
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY 1

Formal Verification With Frama-C: A Case Study in
the Space Software Domain

RovedyAparecida Busquim e Silva, Nanci Naomi Arai, LucianaAkemi Burgareli, JoseMaria Parente deOliveira, and
Jorge Sousa Pinto

Abstract—With the increasing importance of software in the
aerospace field, as evidenced by its growing size and complexity, a
rigorous and reliable software verification and validation process
must be applied to ensure conformance with the strict require-
ments of this software. Although important, traditional validation
activities such as testing and simulation can only provide a partial
verification of behavior in critical real-time software systems, and
thus, formal verification is an alternative to complement these
activities. Two useful formal software verification approaches are
deductive verification and abstract interpretation, which ana-
lyze programs statically to identify defects. This paper explores
abstract interpretation and deductive verification by employing
Frama-C’s value analysis and Jessie plug-ins to verify embedded
aerospace control software. The results indicate that both ap-
proaches can be employed in a software verification process to
make software more reliable.
Index Terms—Aerospace safety, embedded software, formal ver-

ification, software quality, software safety.

I. INTRODUCTION

F AILURES in safety critical real-time systems may cause
injury, environmental damage, high financial losses, or

even loss of life. As part of these systems, software has increas-
ingly assumed important tasks. Surveys indicate that software
in space systems has experienced an accelerated growth rate in
recent decades [1] and that software has been involved in space
software accidents [2]. The importance of software in a critical
system failure can be demonstrated by the damage caused by
the Ariane 5 launcher software. In June 1996, the first Ariane
5 flight ended in failure, resulting in self-destruction [3]. The
complete loss of guidance and attitude information due to errors
in the specification and design of the inertial reference software
systemwas responsible for this failure. Specifically, the problem
was a numerical error (overflow) in a floating-point number con-
version. Other examples include the loss of the Mars Climate
Orbiter in 1999 [4], the destruction of the Mars Polar Lander

Manuscript received September 01, 2014; revised December 19, 2014, April
30, 2015, August 17, 2015, and November 23, 2015; accepted December 08,
2015. This work was supported in part by the Brazilian Space Agency under
Grant 20VB. Associate Editor: W. E. Wong.
R. A. B. e Silva, N. N. Arai, and L. A. Burgareli are with the Division

of Electronics, Institute of Aeronautics and Space, Sao Jose dos Campos,
SP 12228-904, Brazil (e-mail: rovedyrabs@iae.cta.br; nancinna@iae.cta.br;
lucianalab@iae.cta.br).
J. M. Parente de Oliveira is with the Division of Computer Science, Tech-

nological Institute of Aeronautics, Sao Jose dos Campos, SP 12228-900, Brazil
(e-mail: parente@ita.br).
J. Sousa Pinto is with the HASLab/INESC TEC, University of Minho, Braga

4704-553, Portugal (e-mail: jsp@di.uminho.pt).
Digital Object Identifier 10.1109/TR.2015.2508559

in the landing phase [5], and the loss of contact with SOHO
(Solar Heliospheric Observatory) in 1998 [6]. Embedded soft-
ware, such as that employed in space systems, is considerably
more complex than IT, application, or desktop software due to
the real-time and interface constraints [1]. Consequently, pro-
gram correctness is a challenge in this area.
Currently, the general approach to check program correct-

ness is through testing and simulation in a software verifica-
tion and validation (V&V) process. Despite its importance, soft-
ware testing is not yet a definitive solution for achieving pre-
dictability in real-time systems [7]. To complement these activ-
ities, aerospace standards recommend the use of formal methods
[8], [9]. Formal software verification is an instance of applying a
formal method during the development of software. Deductive
verification, software model checking, and formal static anal-
ysis are some of the approaches that can be applied in formal
software verification, particularly to prove program correctness
at the implementation level.
Software model checking and formal static analysis based on

