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Background and Objective: Convolutional neural networks are widely used to detect radiological findings 

in chest radiographs. Standard architectures are optimized for images of relatively small size (for exam- 

ple, 224 × 224 pixels), which suffices for most application domains. However, in medical imaging, larger 

inputs are often necessary to analyze disease patterns. A single scan can display multiple types of radi- 

ological findings varying greatly in size, and most models do not explicitly account for this. For a given 

network, whose layers have fixed-size receptive fields, smaller input images result in coarser features, 

which better characterize larger objects in an image. In contrast, larger inputs result in finer grained 

features, beneficial for the analysis of smaller objects. By compromising to a single resolution, existing 

frameworks fail to acknowledge that the ideal input size will not necessarily be the same for classifying 

every pathology of a scan. The goal of our work is to address this shortcoming by proposing a lightweight 

framework for multi-scale classification of chest radiographs, where finer and coarser features are com- 

bined in a parameter-efficient fashion. 

Methods: We experiment on CheXpert, a large chest X-ray database. A lightweight multi-resolution 

(224 × 224, 4 48 × 4 48 and 896 × 896 pixels) network is developed based on a Densenet-121 model 

where batch normalization layers are replaced with the proposed size-specific batch normalization. Each 

input size undergoes batch normalization with dedicated scale and shift parameters, while the remaining 

parameters are shared across sizes. Additional external validation of the proposed approach is performed 

on the VinDr-CXR data set. 

Results: The proposed approach (AUC 83 . 27 ± 0 . 17 , 7.1M parameters) outperforms standard single-scale 

models (AUC 81 . 76 ± 0 . 18 , 82 . 62 ± 0 . 11 and 82 . 39 ± 0 . 13 for input sizes 224 × 224, 4 48 × 4 48 and 

896 × 896, respectively, 6.9M parameters). It also achieves a performance similar to an ensemble of one 

individual model per scale (AUC 83 . 27 ± 0 . 11 , 20.9M parameters), while relying on significantly fewer 

parameters. The model leverages features of different granularities, resulting in a more accurate classifi- 

cation of all findings, regardless of their size, highlighting the advantages of this approach. 

Conclusions: Different chest X-ray findings are better classified at different scales. Our study shows that 

multi-scale features can be obtained with nearly no additional parameters, boosting performance. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

@

@

h

0

(

∗ Corresponding author. 

E-mail addresses: sofia.c.pereira@inesctec.pt (S. C. Pereira), joana.m.rocha 

inesctec.pt (J. Rocha), campilho@fe.up.pt (A. Campilho), pedro.teixeira.sousa 

chvng.min-saude.pt (P. Sousa), amendon@fe.up.pt (A.M. Mendonça) . 

1

o

e

p

t

ttps://doi.org/10.1016/j.cmpb.2023.107558 

169-2607/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
. Introduction 

Computer-Aided Diagnosis (CAD) systems provide a second 

pinion and can assist doctors in their decision-making process, 

specially when the available human resources are scarce or inex- 

erienced. Nowadays, many CAD systems use Deep Learning (DL) 

echniques applied to medical images [33] . 
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Fig. 1. The ratio between the size of the receptive field (RF) of a given CNN (illustrated by the blue square) and the input image size changes when the size of the input is 

adjusted. The receptive field has a fixed number of pixels. The granularity of the features extracted by the convolutions will increase as the size of the input images increases. 
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Convolutional Neural Networks (CNNs) are the most popular 

ype of DL model used for processing and classifying image data. 

n most domain fields, CNNs take as input images of relatively 

mall size. Some generic data sets frequently used in computer vi- 

ion contain very small images (32 × 32 in the case of the CIFAR 

ata set [12] ). Others, such as ImageNet [4] and COCO [16] , contain

arger images. For example, the images of ImageNet have an av- 

rage size of 469 × 387 pixels. Nevertheless, most pretrained off- 

he-shelf models are trained on images resized to 224 × 224 pix- 

ls. This size is considered to result in a good trade-off between 

omputational cost and model performance. 

