one-class classification task.
Such a strategy requires a training set strictly composed of normal events, whilst the videos
for testing represent normal and abnormal events. This approach can be defined as a
semi-supervised strategy, which is a term regularly used in the categorisation of deep
anomaly detection approaches [9]. Furthermore, weakly supervised techniques have also
been referred to in the literature as a category for such approaches [10]. They differ from
semi-supervised strategies by obtaining video-level labels, which allow for the training
of the models using normal and abnormal snippets. As far as fully supervised strategies
are concerned, the cost of collecting and labelling large-scale data for this purpose is
unbearable. However, the inclusion of synthetic data and a focus on locality have been
studied as assets to leverage the advantages of fully supervised approaches, introducing
them to semi-supervised and weakly supervised strategies.

2.1. Evaluation Metrics

In the literature on anomaly detection [11,12], a prominent evaluation metric is the
Receiver Operation Characteristic (ROC), which is obtained by gradually changing the
threshold of the regularity score. The regularity score is used to judge whether the input
frame is normal or abnormal by manually defining a threshold. The optimal value of
this parameter is relevant, since a higher threshold leads to a higher false negative rate,
while a lower one leads to a higher false negative rate. Then, the Area Under the Curve
(AUC) is cumulated to a scalar for performance evaluation with a higher value indicating
better performance. As AUC is the only metric that is present in every referenced work,
it was leveraged for performance evaluation in this paper. To achieve a more detailed
understanding of a certain model, precision, recall, true positive, and false alarm should
also be considered. Although these metrics are not as popular as Frame AUC, their inclusion
provides interesting indicators to estimate the potential success of a real-world application
of a certain model (e.g., knowing if it is prone to false alarms).

2.2. Semi-Supervised Strategies

Generally, semi-supervised methods for anomaly detection in the literature fall in the
category of One-Class Classification (OCC). In practice, it is quite frequent that normal
events have a good representation, as they represent the majority of the captured sequences,
whilst abnormal cases are rare, and the abnormal class is ill-defined. In these cases, the ab-
normality is detected based on the information learnt from the normal class only. One-Class
Classification is present in reconstruction-based and prediction-based semi-supervised
methods that employ the same basic principle; both try to generate the entirety or patches
of a frame, evaluating their similarity to the ground truth. These models are trained on
normality and assume that it is not possible to properly reconstruct an abnormal event
that has never been learnt. Hence, a frame that greatly differs from the captured one is
likely to represent abnormal or unexpected events. The main difference between both
types of semi-supervised methods regards temporal information, as illustrated in Figure 1.
On the one hand, reconstruction-based methods try to reconstruct the current frame, using
previous and present information. On the other hand, prediction-based methods use the
previous frames to compute a prediction of the following one. Recently, semi-supervised
strategies have been increasingly focusing on video frame prediction due to its potential
applications in unsupervised video representation learning. However, existing methods of
this type deliver suboptimal results, especially when compared to newer methods that use
weakly supervised techniques, due to their insufficient modelling of temporal information.
Moreover, they suffer from inefficient training for implementing adversarial techniques
or additional losses [13]. The lack of prior knowledge of abnormality is usually a cause of
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overfitting of the training data, not enabling a proper way to distinguish abnormal from
normal events [6].

(a)

(b)

Figure 1. Pipelines of semi-supervised methods for video anomaly detection. They differ on the use
of the current frame for generation, as highlighted in yellow. (a) Generic pipeline of reconstruction
methods. (b) Generic pipeline of prediction methods.

2.2.1. Reconstruction-Based Methods

Reconstruction-based models were amongst the first deep learning approaches to
use anomaly detection in video instances and were built on the assumption that a model
trained on normal events cannot properly reconstruct an abnormal event that it has never
seen. A precursor of this work was the approach of Xu et al. [14], which relied on stacked
denoising autoencoders to learn appearance and motion features that were posteriorly fed
to multiple one-class Support Vector Machine (SVM) models.

The deep autoencoder, ConvAE, proposed by Hasan et al. [15] diverged from using
autoencoders simply as feature extractors, becoming the first anomaly detection approach
to leverage the reconstruction error as an estimator for abnormality. Although the model
takes multiple frames as input, temporal information is lost, since the convolution operations
are performed spatially. Therefore, this work was quickly followed by Conv3D-AE [16,17],
suggesting a 3D convolutional neural network to encode the motion and content information of
a sequence of frames, using a deconvolutional network to reconstruct those frames. However,
3D convolution has proved to be unable to properly encode motion [18,19]. Additionally, these
methods predict the anomaly for all clips in a video, making it time consuming to obtain a
frame-level prediction.

A Convolutional Neural Network (CNN) and ConvLSTM were integrated with an
autoencoder in ConvLSTM-AE [20] to learn the regularity of appearance and motion for
ordinary moments. Although LSTMs and Recurrent Neural Networks (RNNs) are effective
for sequential data processing and succesfuly encode the motion in videos [21], they are
hard to be interpreted; hence, several works focused on adapting sparse coding techniques
and interpretable RNNs to anomaly detection [4,22].

As Liu et al. [3] denoted, autoencoder-based approaches are at times able to accu-
rately reconstruct abnormal frames based on the provided inputs, leading to missing their
detection. This undermines the assumption that the reconstruction error of an abnormal
frame is significantly different than that of a normal one. To deal with this drawback,
a memory module was added to the autoencoder by Gong et al. [23], creating MemAE,
a memory-augmented autoencoder. An input was firstly encoded, and then, the com-
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pressed information was queried to retrieve the relevant memory items for reconstruction.
During testing, the memory module was fixed, and the reconstruction used the stored data.

Several GAN-based approaches were also proposed. For instance, Ravanbakhsh et al. [24]
trained two conditional GANs on normal frames and corresponding optical-flow images to com-
prehend the correct representation of the scene normality. Furthermore, Ganokratanaa et al. [25]
proposed an attempt to improve anomaly localisation at the pixel level by introducing a tech-
nique to localise pixels that belong to the anomalous objects, which is called Edge Wrapping.
Finally, Ye et al. [26] tried to reduce the gap between the two semi-supervised methods by
unifying reconstruction and prediction methods in an end-to-end framework.