abstract interpretation are attractive options because they do not
require much effort from the user. However, problems such as
state explosion and the generation of false alarms may occur. In
contrast, deductive verification requires more user interaction
to write the function contracts, but it has the advantage of not
causing too many false alarms and termination issues [9]. Soft-
ware model checking verifies arbitrary assertions; however, its
abstraction techniques have not reached the same level of de-
velopment as formal static analysis based on abstract interpre-
tation. An alternative is to employ bounded model checking, but
in this case, the analysis is only a partial set of program execu-
tions with a limited length [10].
This paper investigates the role of formal software verifi-

cation in a V&V process with the goal of complementing the
testing and simulation activities. We used formal static analysis
based on abstract interpretation [11] and deductive verification
[12]. The proposed approach applies these two mathematical
formalisms to verify an embedded aerospace control software
using the Framework for Modular Analysis of C (Frama-C)
static analyzer [13]. The objective of this work is to obtain useful
insights into the difficulties associated with applying this ap-
proach and to be able to analyze its practical feasibility as a
formal activity in a software verification process.
The main contributions of this paper are as follows: 1) to

disseminate our experience in applying the proposed approach
not only to the scientific community but also to software engi-
neering teams interested in verifying their software and 2) to
discuss a case study from a real project in the aerospace field.

0018-9529 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON RELIABILITY

The remainder of this paper is organized as follows.
Section II describes the verification approach, including the
tools and equipment used. Section III presents the related
works. Section IV describes the case study and reports the
practical experiments. Section V presents a discussion of the
obtained results. Finally, Section VI presents the conclusion,
contributions, and future work.

II. FORMAL VERIFICATION OF CRITICAL SOFTWARE
WITH THE FRAMA-C STATIC ANALYZER

We begin this section with an introduction to the Frama-C
static analyzer, which is the tool on which our approach is based.
We then describe the approach itself.

A. Tools and Equipment

Frama-C is an open-source platform dedicated to the static
analysis of source code written in the C programming language,
ISO C99 standard [14]. Despite the wide variety of uses for
Frama-C, this work focuses on static analysis and deductive
formal verification of critical software using the tool's value
analysis and Jessie plug-ins.
The value analysis plug-in aims to statically analyze the code,

computing variation domains for the program variables [13].
Additionally, this plug-in has the ability to detect errors that
occur at run time and/or demonstrate their absence. It can be
employed in the following tasks: familiarization with foreign
code, automatic document production, bug detection, and guar-
anteeing the absence of bugs [15]. This plug-in implements a
forward dataflow analysis based on the principles of abstract
interpretation [13]. The plug-in performs a symbolic execution
of the program, translating all operations into abstract seman-
tics. Termination of looping constructs is ensured by widening
operations [16]. For function calls, the plug-in performs a recur-
sive inlining of the function, which ensures that the analysis is
fully context sensitive [13]. To assist in the implementation of
the analysis process, Frama-C provides libraries with predefined
functions that can emulate the functions of the standard C lan-
guage libraries, simulate the input parameters required for the
plug-in, and enable printing of results during an analysis. The
plug-in offers treatments related to loops, functions, conditional
clauses (if-then-else), and disjoint intervals.
The Jessie plug-in allows users to perform deductive verifi-

cation of C programs with annotations in the ANSI C Specifi-
cation Language (ACSL) [13]. The deductive verification tech-
nique implemented in the Jessie plug-in automatically generates
first-order logic proof obligations called verification conditions
(VCs) using techniques such as Dijkstra's weakest precondition
calculus and Hoare logic [12]. The generated formulas should
then be shown to be valid, for instance, using an automated the-
orem prover (ATP). This calculus is used to convert C source
code into an intermediate language by the Why platform [17]
combined with the ACSL annotations [18]. In this work, we
employed the ATPs Alt-Ergo [19], Simplify [20], CVC3 [21],
Z3 [22], and Gappa [23]. The Jessie plug-in has some operating
limitations: union types have limited support; casts between in-
tegers and pointers, as well as aliasing, require attention. The
latest version of Frama-C provides two plug-ins for deductive

Fig. 1. Overview of the approach for verification by abstract interpretation.