Medical imaging has the particularity of employing large 

cale images. Histopathology images can be larger than 

0 0,0 0 0 × 10 0,0 0 0 pixels [11] , and X-ray images typically have a

eight/width of a few thousand pixels [30] . Simply re-scaling such 

arge images to much smaller sizes may result in a significant 

oss of information. For this reason, even though studies from the 

edical domain often rely on models pretrained on images of 

maller sizes (224 × 224) for weight initialization, it is common 

o fine-tune them to medical data using larger image sizes [26,29] . 

ff-the-shelf CNN architectures typically perform better when 

he input is provided within a certain size range. This happens 

ue to the size of the Receptive Field (RF) in their convolutional 

ayers [25] . The RF can be defined as the patch of the input

mage that fires a single cell of a feature map produced by a layer

f a CNN [17] . Its size is fixed, and it depends on the size and

umber of filters in the CNN. For a given CNN with a pre-defined 

umber of filters and filter sizes, smaller inputs will result in 

 RF that occupies a larger percentage of the image, while the 

pposite happens for larger images. This concept is illustrated in 

ig. 1 . Larger inputs result in finer features that are generated 

ased on a smaller portion of the image, while smaller inputs 

esult in coarser features that are based on a larger region of 

he input. 

In Chest X-rays (CXRs), radiological findings vary significantly 

n size and shape. As a consequence, for a given CNN, the ideal 

nput size will not necessarily be the same for classifying every 

athology. For example, a cardiomegaly (enlargement of the heart) 

ight occupy a very large portion of the input image, while a lung 

odule can be significantly smaller ( Fig. 2 a and b). Multiple types 

f findings of different sizes commonly coexist in a single scan 

 Fig. 2 c). Moreover, different instances of the same type of find- 

ng might have a different appearance among scans or even in the 
i

2 
ame scan. For example, a lung lesion can either be a small nod- 

le or a large mass, and a single scan can contain multiple lesions 

 Fig. 2 d). 

We developed a multi-scale ensemble model that takes advan- 

age of several input image sizes to better characterize each data 

oint, achieving better performance than any of the implemented 

ingle-scale baselines. We propose a new Size-Specific Batch Nor- 

alization (SSBN) layer, inspired by the domain-specific batch nor- 

alization layer used in multi-task learning [3] . When compared 

o ensembles using one individual CNN for each input size (3 × the 

umber of single-scale baseline parameters), ensembles based on 

SBN rely on a significantly smaller number of parameters (1.02 ×
he number of single-scale baseline parameters, in the case of 

he Densenet-121 architecture), while maintaining similar perfor- 

ance. We also explored other parameter-sharing settings, namely, 

haring a variable number of initial layers of a CNN across input 

izes, resulting in models known as TreeNets [13] . 

.1. Related work 

.1.1. Multi-scale approaches 

The fact that image size affects the performance of deep- 

earning based computer vision systems is well studied [25] . For 

his reason, many try to investigate ways to incorporate multi-scale 

nformation into their models. This is transversal to several domain 

pplications, such as crowd counting [31] , remote sensing [28] and 

edical imaging [8] . 

Although accounting for the multi-scale nature of the discrim- 

nant image features is a standard practice for object detection 

asks, where ground truth bounding boxes are available [24] , it is 

ot as common for image classification tasks, where only one la- 

el for the entire image is provided. One way of extracting multi- 

cale features is to use dilated convolutions [31] via spatial pyra- 

id pooling modules. However, this operation may lead to poor 

patial consistency, which ultimately results in gridding artifacts 

7] . Another approach is to build one classification model per size 

nd combine their outputs using an ensemble technique, such as 

oosting [28] . The approach taken by Lim and Yalim Keles [15] is 

lose to ours, consisting of a triplet CNN to generate multi-scale 

eatures by feeding different input sizes to each component. Sur- 

risingly, all the parameters are shared across components, mean- 

ng that in practice only one CNN is used. 
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Fig. 2. Chest radiological findings differ in size. Some findings are very large (a), while others are smaller (b). More than one finding can co-exist in a single scan (c) and, in 

some cases, there can be multiple different-looking instances of the same type of finding in one scan (d). 
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Specifically for multi-label chest radiograph analysis, the fact 

hat the performance for each label is affected differently with 

hanges to the input size has been observed in [27] . Given this 

bservation, [8] take advantage of this behavior and build a deep 

odel for each scale. After learning each deep expert, they learn 

ow to best combine the separate models by learning weights to 

erform a weighted average of the predictions in a second training 

hase. 

.1.2. TreeNets 

Model ensembling is usually done in a post-hoc manner. How- 

ver, it is known that the initial layers of a CNN extract very sim- 

le and generic features (such as edges or corners). This means 

hat early layers of a CNN can potentially be shared across models 

f they are trained in an end-to-end manner. TreeNets, introduced 

y Lee et al. [13] , explore this concept by showing that between a

ingle CNN and an ensemble of several fully independent models, 

here is a spectrum of possible architectures that leverage param- 

ter sharing. 
3 
The extent to which parameters are shared usually results in 

 trade-off between the number of parameters/computational ef- 

ciency and model performance. TreeNets allow a reduction in 

he number of parameters of the model, frequently without a de- 

rease in performance. In some cases, performance might actually 

ncrease due to a reduction in overfitting. Multiple studies have 

dopted TreeNet structures in their models [14,19,35] . We extrap- 

late this structure, commonly used for multi-task learning or tra- 

itional ensembling, to the proposed multi-scale setting. 