2.2.2. Prediction-Based Methods

As far as prediction-based approaches are concerned, these aim to predict future
frames based on an input consisting of previous frames. This method was introduced by
Liu et al. [3] and assumes that normal events are predictable, while abnormal ones are not.
Future Frame Prediction [3] proposed strategies to impose consistency on the generated
images by applying intensity and gradient constraints. The former assures the similarity of
all pixels in the RGB space, and the latter sharpens the generated images.

Taking inspiration from the cloze test used in language understanding, Yu et al. [27]
proposed the prediction of erased patches of incomplete video events, fully exploiting tem-
poral information in the video. Nonetheless, it still depended on pixel-wise constraints to
regularise the prediction task, ignoring the correlation between optical flow and the frames.
Unlike these approaches, Chen et al. [28] aimed to explore the information contained in
the anterior and posterior snippets of a given frame within a video. For that purpose, it
modelled the relationship between appearance and motion through a multi-modal dis-
criminator (MD). The MD was based on the work of Radford et al. [29] and constructs an
association between appearance and motion predictions; the discriminator was fed the
concatenation of an erased patch and its motion to learn to classify fake and real pairs.
The temporal relationships in the video sequence were also considered.

Georgescu et al. [30] proposed some alterations to middle-frame prediction [31], inno-
vating by learning the discrimination of moving objects, which is referred to as the arrow of
time. Additionally, it studied motion irregularity prediction and model distillation, the lat-
ter being an adaptation of Bergmann et al. [32]. Essentially, model distillation considers
both classification and detection information, producing large prediction discrepancies
when anomalies occur. This approach was inspired by the object-centric perspective of
Ionescu et al. [33], which employed an object detector on each frame, applying a convo-
lutional autoencoder to learn deep unsupervised representations for a one-versus-rest
classification. Several works continued the exploration of this research [27,34,35]. However,
Georgescu et al. [30] only retained the object detector from these approaches, focusing its
analysis on the detected objects.

The main drawbacks of semi-supervised approaches are the lack of consideration
for the diversity of normal patterns and the ability of deep learning techniques to cor-
rectly recreate abnormal video frames based on already abnormal inputs. To this end,
Park et al. [36] proposed a memory module that updates items in the memory while as-
suring that these represent prototypical patterns of normal data. Similarly, Cai et al. [37]
attempted to assure appearance and motion consistency through modality memory pools.
Two separate pools were created to store this information: one comprising appearance
features and the other consisting of the motion features, guaranteeing a robust feature
representation of normality.

Not every approach focuses specifically on the error of the generated frame, one exam-
ple being suggested by Ramachandra et al. [38]. The authors employed a Siamese network
capable of learning a metric between spatiotemporal video patches. The dissimilarity
between patches was used to estimate the level of abnormality of a frame. The work of
Lee et al. [31] explored multi-level frameworks, generating inter-frame predictions and
an attention map, which were fed to an appearance–motion joint detector to evaluate the
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normality score. The performance of semi-supervised methods can be compared through
the benchmark results shown in Table 1. The datasets referenced in the Table are fully
explored in Section 3.

Table 1. Frame-level AUC scores of several semi-supervised methods, benchmarked on CUHK
Avenue [11] and ShanghaiTech Campus [4] datasets. Results compiled by Feng et al. [39] Legend:
†—Computed by Luo et al. [4].

Year Method
AUC Score (%)

CUHK Avenue ShanghaiTech

2016 Conv-AE [15] 70.2 60.85 †

2017 ConvLSTM-AE [20] 77.0 -
S-RNN [4] 81.7 68.0

2018 FFP [3] 85.1 72.8

2019 Mem-AE [23] 83.3 71.2
Object-Centric [33] 90.4 84.9

2020 MNAD [36] 88.5 70.5
VEC [27] 90.2 74.8

2021
SSMT [30] 86.9 83.5

ROADMAP [13] 88.3 76.6
AMMC [37] 86.6 73.7

2022 BDPN [28] 90.3 78.1

2.3. Weakly Supervised Strategies

Weakly supervised video anomaly detection strategies are amongst the best-performing
approaches for this task. At the expense of an additional low-intensity annotation effort, a better
anomaly classification accuracy can be achieved. Essentially, weakly supervised approaches can
be subdivided into two classes, encoder-agnostic and encoder-based methods. Encoder-agnostic
methods [40–42] leveraged task agnostic features of videos extracted from a vanilla feature
encoder (e.g., I3D [43]) to estimate the anomaly scores of each frame. In these methods, only
the classifier was trained. On the other hand, encoder-based methods [44,45] trained both the
feature encoder and classifier simultaneously.

Weakly supervised strategies are considered to be a feasible method due to their compet-
itive performance. Sultani et al. [40] introduced the use of video-level labels in the tasks of
anomaly detection in videos by presenting UCF-Crime, which is a large-scale video dataset for
training and testing weakly supervised anomaly detection approaches. Along with this strategy,
Sultani et al. [40] proposed a deep Multiple Instance Learning (MIL) ranking framework to
detect anomalies, as illustrated in Figure 2. In essence, MIL takes a video as a bag and clips the
video as separate instances. The bag generated from an abnormal instance is called a positive
bag, and it must contain at least one abnormal snippet. The negative bag, generated from normal
videos, contains no abnormal snippets. The instance-level anomaly scores are learnt through
the bag-level labels. Several papers followed the MIL framework, suggesting improvements
to the method. The inner-bag score gap regularisation was introduced by Zhang et al. [41] to
increase the gap between the lowest and highest scores in a positive bag and reduce it in a
negative one. Wan et al. [42] proposed a dynamic MIL-loss and centre-guided regularisation;
the former enlarged the interclass dispersion, and the latter reduced the intraclass distance of
normal snippets. Additionally, Zhu et al. [44], in an encoder-based approach, suggested an
attention-based MIL model capable of encoding motion-aware features by using an autoen-
coder based on optical flow. To unify the representation learning and anomaly score learning,
a temporal feature ranking loss was presented by Tian et al. [46]. This approached proved to
be capable of achieving a better separation of normal and abnormal features, improving the
exploration of the weak-labelling strategy in comparison to the previous MIL methods.
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Zhong et al. [45] denoted that the methods that used Multiple Instance Learning
suffered from error propagation throughout the training. If the model incorrectly predicted
anomalous instances in the positive bag, the error would affect subsequent instance selec-
tion. To tackle this problem, Zhong et al. [45] reformulated the task as a binary classification
under a noisy label problem and suggested the use of a Graph Convolution Neural (GCN)
network to correct low-confidence anomaly scores, replacing them with high-confidence
ones, i.e., clear the label noise. In the GCN, two characteristics of a video were considered
to correct the label noise: temporal consistency, and feature similarity. Feature similarity
assures that the abnormal snippets share similar characteristics; temporal consistency guar-
antees that abnormal instances appear in temporal proximity of each other. Even though
this work achieved better accuracy in the identification of anomalies when compared to
MIL-based approaches, training both a GCN and MIL is computationally expensive and
may cause unstable performance due to unconstrained latent space.