.1.3. Batch normalization 

Before feeding data into a neural network, a normalization step 

s carried out to ensure that the features are calibrated, resulting in 

aster and often better convergence. However, when networks are 

ery deep, the distribution of the data changes during training as 

uccessive operations are performed, a problem known as internal 

ovariate shift [9] . This problem is addressed in most modern CNN 

rchitectures by re-normalizing the input of each layer of a neural 

etwork using mini-batch statistics, in a process known as batch 

ormalization. During training, the mean μB and variance σ 2 of a 

B 
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Table 1 

Frequency of the labels in the selected CheX- 

pert subset. 

Label Frequency 

No Finding 22,271 

Enlarged cardiomediastinum 7106 

Cardiomegaly 17,851 

Lung opacity 53,190 

Lung lesion 5621 

Edema 35,756 

Consolidation 8716 

Pneumonia 3914 

Atelectasis 23,749 

Pneumothorax 15,069 

Pleural Effusion 55,837 

Pleural Other 1982 

Fracture 6037 

Support Devices 74,012 
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1 https://www.kaggle.com/c/vinbigdata- chest- xray- abnormalities- detection 
ini-batch B = { x 1 , x 2 , . . . , x m 

} , where x m 

corresponds to m th im-

ge of the batch, are calculated in each batch normalization layer 

usually placed after each convolutional layer) and used to normal- 

ze the data, according to Eq. (1) , where ε is a value added to the

enominator for numerical stability. Additionally, the normalized 

ata ˆ x is scaled and shifted using two learnable parameters β and 

, resulting in y ( Eq. (2) ). During training, the moving average of

he mean and variance are registered (as non-learnable parame- 

ers) and the β and γ parameters are learned, being later used for 

atch normalization during the inference stage. 

ˆ 
 i = 

x i − μB √ 

σ 2 
B 

+ ε
(1) 

 i = γ ˆ x i + β (2) 

Batch normalization has proved to be extremely important in 

eep learning by making deeper models much faster to train and 

ess prone to divergence. Numerous studies have focused on ex- 

loring the importance of this layer. It is possible to achieve high 

erformance in standard benchmark computer vision tasks per- 

orming exclusively affine transforms (namely, shifting and rescal- 

ng) on random features, by training only the batch normalization 

ayers in a network and leaving the remaining (randomly initial- 

zed) layers untrained [5] . The importance of batch normalization 

an also be highlighted in multi-task learning scenarios, where 

odels that have individual batch normalization layers for each 

ask but share all other parameters of the feature extractor can 

chieve good performance [3] . We adapt this last concept to multi- 

cale data by creating a model that shares all convolutional layers 

cross tasks, but contains distinct batch normalization layers per 

nput size. 

.2. Contributions 

In this article, we propose alternatives for combining multi- 

cale information for multi-label classification of chest radiographs. 

he contributions of this work can be summarized as follows: 

• We made a detailed per-label analysis of how the performance 

is affected when the input size is changed. Specifically, we ex- 

perimented with the input sizes 224 × 224, 448 × 448 and 

896 × 896. 
• We developed a lightweight end-to-end ensemble model that 

leverages multiple input sizes, boosting performance. Addition- 

ally, we also explored the use of TreeNets to reduce computa- 

tional cost and examine the trade-off between performance and 

the number of parameters. 
• We proposed a new scale-specific batch normalization layer 

that applies batch normalization to the data separately for each 

input size, resulting in per-size personalized trainable (scale 

and shift) and non-trainable (mean and standard deviation) pa- 

rameters. The multi-scale model built using this layer achieves 

a performance similar to that of a baseline ensemble that uses 

one deep expert per size, while relying on a much smaller 

number of parameters. 
• We showed that the proposed approach generalizes well in an 

external data set, maintaining its superiority in terms of pre- 

dictive performance and robustness, when compared to single- 

scale baselines. 

. Methodology 

In this section, we start by describing the data used in the 

xperiments and how it was preprocessed ( Section 2.1 ). Then, 

e detail the experiments and models that were implemented 

 Section 2.2 ) and describe their training procedure ( Section 2.3 ). 
4 
.1. Data set and preprocessing 

The CheXpert [10] data set, a large publicly available CXR col- 

ection, is used in the experiments. It is a multi-label data set of 

23,414 frontal and lateral chest X-ray scans from 64,540 patients 

abeled for the presence of twelve radiological findings/pathologies, 

lus “support devices” and an additional “no finding” label. Origi- 

ally, the data set contains a training set labeled using Natural Lan- 

uage Processing (NLP), where each pathology is labeled as present, 

bsent or uncertain . Additionally, the data set also contains a hand- 

abeled validation set with 234 images (200 patients) and a hidden 

and-labeled test set (the images are not made publicly available) 

ith 668 images (500 patients). The validation and test sets are 

ery small compared to the training set and their label distribu- 

ion is not representative for every pathology [10] , both in terms of 

bsolute and relative frequencies. Specifically, eight out of the four- 

een labels contain less than 50 positive instances. Considering that 

he performance of the NLP labeler is very good (specifically, 0.969, 

.952 and 0.848 micro-F1 scores for entity mention, entity nega- 

ion and entity uncertainty, respectively [10] ) and that our goal is 

o access the effect of image size across all pathologies, we de- 

ided to rely solely on the training set and perform five-fold cross 

alidation using 80-20 stratified splits without patient overlap. To 

urther ensure the integrity of the data, the instances containing at 

east one pathology labeled as uncertain were removed. Ultimately, 

he filtered data set contained 138,358 instances. Table 1 shows the 

requency of each label in the filtered data. 

For further analysis of the proposed model, we performed 

n external validation using the publicly available version of the 

inDr-CXR data set [21] , made available on the Kaggle platform. 1 

his data set contains 15,0 0 0 CXRs from two hospitals in Vietnam 

nd was fully annotated by radiologists. Since the fourteen anno- 

ated labels made available do not fully overlap with those from 

heXpert, we limit our analysis to the set of overlapping labels be- 

ween data sets: No Finding, Cardiomegaly, Lung Opacity, Lung Le- 

ion (equivalent to Nodule/Mass), Atelectasis, Consolidation, Pleural 

ffusion and Pneumothorax. Since each scan is annotated by three 

adiologists, we use majority voting for generating the final label 

et, following the approach taken in the original paper describing 

he data [21] . 

All scans were first resized to a height of 1,024 pixels (preserv- 

ng aspect ratio) and then center cropped to 896 × 896, which is 

he largest input size used in our experiments. For each image, two 

ower-sized copies were generated (448 × 448 and 224 × 224 pix- 

ls). This way, the starting point for the analysis was an image 

https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection
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Fig. 3. TreeNet structures used in this study. Between a fully joint (Joint) model 

and fully separate (BE) model, there are three TreeNet structures that differ in their 

branching point, which can be after the third (C3), second (C2) or first (C1) block 

of a DenseNet-121 structure. The gray arrows indicate the layer trajectory of each 

input size. 

3

a

c

(

p

i

s

a

ize of 224 × 224 pixels, which is widely used in computer vi- 

ion applications, including for pretraining models on the Ima- 

eNet [4] data set. All the images were standardized using Im- 

geNet’s mean and standard deviation. Random horizontal flips 

with a probability of 1%) and random rotations (in the ±20 ◦

ange) were performed to augment the data set. To make our CXR 

ata set compatible with ImageNet pretrained weights, we copy 

he grayscale channel two times to make 3-channel images. 

.2. Experiments 

The explored architectures are all based on a Densenet-121 

odel pretrained on the ImageNet data set, which is the model 

sed by the authors of CheXpert [10] and others [1,22] , due to its

ood performance on this data and task. We start by creating in- 

ividual baselines (standard Densenet-121 models) for each input 

ize ( Section 3.1 ). The baseline models are then compared with the 

ulti-scale ensemble models. These include the baseline approach 

f using one individual CNN per scale where only the final fully- 

onnected layer is shared) ( Section 3.1 ), several TreeNet alterna- 

ives ( Section 3.2 ) and the proposed SSBN model ( Section 3.3 ). Fur-

hermore, we compared the proposed model to each single-scan 

aseline in an additional external validation set ( Section 3.3 ). In all 

ases, the outputs obtained for each size are averaged to obtain the 

nal probabilistic prediction. 