Figure 2. Architecture of a typical MIL-based method, such as the one proposed by Sultani et al. [40].

Li et al. [47] proposed another approach capable of addressing the shortcomings of
MIL-based methods. The authors of this paper used a Multi-Sequence Learning (MSL)
method, opting for choosing the sequence with the highest sum of anomaly scores instead
of the instance with the highest score, reducing the probability of incorrect selection. This
method encoded the extracted snippet features via a multi-layer Convolutional Transformer
Encoder, using VideoSwin [48] as the backbone to extract them. The benchmark results
shown in Table 2 indicate that VideoSwin performed consistently better than traditional
feature extractors, such as C3D-RGB and I3D-RGB.

The goal of video anomaly detection must be the prediction of fine-grained anomaly
scores. Although some works focused on detecting anomalies in an offline or coarse-
grained manner, these do not allow real-time monitoring, reducing the interest in apply-
ing them to real-world scenarios. Instead of using video-level labels as pseudo-labels,
Feng et al. [49] suggested the use of the learnt pseudo-labels to optimise the feature en-
coder. This method was capable of working in an online fine-grained manner. In a similar
fashion to Li et al. [47], a two-stage self-training strategy was used.

Table 2. Frame level AUC scores of several weakly supervised methods, benchmarked on
ShangaiTech Campus [4] and UCF-Crime [40] datasets. Results compiled by Feng et al. [39] Legend:
†—Computed by Wan et al. [42].

Year Method Feature Extractor
AUC Score (%)

ShanghaiTech UCF-Crime

2018 Sultani et al. [40] C3D-RGB 86.3 † 75.41

2019

IBL [41] C3D-RGB - 78.66

GCN-Anomaly [45]
C3D-RGB 76.44 81.08
TSN-Flow 84.13 78.08
TSN-RGB 84.44 82.12

Motion-Aware [44] PWC-Flow - 79.0
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Table 2. Cont.

Year Method Feature Extractor
AUC Score (%)

ShanghaiTech UCF-Crime

2020 AR-Net [42] I3D-RGB & I3D Flow 91.24 -

2021

MIST [49] I3D-RGB 94.83 82.30
RTFM [46] I3D-RGB 97.21 84.30
CRFD [50] I3D-RGB 97.48 84.89

BD-LSTM [51] ResNet-50 - 85.53

2022 MSL [47]
C3D-RGB 94.81 82.85
I3D-RGB 96.08 85.30

VideoSwin-RGB 97.32 85.62

Ullah et al. [51] developed an approach that aims to reduce the processing time
required for deep anomaly detection. For this purpose, the features extracted from the
sequence of frames were fed to a Bi-directional Long Short-term Memory (BD-LSTM)
model, which differs from a regular LSTM by depending not only on the previous frames
but also on the upcoming ones. This work was followed by Ullah et al. [52], decomposing
the anomaly detection process into two stages. Firstly, a Raspberry Pi, a resource-limited
device, runs a lightweight version of the network. If an anomaly is detected, the captured
data are transmitted to a cloud centre for a detailed analysis. The performance of weakly
supervised methods can be evaluated through the benchmark results illustrated in Table 2.
The datasets referenced in the table are fully explored in Section 3.

2.4. Fully Supervised Strategies

The exploration of fully supervised anomaly detection remains limited by the high cost of
collecting large-scale data or generating sufficiently broad artificial dataset solutions. However,
semi-supervised and weakly supervised methods, despite their recent improvements, have not
fully addressed their limitations, such as background bias. Liu et al. [53] conducted a series of
experiments to validate the existence of a background-bias phenomenon, i.e., the tendency for
deep neural networks to learn the background information rather than the anomaly pattern.
To tackle this, a portion of UCF-Crime [40] was re-annotated with temporal and spatial labels,
the latter being represented by bounding boxes. This new information was used to feed an
end-to-end framework with a designed region loss, explicitly guiding the model to focus on the
anomalous region.

A similar approach was implemented by Landi et al. [54], focusing on spatiotemporal
tubes instead of the entirety of video segments containing full frames. UCFCrime2Local,
an enriched subsection of 100 burglary and assault sequences from UCF-Crime [40], was
presented as a separate dataset for anomaly detection with bounding box supervision in
its train and test set. Furthermore, the proposed trainable model for anomaly detection
was designed to be capable of dealing with different abnormal locations in the same video
segment, and the obtained results demonstrate that locality is robust to different kinds
of errors in the tube extraction phase at test time. Moreover, the proposed model was
able to provide spatiotemporal proposals for unseen surveillance videos leveraging only
video-level labels, enlarging the anomaly dataset without additional human labelling.