Figure 3 illustrates the concept of parameter sharing in TreeNets 

nd shows all the sharing scenarios that were considered in this 

tudy, ranging from a fully joint model to a fully separate model. 

ote that the fully separate model from the figure corresponds to 

he baseline ensemble approach that uses one individual expert 

er scale. The linear layer that performs classification after the fea- 

ure extraction process is always shared across the individual mod- 

ls of all multi-scale ensembles. Even though this might not work 

ell under multi-task settings where the tasks of each individual 

odel are very different in our setting, the performed classification 

ask is the same across ensemble members (only the scale varies). 

onsidering that sharing this layer results in less parameters, we 

dopted this approach. 

The SSBN model is a Densenet-121 model where all the regu- 

ar batch normalization layers are replaced with SSBN layers, illus- 

rated in Fig. 4 . This way, each input size will have its own batch

ormalization layers and thus undergo a set of affine transforms 

ptimized for that size alone, while sharing the remaining param- 

ters of the network. For every batch of data, the three resolution 

ersions of the data were run through the model, using their own 

et of batch normalization layers. We take the network’s output 

or each resolution and average them. During backpropagation, the 

hared parameters are updated by all three versions, while each 

N layer inside the SSBN layers is only updated by its correspond- 

ng version of the data. This results in a parameter-efficient, multi- 

cale ensemble. The number of parameters of all the models are 

hown in Table 2 . 

.3. Training details 

All the models were trained for ten epochs, which is enough to 

each convergence, using the standard binary cross-entropy loss, a 

atch size of 32 and a learning rate of 10 −4 , which was empiri-

ally determined to optimize training. The learning rate is reduced 

y a factor of ten after five epochs. We select the weights from the 

poch with the lowest validation loss. The models were created us- 

ng the PyTorch framework and run on a cluster of two NVIDIA Ti- 

an RTX 24 GB Graphics Processing Units (GPUs). Automatic mixed 

recision [18] was used to accelerate training and reduce memory 

equirements. 
5 
. Results 

In this section, the results of the performed experiments 

re presented. First, the results of the single-scale baselines are 

ompared to those of the baseline multi-scale ensemble model 

 Section 3.1 ). Then, the results of each TreeNet model are com- 

ared to those of the baseline ensemble model ( Section 3.2 ), both 

n terms of performance and number of parameters. Finally, the re- 

ults of the SSBN model are compared to those of the other models 

nd additionally validated in the VinDr-CXR data set ( Section 3.3 ). 
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Fig. 4. Scale-Specific Batch Normalization (SSBN) layer. Instead of sharing a single batch normalization (BN) layer across scales, SSBN has one BN sub-module per scale. In 

the SSBN model, all the BN layers are replaced with SSBN layers, while all the remaining parameters are shared across input sizes. 

Table 2 

Number of parameters of the models discussed in this study. 

These include the the single-scale baselines (B224, B448 and 

B896), the TreeNet structures ranging from a fully joint network 

to the fully separate (except for the last fully connected layer) 

baseline ensemble (BE), and the SSBN model. The number of 

parameters of single-scale baseline models is similar to that of 

the Joint model. 

Model No. Parameters % baseline 

parameters 

Joint / B224 / 

B448 / B896 

6,968,206 100% 

C3 12,341,134 177% 

C2 18,280,846 262% 

C1 20,186,766 290% 

BE 20,875,918 300% 

SSBN 7,135,502 102% 
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.1. Baseline multi-scale ensemble 

We start by comparing the performance of each single-scale 

aseline model (224 × 224, 448 × 448, and 896 × 896 pixels) 

ith the baseline multi-scale ensemble that takes as input all three 

cales, using one individual expert per scale (rightmost model in 

ig. 3 ). Table 3 contains the per-label Area Under the Receiver Op- 

rating Characteristic Curve (AUC) of each model, as well as the 

acro-averaged and weighted-averaged AUCs. While the macro- 

veraged AUC is simply the average of the per-label AUCs, and 

herefore does not account for label imbalance in the data, the 

eighted averaged AUC weights the per-class AUCs with the num- 

er of instances of each label in the validation set, thus accounting 

or label imbalance. The results show that the multi-scale approach 

utperforms all individual scale baseline models. 

.2. Parameter sharing (TreeNets) 

Aiming to design parameter-efficient models, we explore mul- 

iple TreeNet architectures as alternatives to the baseline multi- 

cale ensemble. The performance of each TreeNet can be found in 

able 4 . Model C1 is capable of achieving an AUC comparable to 

hat of the baseline ensemble model, while using fewer parame- 

ers (it is 2.9 times larger than the single-scale baseline models 

nstead of 3 times larger than the single-scale baseline models). 