Acsintoae et al. [55] presented UBnormal, a synthetic dataset generated in Cinema4D
that introduces abnormal events annotated at the pixel level in the training set, enabling
the use of fully supervised anomaly detection methods for the first time. Nevertheless,
simulated scenes belong to a different data distribution than natural scenes. Hence, the be-
haviour of fully supervised models trained on this dataset might be unclear when it is
applied to real-world scenes. To bridge the gap between synthetic and real-world datasets,
Acsintoae et al. [55] proposed the translation of simulated objects from UBnormal to
datasets such as Avenue [11] and ShanghaiTech [4] using a CycleGAN [56]. The results
presented in the paper demonstrate that this hybrid solution of data augmentation can
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enhance the performance of state-of-the-art anomaly detection models. The performance of
the aforementioned methods can be evaluated through the benchmark results exhibited in
Table 3. Furthermore, a summary of the most relevant surveyed methods with different
supervision strategies is provided in Table 4. The datasets referenced in both tables are
fully explored in Section 3.

Table 3. Frame level AUC scores of several fully supervised methods, benchmarked on CUHK Avenue [11],
ShanghaiTech Campus [4] and UCF-Crime [40] datasets. Results compiled by Feng et al. [39]. Legend:
†—The subset UCFCrime2Local [54] was used.

Year Method
AUC Score (%)

UCF-Crime CUHK Avenue ShanghaiTech

2019 Liu et al. [53] 82.0 - -
Landi et al. [54] 77.52 † - -

2022 UBnormal [55] - 93.2 83.7

Table 4. Summary of the most relevant surveyed methods. Abbreviations: A = CUHK Avenue [11],
SU = Subway (Entry and Exit) [57], P = UCSD Pedestrian [12], U = UMN [58], S = ShanghaiTech
Campus [4], UC = UCF-Crime [40], X = XD-Violence [59], UC2L = UCFCrime2Local [54].

Type Year Method Datasets Major Contributions

Se
m

i-
su

pe
rv

is
ed

2016 Conv-AE [15] A, SU, P Estimated abnormality through the reconstruction error of the learnt AE.

2017
ConvLSTM-AE [20] A, SU, P

A CNN for appearance encoding and a ConvLSTM for memorising motion
information of past frames were integrated with the AE.

S-RNN [4] A, SU, P, S
Temporally coherent Sparse Coding mapped to a Stacked-RNN, improving
parameter optimisation and anomaly prediction speed.

2018 FFP [3] A, P, S
Future frames were predicted with motion and intensity constraints and
were compared with the ground truth to detect anomalies.

2019

Mem-AE [23] A, P, S
Given an input, it used the encoded information as a query to retrieve the
most relevant memory items for reconstruction.

Object-Centric [33] P, U, S
Object-centric AE to encode motion and appearance information, paired with
a one-versus-rest classifier to separate normality clusters.

BMAN [31] A, P, U, S
Introduced an inter-frame predictor to encode normal patterns, which is
used to detect abnormal events in an appearance-motion joint detector.

2020
VEC [27] A, P, S

Prediction of erased patches of incomplete video events, fully exploiting
temporal information in the video.

MNAD [36] A, P, S
Added a memory module to record prototypical patterns of normal data in
memory items, training it with compactness and separateness losses.

2021

SSMT [30] A, P, S
Considered the discrimination of moving objects and objects in consecutive
frames; reconstruction of object-specific appearance information.

AMMC [37] A, P, S
Combined appearance and motion features to obtain an essential and robust
representation of regularity.

ROADMAP [13] A, P, S
Used a frame prediction network that handles objects and different scales
better; introduced a noise tolerance loss to mitigate background noise.

2022 BDPN [28] A, P, S
Introduced three constraints to regularise the prediction task from pixel-wise,
cross-modal, and temporal-sequence levels.
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Table 4. Cont.

Type Year Method Datasets Major Contributions

W
ea

kl
y-

su
pe

rv
is

ed

2018 Sultani et al. [40] UC Learnt anomaly through an MIL framework by learning a ranking model that
predicts high anomaly scores for anomalous video segments.

2019

IBL [41] UC Used an inner bag loss for MIL to increase the gap between the lowest and
highest scores in a positive bag and reduce it in a negative one.

GCN [45] P, S, UC A GCN was used to clean label noise, to directly apply fully supervised action
classifiers to weakly supervised anomaly detection.

Motion-Aware [44] UC Added temporal context to the MIL ranking model by using an attention block;
the attention weights helped to identify anomalies better.

2020 AR-Net [42] S A dynamic MIL loss enlarged the interclass dispersion; a centre loss reduced
the intraclass distance of normal snippets.

2021

MIST [49] S, UC Implemented a pseudo-label generator and an attention-boosted feature en-
coder to focus on anomalous regions.

RTFM [46] P, S, UC, X A feature magnitude learning function was trained to recognise positive in-
stances; self-attention mechanisms captured temporal dependencies.

CRFD [50] S, UC, X Captured local-range temporal dependencies; enhanced features to the category
space and further expanded the temporal modeling range.

BD-LSTM [51] UC, UC2L A BD-LSTM network was used to reduce the inference time of the sequence of
frames while maintaining competitive results.

2022 MSL [47] S, UC, X Transformer-based MSL network to learn both video-level anomaly probability
and snippet-level anomaly scores.

Fu
lly

-s
up

.

2019

Liu et al. [53] UC Implemented a region loss to explicitly drive the network to learn the anoma-
lous region; a meta learning module prevented severe overfitting.

Landi et al. [54] UC2L
Considered spatiotemporal tubes instead of whole-frame video segments; ex-
isting videos were enriched with spatial and temporal annotations to allow
bounding box supervision in both its train and test set.

2022 UBnormal [55] S, UC Proposed the translation of simulated objects from its dataset to others using a
CycleGAN, increasing performance.

3. Publicly Available Datasets

Generally, research on anomaly detection in video sequences has intensely focused
on analysing video surveillance footage of pedestrians and crowds. Therefore, most of the
available datasets concern those kinds of scenarios. Nonetheless, new datasets have tried
to cover new areas, such as violent and criminal behaviours, and the surveillance of streets
shared by pedestrians and vehicles. The current state of synthetic datasets will be covered
as well as the possibility of expanding them to new use cases, for instance, to detect left
behind objects and abnormal behaviour inside vehicles.

3.1. Real-World Datasets
3.1.1. Pedestrians and Crowds

The UMN dataset [58] was one of the first datasets used for benchmarking tasks of
video anomaly detection. However, it had several limitations that led to a loss of relevance
in recent benchmarks, mainly the existence of a single anomaly type. UMN is composed of
11 short clips of three indoor or outdoor scenes in which people suddenly start running
away. There is no clear split between training and testing frames, and anomalies are only
temporally labelled. Subway [57] has been declining in popularity for similar reasons.
This indoor dataset is divided into two separate instances: Entrance and Exit. Only two
long videos are provided, and there is uncertainty about which frames should be labelled
as anomalous and used for the training and testing processes. The number of types of
anomalies is reduced and include people jumping over the turnstiles or walking in the
wrong direction.
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The most widely used video anomaly detection dataset is the UCSD pedestrian
dataset [12]. It was captured by a stationary video camera, focusing on two pedestrian
walkways. This dataset contains two separate subsets: Ped1 and Ped2. The former is com-
posed of 34 training videos and 36 testing videos, whilst the latter consists of 16 training
video clips and 12 testing ones. The abnormal behaviours are connected to the presence
of vehicles such as cars and bikers, as illustrated by Figure 3a,b. The CUHK Avenue
dataset [11] is very common in benchmarks, and it was also acquired using a stationary
video camera in the CUHK campus avenue. It has 16 training video samples and 21 test
video samples. The abnormal behaviour represented in the scenes is connected to human
actions, showing people littering items, walking on the grass, and throwing or abandoning
objects in the background. However, both datasets possess severe limitations regarding
their single-scene representation, lack of abnormality diversity, and amount of sequences. It
is desirable to learn an anomaly detection model capable of performing well under multiple
scenes and viewing angles. To address these drawbacks, ShanghaiTech [4] was developed,
taking advantage of multiple surveillance cameras with different view angles installed at
different spots, to capture real events at a university campus. ShanghaiTech has challenging
light conditions and camera angles, as Figure 3c,d exemplify. It contains 130 abnormal
events and annotations for pixel-level ground truth of abnormal events.

(a) (b)

(c) (d)

Figure 3. Abnormal frames extracted from widely used datasets for training and benchmarking
video anomaly tasks. (a) Two bikers amongst the pedestrians in Ped1 [12] dataset. (b) Car and biker
in a pedestrian walkway in Ped2 [12] dataset. (c) A normal frame from ShanghaiTech dataset [4].
(d) Two people fighting in ShanghaiTech dataset [4] .

Recently, a new dataset, IITBCorridor [60], was proposed to tackle the lack of diversity
of abnormal human activity. The videos were captured on the IIT Bombay campus, using a
single-camera setup. There is a single scene, consisting of a corridor where walking and
standing are considered regular activities. Protesting, fighting, and abandoning suspicious
objects were some of the ten enacted activities. These activities extend from a single
person to group-level anomalies, and frame-level labels were provided for training and
validating models. Additionally, class labels for each abnormal activity were also provided
for classification purposes. Another work that follows this path is ADOC [61], with data
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acquired from a surveillance camera deployed on a large university campus. The dataset
was created from video captured for 24 consecutive hours. The captured video encapsulates
varying illumination conditions, with daytime and nighttime sequences, and crowded
scenarios with background clutter. The data are annotated with 875 events.

3.1.2. Real-World Anomalies

Motivated by the limitations of previous datasets, UCF-Crime [40] was developed
as a new large-scale dataset to evaluate video anomaly detection. It is composed of
1900 untrimmed videos of real-world surveillance footage, extracted from the internet,
with an average length of 4 min each. It includes 13 types of anomalous events with a high
impact on public safety, such as abuse, burglary, shoplifting and shooting. A comparison
between a normal frame and a shooting sequence is displayed in Figure 4a,b. UCF-Crime
contains annotated bounding boxes of anomalous regions in one image per 16 frames
of each abnormal video. A considerable amount of available data was essential for the
development of weakly supervised strategies.

XD-Violence [59] was originally released to develop a large-scale and multi-scene
dataset for violence detection and classification. However, this task can be understood as a
subset of anomaly detection, and the dataset can be used to benchmark new video anomaly
detection methods. Furthermore, it contains audio-visual signals, allowing for the research
on multi-modal solutions for this problem. XD-Violence consists of 4754 weak-labelled
untrimmed videos with audio, which were collected from both films and YouTube. This
dataset embraces a variety of scenarios and anomalies, for instance, rioting, car accidents
and explosions, as shown in Figure 4c,d.

(a) (b)

(c) (d)

Figure 4. Comparison between normal and abnormal frames extracted from real-world anomalies
datasets. (a) Frame from a normal activity extracted from UCF-Crime [40]. (b) Abnormal frame
from UCF-Crime [40], showing a shooting. (c) Frame from a normal activity in XD-Violence [59].
(d) Abnormal frame from XD-Violence [59], representing an explosion.

3.1.3. Traffic

Most datasets that involve traffic consist of dashcam videos or surveillance videos to
support the development of systems capable of anticipating traffic accidents. However,
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the scope of this paper concerns anomaly detection of human-related behaviours. The Street
Scene dataset [62] consists of 46 training video sequences and 35 testing video sequences
taken from a static camera looking down on a scene of a two-lane street with bike lanes
and pedestrian sidewalks. All of the footage is composed of daytime sequences, and it
does not contain staged anomalies. The testing sequences have a total of 205 anomalous
events consisting of 17 different anomaly types, such as jaywalking, cars outside their lane,
and loitering. Although weather conditions are similar in every sequence, the dataset is
challenging due to the variety of simultaneous activities occurring, moving background
(e.g., trees moving with the wind) and changing shadows.