.3. SSBN 

The TreeNet models detailed in the previous subsection are 

ore parameter efficient than the baseline ensemble model, and 

ne of them (model C1) retains comparable performance. How- 

ver, they are still much larger than the baseline models. We take 

 Densenet-121 model and replace its batch normalization layers 

ith SSBN layers ( Fig. 4 ), resulting in the SSBN model, which is
6 
sed to process all input sizes as described in Section 2.2 . The per-

ormance of this model is also shown in Table 4 . This model yields 

n AUC that is almost identical to that of the baseline ensemble 

hile resorting to a significantly smaller number of parameters 

1.02 × the size of the baseline models versus 3 × the size of the 

aseline models). 

Finally, we compare the proposed SSBN model to each individ- 

al single-scale model on the overlapping labels of the external 

inDr-CXR data set, where SSBN still maintains superior perfor- 

ance ( Table 5 ). 

. Discussion 

.1. Single-scale models 

The results of the baseline models show that most labels 

ave the best performance when the intermediate input size 

448 × 448) is used. However, the difference between the best 

nd second-best scales is not always notorious. While two labels 

pneumothorax and support devices) are best classified using the 

argest scale (896 × 896), no label is best classified using the 

mallest scale (224 × 224). Some recent studies reported to have 

sed input sizes equal or close to 448 × 448 pixels [10,34] , while 

thers still rely on smaller 224 × 224 input images [2,6,22,30] . Our 

esults indicate that even though most computer vision applica- 

ions default to the 224 × 224 image size, this input size seems to 

e suboptimal for chest radiograph classification. 

For labels representing larger findings (cardiomegaly, enlarged 

ardiomediastinum), using scales larger than 224 × 224 does not 

ffer significant performance improvements and therefore does not 

ompensate for the larger computational costs associated with us- 

ng larger inputs. The labels that benefit from larger scales (pneu- 

othorax and support devices) most likely exploit features gener- 

ted from smaller input regions (small RF/input size ratio). These 

ndings are in line with the RF/input size rationale described in 

ig. 1 , and also with the results from Sabottke and Spieler [27] and

aque et al. [8] , mentioned in Section 1.1 , which find analogous re- 

ationships among per-label performance and input size. The per- 

ormance obtained in the external validation ( Table 5 ) is higher 

han that obtained in the internal validation, most likely due to 

ifferences in the nature of the data. However, the performance is 

till lower than that obtained by others when both training and 

esting in the VinDr-CXR data set [20,23] . 

.2. Multi-scale models 

The baseline ensemble model achieves better performance than 

ny of its single-scale counterparts, across all individual labels. The 

esults for the TreeNet models ( Section 3.2 ) show a clear trade-off

etween AUC and the number of parameters in the model. When 

he model is fully-shared across all scales (fewer parameters), the 

odel performs poorly. On the other hand, when the model shares 
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Table 3 

Mean and standard deviation 5-fold cross validation results of the three baseline models (B224, B448 

and B896) and the baseline ensemble model (BE). 