3.2. Synthetic Alternatives

UBnormal [55] is a novel supervised open-set benchmark composed of multiple virtual
scenes for video anomaly detection. The artificial generation of the scenes of this dataset
using Cinema4D is essential to provide pixel-level annotations for abnormal events in
the training set, allowing for the use of fully supervised methods for video anomaly
detection. The dataset consists of 29 virtual scenes with 660 anomalies and nine different
types of abnormal behaviour. The videos were generated at 30 FPS and are composed of
photorealistic frames as far as both background and actors are concerned. Normal and
abnormal frames of some scenes are illustrated in Figure 5a,b, respectively. Additionally,
the work of Acsintoae et al. [55] introduces an interesting concept of expanding real-
world datasets. The translation of simulated objects from UBnormal to Avenue [11] or
ShanghaiTech [4] was proposed using a CycleGAN [56], producing enhanced results when
used to train state-of-the-art methods. Similar hybrid strategies could be studied as a
solution to the lack of available public datasets for anomaly detection inside vehicles.

SVIRO-Uncertainty [63] is a high-quality synthetic dataset that is not directly related
to the task of anomaly detection, which is understood as abnormal actions perpetrated by
people. Nonetheless, it has the potential to be adapted to study a subset of this problem: the
detection of abandoned or dangerous objects. SVIRO-Uncertainty is made up of sequences
of the rear bench of a vehicle, in which each of the three seats might contain a passenger or
an object, as displayed in Figure 5c,d. The original goal of this dataset was to train models
capable of classifying the object that is occupying each position. However, it could be
applied to abandoned object detection based on the context of its presence in the sequence.
The dataset is quite large, containing two separate training sets, 4384 scenes with adult
passengers only and 3515 using adults, child seats and infant seats. The adaptation of the
dataset relies on providing context clues about the objects present in the frame, defining
the anomaly as an object that should not be present in the sequence. An object could have
been abandoned (e.g., a phone left in a seat) if its presence is not expected without a person
present in the frame. Moreover, a relevant type of anomaly is linked to dangerous objects,
such as firearms or knives. Due to the size of SVIRO-Uncertainty, providing such labels to
a significant amount of sequences might be a virtually impossible task. A brief summary of
the analysed datasets is available in Table 5.



Appl. Sci. 2022, 12, 10011 15 of 22

(a) (b)

(c) (d)

Figure 5. Comparison between normal and abnormal frames extracted from synthetic datasets.
(a) Frame from normal sequence in UBnormal [55], showing pedestrians walking down a street.
(b) Frame from abnormal sequence in UBnormal [55]. Anomalous region emphasised with red
contour. (c) Frame extracted from SVIRO-Uncertainty [63]. Expected behaviour of a passenger with
their belongings. (d) Frame extracted from SVIRO-Uncertainty [63]. Objects unexpectedly abandoned
in the back seat.

Table 5. Brief summary of relevant information regarding the analysed anomaly detection datasets.
Legend: †—Data computed by Acsintoae et al. [55] based on the tracks from Georgescu et al. [64].

Dataset
Number of Frames

Scenes
Number of Anomalies

Resolution (px)
Normal Abnormal Total Types Total

UMN [58] 6165 1576 7741 3 1 11 320 × 240
Subway [57] 192,548 † 16,603 † 209,151 2 5 65 † 512 × 384

UCSD Ped1 [12] 9995 4005 14,000 1 5 54 238 × 158
UCSD Ped2 [12] 2924 1636 4560 1 5 23 320 × 240

CUHK Avenue [11] 26,832 3820 30,652 1 5 47 640 × 360
ShanghaiTech [4] 300,308 17,090 317,398 13 11 130 -
IITB-Corridor [60] 375,288 108,278 483,566 1 10 - -

ADOC [61] 162,093 97,030 259,123 1 25 721 1920 × 1080
Street Scene [62] 159,341 43,916 203,257 1 17 205 1280 × 720
UCF-Crime [40] - - 13,741,393 1900 13 - -
XD-Violence [59] - - - 4754 6 - -
UBnormal [55] 236,902 147,887 89,015 29 22 660 1080 × 720

4. Projects and Resources
4.1. Projects

Recently, several international projects intending to bridge the gap between research
and the market for the next generation of security solutions have been launched. These
projects do not focus solely on video surveillance of public spaces, one example being
PREVENT PCP, which was launched to procure innovative and advanced systems to
support security in public transport. This project involves some of the biggest transport
operators in Europe, which consider that a concerted effort is required to develop solutions
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in this area. The identification of unattended objects was chosen as the main challenge in
providing safety in public transport, after the findings of PREVENT CSA, which served
as a case study for this project. The detection of abandoned or suspect objects is a part of
the broader anomaly detection problem, and the proposed scenario includes in-vehicle
monitoring. The final goal of this project funded by the European Union’s Horizon 2020
programme is to allow buyers to steer the development of cost-effective solutions directly
toward their needs. Additionally, it reinforces the competitiveness of the EU technology
and industrial base by funding projects of public interest.

European Union’s Horizon 2020 programme is also responsible for the funding of i-
DREAMS, which is a project designed to set up a framework for the definition, development,
testing and validation of a context-aware Safety Tolerance Zone for driving. This analysis is
meant to prevent drivers from getting too close to the boundaries of unsafe operation and to
bring them back into the safety tolerance zone while driving. Although the full scope of the
project transcends the recognition of the abnormal activity of the passengers, the detection
of internal distractions, extreme emotions or health concerns might be supported by deep
anomaly detection solutions.

A more traditional project, funded by the same programme, can be found in SecureIT.
One of the explored domains consists of public space protection, especially at major events.
Some important challenges are proposed, such as gathering and managing real-time in-
formation from multiple sources, since the targeted end-users are cities. The proposed
solutions could later be transposed to other domains of interest.

4.2. Resources

Despite their compilation efforts, most surveys on deep anomaly detection for various
scenarios only provide some very high-level outlines of the application conditions of the
suggested models and a superficial review of the available datasets [1,65]. Although these
are useful tools to deepen the theoretical knowledge of anomaly detection strategies,
the limitations imposed by the accessible data must be explored. Moreover, this exploration
effort provides an overview of the conditions required for improving and finding new
application scenarios for the proposed methods. The work of Peng et al. [6] is as of yet
the most detailed overview of the approaches taken by the current methods and their
underlying intuitions. This is achieved by providing a comprehensive literature review
while inspecting the current challenges and studying future opportunities for application.
Furthermore, a collection of publicly accessible source codes and a large number of real-
world datasets were presented by the authors. However, the work of Peng et al. [6] is lacking
application-oriented reviews of opportunities and challenges posed by the exploration of
novel scenarios. To fully explore and understand the constraints and potential issues of a
specific real-world scenario, rather than a generic formulation of a problem, the attention
that only a dedicated review can offer is required.