Category AUC 

B224 B448 B896 BE 

No Finding 87.77 ± 0.5 87.92 ± 0.45 87.83 ± 0.45 88.37 ± 0.47 

Enlarged Cardiomediastinum 68.94 ± 0.49 69.46 ± 0.42 68.92 ± 0.27 70.16 ± 0.28 

Cardiomegaly 87.48 ± 0.3 87.64 ± 0.25 87.02 ± 0.21 88.24 ± 0.27 

Lung Opacity 76.86 ± 0.25 77.26 ± 0.24 76.99 ± 0.25 77.74 ± 0.22 

Lung Lesion 78.72 ± 0.41 80.58 ± 0.48 80.25 ± 0.73 81.49 ± 0.49 

Edema 88.03 ± 0.24 88.53 ± 0.17 88.38 ± 0.19 88.98 ± 0.18 

Consolidation 77.67 ± 0.66 78.01 ± 0.52 77.12 ± 0.45 78.77 ± 0.61 

Pneumonia 80.12 ± 0.96 81.08 ± 0.75 80.25 ± 0.67 81.68 ± 0.82 

Atelectasis 72.98 ± 0.4 73.83 ± 0.34 73.67 ± 0.33 74.47 ± 0.44 

Pneumothorax 87.87 ± 0.23 90.42 ± 0.3 91.32 ± 0.28 91.62 ± 0.25 

Pleural Effusion 90.3 ± 0.22 90.47 ± 0.27 90.21 ± 0.28 90.92 ± 0.26 

Pleural Other 80.45 ± 1.45 81.57 ± 0.9 81.31 ± 1.13 81.95 ± 0.9 

Fracture 78.3 ± 0.6 79.7 ± 0.39 79.74 ± 0.46 80.68 ± 0.53 

Support Devices 89.15 ± 0.23 90.28 ± 0.23 90.45 ± 0.25 90.71 ± 0.22 

MAUC 81.76 ± 0.18 82.62 ± 0.11 82.39 ± 0.13 83.27 ± 0.11 

WAUC 84.58 ± 0.09 85.27 ± 0.06 85.14 ± 0.08 85.81 ± 0.06 

Table 4 

Mean and standard deviation 5-fold cross validation results of the TreeNet structures (ranging from the fully joint model 

to the fully separate model, which corresponds to the S) and the proposed SSBN model. MAUC = Macro AUC; WAUC = 

Weighted AUC; Enl. Card. = Enlarged Cardiomediastinum. 

Category AUC 

Joint C3 C2 C1 BE SSBN 

No Finding 87.58 ± 0.54 88.14 ± 0.5 88.22 ± 0.51 88.31 ± 0.48 88.37 ± 0.47 88.36 ± 0.46 

Enl. Card. 68.67 ± 0.4 69.76 ± 0.4 69.84 ± 0.38 70.05 ± 0.3 70.16 ± 0.28 70.12 ± 0.44 

Cardiomegaly 87.16 ± 0.14 87.91 ± 0.3 88.03 ± 0.31 88.08 ± 0.33 88.24 ± 0.27 88.04 ± 0.26 

Lung Opacity 76.78 ± 0.26 77.41 ± 0.26 77.51 ± 0.24 77.65 ± 0.2 77.74 ± 0.22 77.75 ± 0.23 

Lung Lesion 79.35 ± 0.51 80.86 ± 0.54 81.37 ± 0.54 81.53 ± 0.59 81.49 ± 0.49 81.53 ± 0.54 

Edema 87.95 ± 0.19 88.64 ± 0.24 88.69 ± 0.15 88.85 ± 0.13 88.98 ± 0.18 88.91 ± 0.19 

Consolidation 77.25 ± 0.68 78.46 ± 0.71 78.61 ± 0.67 78.6 ± 0.54 78.77 ± 0.61 78.77 ± 0.67 

Pneumonia 79.88 ± 0.85 80.89 ± 0.86 81.56 ± 0.92 81.6 ± 0.86 81.68 ± 0.82 81.67 ± 0.77 

Atelectasis 73.01 ± 0.36 73.98 ± 0.53 74.13 ± 0.34 74.33 ± 0.37 74.47 ± 0.44 74.51 ± 0.48 

Pneumothorax 88.96 ± 0.23 90.5 ± 0.3 90.89 ± 0.17 91.44 ± 0.11 91.62 ± 0.25 91.50 ± 0.19 

Pleural Effusion 90.27 ± 0.35 90.72 ± 0.27 90.76 ± 0.27 90.84 ± 0.24 90.92 ± 0.26 90.94 ± 0.27 

Pleural Other 80.87 ± 0.8 81.76 ± 0.85 82.02 ± 0.85 82.09 ± 0.91 81.95 ± 0.9 82.27 ± 0.86 

Fracture 78.69 ± 0.39 80.15 ± 0.54 80.53 ± 0.31 80.85 ± 0.43 80.68 ± 0.53 80.77 ± 0.54 

Support Devices 89.01 ± 0.24 90.35 ± 0.16 90.57 ± 0.23 90.61 ± 0.2 90.71 ± 0.22 90.65 ± 0.28 

MAUC 81.82 ± 0.12 82.82 ± 0.13 83.05 ± 0.11 83.2 ± 0.12 83.27 ± 0.11 83.27 ± 0.17 

WAUC 84.54 ± 0.05 85.43 ± 0.07 85.59 ± 0.06 85.71 ± 0.05 85.81 ± 0.06 85.78 ± 0.07 

Table 5 

External validation mean and standard deviation 5-fold cross validation results of 

the single-scale baselines and proposed SSBN model. MAUC = Macro AUC; WAUC = 

Weighted AUC. 