The availability of the code used to develop the models is essential not only to correctly
replicate them but also to better understand some of the concepts that were presented in a paper.
Table 6 lists some details on the code shared by the authors of some of the surveyed methods.
The data used to create this table were originally compiled by Feng et al. [39]. Every repository
was verified to confirm its accessibility and if it contained sufficient information to be properly
implemented without major adjustments. Some additional information was also gathered, such
as the Machine Learning (ML) framework that was used. Regarding this last topic, there is an
interesting tendency, evident by analysing Table 6, on the growing popularity of PyTorch as
the preferred framework employed by researchers investigating video anomaly detection. This
compilation is a starting point for selecting models that could be adapted to anomaly detection
in new scenarios, such as monitoring passengers and objects inside vehicles.
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Table 6. Available source code of the surveyed methods, based on the compilation made by Feng et al. [39].
Abbreviation: a.o.—accessed on date (format dd/mm/yy).

Type Year Method Availability ML Framework

Semi-supervised

2017
S-RNN [4] Link, a.o.

01/08/22 TensorFlow

ConvLSTM-AE [20] Link, a.o.
01/08/22 Caffe

2018
FFP [3] Link, a.o.

29/07/22 TensorFlow

ALOCC [66] Link, a.o.
01/08/22 TensorFlow

2019
Mem-AE [23] Link, a.o.

01/08/22 PyTorch

AMC [67] Link, a.o.
01/08/22 TensorFlow

2020

MNAD [36] Link, a.o.
27/07/22 PyTorch

OGNet [68] Link, a.o.
01/08/22 PyTorch

VEC [27] Link, a.o.
01/08/22 PyTorch

Weakly supervised

2018 Sultani et al. [40] Link, a.o.
01/08/22 Theano

2019
GCN [45] Link, a.o.

01/08/22 PyTorch

MLEP [69] Link, a.o.
01/08/22 TensorFlow

2020
AR-Net [42] Link, a.o.

01/08/22 PyTorch

XD-Violence [59] Link, a.o.
30/07/22 PyTorch

2021
MIST [49] Link, a.o.

29/07/22 PyTorch

RTFM [46] Link, a.o.
01/08/22 PyTorch

5. Challenges, Approaches and Opportunities for In-Vehicle Monitoring

Anomaly detection in confined spaces, such as the interior of vehicles, is an interesting
new application scenario for these methods. However, as the work of Augusto et al. [5]
demonstrates, the development of solutions for this use case is still fully dependent on the
availability of private datasets. A subset of a dataset provided by Bosch Car Multimedia
containing videos of nine different actor pairs performing various activities in the backseat
of a vehicle was used by the authors. Every video featured two actors in every frame,
and the anomalies present in the subset are strictly related to violent interactions between
two individuals only (e.g., slapping and punching). However, the relevance of objects was
not considered in this work, whether for representing a danger to the passengers or simply
as an object that was left behind by one of them. The latter is of significant importance in
the sugegsted shared autonomous vehicle scenario.

Creating new datasets or expanding existing ones appears to be an immediate need for
considering new use applications for anomaly detection. The former is a complex and costly
task that implies allocating resources for staging and recording the desired interactions. An ad-
ditional bureaucratic effort is also required to obtain permission from the actors involved.
Moreover, a post-recording labelling effort is time consuming. Hence, an attractive option relies
on synthetic data that could be generated for direct use or to augment available data. The work
of Acsintoae et al. [55] is referred to as an interesting approach to the translation of simulated
objects to real-world datasets using a CycleGAN [56]. Similar hybrid strategies could be em-
ployed to circumvent the lack of data for in-vehicle monitoring applications. Furthermore, such
strategies could pre-emptively add some artificial variety to the available video sequences. As it

https://github.com/StevenLiuWen/sRNN_TSC_Anomaly_Detection
https://github.com/zachluo/convlstm_anomaly_detection
https://github.com/StevenLiuWen/ano_pred_cvpr2018
https://github.com/khalooei/ALOCC-CVPR2018
https://github.com/donggong1/memae-anomaly-detection
https://github.com/nguyetn89/Anomaly_detection_ICCV2019
https://github.com/cvlab-yonsei/MNAD
https://github.com/xaggi/OGNet
https://github.com/yuguangnudt/VEC_VAD
https://github.com/WaqasSultani/AnomalyDetectionCVPR2018
https://github.com/jx-zhong-for-academic-purpose/GCN-Anomaly-Detection
https://github.com/svip-lab/MLEP
https://github.com/wanboyang/Anomaly_AR_Net_ICME_2020
https://github.com/Roc-Ng/XDVioDet
https://github.com/fjchange/MIST_VAD
https://github.com/tianyu0207/RTFM
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was referred, the videos provided by Bosch Car Multimedia that were used by Augusto et al. [5]
contained only nine different actor pairs. The work of Capozzi et al. [70] has linked the lack of
actor independence with the underperformance of the trained models, as a bias is developed
linking certain actors to certain actions, instead of learning the pattern of the action. Moreover,
a larger pool of actors’ characteristics, artificially increased or not, is essential to expose the
model to diverse scenarios. Some additional challenges arise from the type and model of the
vehicle that was used. For instance, the shape of the windows affects the background and light
conditions in the captured scenes. Furthermore, the seats of the vehicle influence the range of
movements of the passengers as well as their pose. The diversity of vehicles and actors are
essential factors to produce a robust model.

Choosing the best model for a new use case such as anomaly detection inside of a vehi-
cle is not straightforward. The typical scenario of the reviewed publicly available datasets
does not faithfully represent the new environment in which anomalies must be detected;
therefore, their use does not produce an authentic benchmark of the proposed methods.
Most of these sequences were captured with stationary video cameras that were recording
static backgrounds. Although cameras inside vehicles are also stationary, windows on a
moving vehicle produce a partially moving background on the recorded sequence. The dis-
tance between the cameras and the subjects is much smaller inside a vehicle, increasing
the effect of geometric distortions on the captured information. Additionally, headlights of
other vehicles, public illumination and occlusions of sunlight produce more frequent illu-
mination perturbations in the scene than those found on datasets that focus on a pedestrian
walkway, for instance. The behaviour of the available models in such scenes is uncertain,
as these did not have to specifically build and test tools for such problems. However, they
cannot be neglected to build a successful application for this use case. Furthermore, in the
available datasets, especially the ones regarding pedestrians and crowds, the entirety of
the body of the actors is visible; therefore, the models can benefit from this information to
detect anomalies. However, inside confined spaces, this might not be possible. Taking into
consideration the in-vehicle scenario, due to the limited available camera positions, part of
the legs of the passengers are occluded, as Figure 5c demonstrates. Therefore, in such tasks,
the models are limited to partial information regarding the human actors and the area in
which the actions take place.

None of the datasets that were analysed in Section 3 present a convenient tool for training
and benchmarking a model for anomaly detection inside a vehicle or similarly confined spaces.
The datasets that comprise sequences of pedestrians and crowds were mostly recorded outdoors
and cover a great area when compared to the new scenario of interest. Additionally, the normal
samples that these sequences present consist of people walking or simply standing, which are
actions that would be considered abnormal inside a car. As far as confined spaces are concerned,
the datasets that present real-world anomalies, UCF-Crime [40] and XD-Violence [59], possess
some scenes that fit this context. However, the available labels do not give any information
regarding the location in which the sequences take place; therefore, an additional labelling
effort would be required. Moreover, they do not present coherence in terms of the placement
of the camera or the type of confined spaces presented, as these videos were extracted from
films or the internet. On the other hand, SVIRO-Uncertainty [63] depicts an in-vehicle scenario,
despite not presenting relevant information for anomaly detection in terms of abnormal actions
perpetrated by the passengers. Its potential remains solely linked to the detection of dangerous
or abandoned objects, which is a subset of anomaly detection.

A common issue with the proposed deep anomaly detection techniques was noted
by Pang et al. [6]. Most anomaly detection studies focus on detection performance only,
ignoring the capability of illustrating the identified anomalies. Although it would be
relevant to classify the abnormal behaviour that was detected, the detection could represent
a novel anomaly. Hence, it is crucial to at least provide spatial cues that demonstrate
the specific data portion that is anomalous. These cues might prove useful as a tool for
interpreting such complex models and identifying scenarios in which they could be missing.
Furthermore, the works of Liu et al. [53] and Landi et al. [54] have proven that locality
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is a powerful instrument to improve performance and reduce background bias. Some
re-labelling was required to construct both attention-driven models, but robust results
were achieved. Additionally, the model proposed by Landi et al. [54] was able to provide
spatiotemporal proposals for unseen surveillance videos leveraging only video-level labels,
which is a useful feature for the needed expansion of datasets.

6. Conclusions

In this article, various deep learning methods for anomaly detection in videos were
discussed. Studying the defining characteristics of state-of-the-art methods is important not
only to gain a better understanding of the general problem of anomaly detection but also to
understand how the offered solutions could fit into the new scenario of interest: in-vehicle
monitoring. The major contributions of the analysed works are briefly summarised in
Table 4. Additionally, Table 6 provides a compilation of the available source code; the code
present in these repositories comprises an interesting starting point for replicating and
improving these models for new applications.

The analysis of state-of-the-art techniques provided a deeper understanding of the
background of these models and its influence on their current limitations regarding in-
vehicle monitoring. The focus on crowded scenes and outdoor spaces led to a failure to
consider problems associated with the nature of this new scenario. For instance, the surveil-
lance of Shared Autonomous Vehicles must consist of a much closer recording of the
subjects, which raises questions about the importance of actor independence and the effect
of geometric distortions on the captured information caused by the lens of the camera.
Moreover, these models assume a mostly static background, although the movement of the
car and the presence of windows result in moving backgrounds. Additionally, frequent
illumination changes (e.g., a cloud covering the sun) result in a more intense impact on the
visual information in such scenarios.

The main limitation of the implementation of anomaly detection solutions to in-vehicle
monitoring is the lack of data samples explicitly dedicated to the detection of abnormal
behaviours inside a vehicle or similarly confined spaces. Hence, there are currently no
public datasets that could be directly used as a tool for training and benchmarking such
models. The development of solutions for this use case is still fully dependent on the
availability of private datasets. Although newer datasets have been adapted to benchmark
models created for anomaly detection tasks, their original focus was related to action
recognition tasks. The reviewed synthetic datasets presented high-quality images with an
interesting amount of annotations but do not comprise a compatible set of data instances
for this task. Although this is a severe challenge, it also provides a great opportunity to
study techniques for data augmentation and generation. In this paper, several approaches
were proposed to be implemented in future works. They can be summarised in a two-stage
process. Firstly, available datasets, mainly the ones covering diverse real-world anomalies,
must be extensively studied to find instances representative of the real-world settings
that the systems will face, providing an initial reference. Secondly, the expansion and
adaptation of similar instances should be contemplated. This could be achieved through
the translation of simulated objects or actors to tackle the lack of available sequences but
also their reduced diversity of actors, actions and significant illumination changes. This
approach could also reduce the labelling effort of new captures.

This review initiates an important discussion on application-oriented issues related
to deep anomaly detection for in-vehicle monitoring, which is a field that presents a high
potential for exploration in future works. Other surveys and reviews have disregarded
this scenario and its specificities, despite its relevance, as shown by the funded projects,
such as Prevent PCP, that aim to take advantage of innovative solutions for applying
anomaly detection to this scenario. Moreover, in-vehicle monitoring increases the interest
in the optimisation effort of anomaly detection models for embedded systems, as its
implementation requires the capability of running locally in resource-limited hardware.
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