Category AUC 

224 448 896 SSBN 

Cardiomegaly 86.03 ± 2.15 85.82 ± 1.5 82.69 ± 1.45 86.7 ± 0.77 

Pneumothorax 98.24 ± 0.65 99.27 ± 0.25 99.31 ± 0.4 99.74 ± 0.18 

Atelectasis 73.43 ± 3.24 70.83 ± 2.99 68.48 ± 4.33 70.43 ± 1.47 

Pleural Effusion 95.92 ± 0.53 95.83 ± 0.31 94.95 ± 0.71 96.2 ± 0.76 

Lung Lesion 83.63 ± 1.06 91.75 ± 1.08 93.13 ± 0.28 92.91 ± 0.35 

Lung Opacity 86.49 ± 0.68 87.86 ± 1.15 87.18 ± 1.06 88.64 ± 0.33 

Consolidation 95.76 ± 0.66 96.3 ± 0.26 95.29 ± 0.69 96.78 ± 0.19 

No Finding 88.25 ± 0.68 90.1 ± 0.77 90.13 ± 0.64 91.29 ± 0.56 

MAUC 88.47 ± 0.6 89.72 ± 0.51 88.89 ± 0.65 90.34 ± 0.21 

WAUC 88.15 ± 0.51 89.78 ± 0.57 89.35 ± 0.54 90.86 ± 0.45 
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nly a few parameters from the early layers and keeps the re- 

aining parameters separate for each scale (model C1), the per- 

ormance is nearly as good as the one from the baseline ensemble. 

lthough model C1 performs almost as well as the baseline en- 

emble using a smaller number of parameters, it is still 2.9 times 

arger than the single-scale baseline models. 

The proposed SSBN model is capable of achieving a perfor- 

ance comparable to that of a baseline ensemble, similar to that 
7

roposed in [8] , while using a much smaller number of param- 

ters. This not only highlights the extreme importance of affine 

ransforms in convolutional neural networks and deep learning 

n general, but also enables the use of multi-scale inputs in less 

owerful machines. Moreover, Table 5 shows that SSBN general- 

zes well, as its performance it still overall superior to those of 

he single-scale baselines in an external data set. Note that for 

ome labels, such as Atelectasis or Pneumothorax, the amount of 
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[

ositive instances is quite small [21] (less than 100 scans), which 

ay be insufficient to produce reliable results. Interestingly, in the 

xternal validation, the standard deviation across the five folds is 

otably smaller for SSBN, which shows that incorporating multiple 

cales into the predictions leads to more robust results. 

.3. Limitations 

On the one hand, CheXpert’s ground-truth labels are known 

o suffer from label inaccuracies due to the fact that these were 

utomatically extracted using natural language processing. On the 

ther, the agreement among the labelling of different radiologists 

or the same scan is low on the VinDR-CXR data set [32] , which

ay also pose a problem. The external validation experiment may 

lso be influenced by the different labelling schemes adopted in 

he data sets. While a direct label correspondence was adopted, la- 

els with the same name may not mean exactly the same thing in 

oth data sets. Finally, while building our model is extremely easy 

simply replacing the BN layers by SSBN layers), it does require 

 personalized forward method to handle the two main modifi- 

ations we make, which are (1) having three different-sized ver- 

ions of the input and (2) a “switch” to alternate between the 

hree sets of BN layers, as we use a different set for each reso- 

ution. Due to this, training time increases, and is comparable to 

hat of the baseline ensemble. Nevertheless, memory requirements 

re smaller than those of the baseline ensemble (although natu- 

ally larger than those of single-scale models), due to the reduced 

umber of parameters. 

. Conclusions 

The variations in size and shape that radiological findings of 

hest radiographs exhibit pose a challenge to standard deep learn- 

ng models, as models built based on a single input size do not ac- 

ount the multi-scale nature of the data. We developed a new Size- 

pecific Batch Normalization (SSBN) layer that can replace standard 

atch normalization layers to create a lightweight multi-scale en- 

emble, while adding a very small number of parameters to the 

odel ( + 2%). This model achieves a performance similar to that of 

 baseline ensemble that uses one individual CNN per scale, with 

 much smaller number of parameters (approximately one third). 

herefore, the proposed approach allows the multi-scale nature of 

he findings to be explicitly taken into account without the need 

or a model that is much larger than its single-scale counterparts. 

Due to differences in the proportion between the receptive field 

f the convolutions and the input sizes, the proposed multi-scale 

pproach leverages and combines features with different levels of 

ranularity, boosting performance. In conclusion, this work high- 

ights the per-label effect of varying the input scale of chest ra- 

iographs fed to deep learning models, offers a new lightweight 

lternative to combine and benefit from multiple scales and in- 

estigates the generalization capabilities of the proposed alterna- 

ive. Future work can be focused on studying the effect of using a 

roader number of scales and different architectural backbones for 

he SSBN model. 
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