verification: Jessie andWP.Generally, to execute deductive ver-
ification of C programs, there is a difficulty associated with the
use of a memory model with the appropriate degree of accuracy.
The Jessie plug-in works well with memory models that do not
consider low-level properties. At the time when this work was
conducted, theWP plug-in was still considered unstable, despite
its ability to work with several memory models. Therefore, the
Jessie plug-in was chosen to perform the deductive verification
because of its stability.
To conduct the formal software verification through abstract

interpretation and deductive verification, we used the Frama-C
Neon-20140301 release on a 2.9 GHz notebook with 8 GB
of memory and 1 TB hard disk with the Yosemite operating
system. To plot the graphs, we used a 2.20 GHz notebook with
2 GB of memory and a 130 GB hard disk with the Windows
XP operating system.

B. Proposed Approach

The proposed approach employed two mathematical for-
malisms to perform the formal software verification based on
the following steps:
1) use of formal static analysis by abstract interpretation

based on a set of activities discussed in this work;
2) use of formal software verification by deductive verifica-

tion based on a set of activities discussed in this work;
3) evaluation of the applicability of the proposed approach.

A case study based on embedded software in an aerospace
vehicle demonstrated the applicability of the approach. Be-
cause the data of the selected case study are classified, this
works only presents a limited subset of the results.

We will now present details of the first two steps; the third step
will be discussed in Section IV.
1) Formal Software Verification by Abstract Interpretation:

An overview of the static analysis application based on ab-
straction using Frama-C's value analysis plug-in is shown in
Fig. 1. Because the case study is critical real-time software that
is responsible for acquiring data from sensors, processing such
data, and controlling actuators, the proposed approach con-
sidered specific features, for example, functions for acquiring
sensor data.
The approach began with preparing the application context,

i.e., identifying the information required to perform the static
analysis of the application. The software documentation could



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

E SILVA et al.: FORMAL VERIFICATION WITH FRAMA-C: A CASE STUDY IN THE SPACE SOFTWARE DOMAIN 3

help in defining the application context. The approach defined
two scenarios for performing the analysis: Scenario 1 and Sce-
nario 2.
In Scenario 1, the plug-in was used for its primary purpose:

to provide ranges of output values according to ranges of input
values given by the user, as opposed to what a test-generation
tool would typically do [15]. Test-generation tools work with a
limited subset of test cases, whereas the plug-in works with a
wider domain. This scenario is the most commonly employed
by the users. The scenario context was based on non-deter-
ministic input values for the application sensors. This means
that the input values lied between the maximum and minimum
limits of operation, obtained from a technical specification for
the application.
In Scenario 2, the plug-in operated as a C interpreter, and

the computed results were compared with the results produced
by a compiled program [24]. A very useful characteristic of
Frama-C's value analysis plug-in is that it can be used as an in-
terpreter for C programs when a specific input data set is known
in advance [25]. It suffices to run a sufficiently deep analysis:
it will be completely deterministic and no false alarms will be
generated, while undefined behaviors (not detectable by testing)
will still be detected. In this scenario, the input values for the
application sensors were obtained from the simulation results
of the case study. The sensor values were deterministic, i.e., a
specific value from the sensor was considered for each instant,
and thus, Frama-C performed as a simulation tool.
The verification results included the variation domain for the

application variables. The set inferred for the possible values
of a variable allowed us to check whether the behavior of the
implemented application was correct. In addition, alarms can
be generated indicating possible run-time errors, such as occur-
rences of divisions by zero, invalid pointer access, overflow in
signed arithmetic, and invalid function pointer access [15]. The
results were recorded to an ASCII file for later analysis. Graphs
and tables were used to facilitate the visualization and analysis
of the data. In both scenarios, output data from previous simula-
tions and/or analysis by system experts were used to check the
correctness of the graphs and tables.
To detail the proposed approach, we constructed the activity

diagram presented in Fig. 2. This approach is more than just
executing a tool; it is a set of activities elaborated and orga-
nized in a systematic manner to perform the formal software
verification. As shown in the diagram, we grouped the activi-
ties into two main phases: context definition and implementa-
tion and refinement.
The first phase consisted of preparing the application context

for the case study through some definitions. It was necessary
to select an entry point function for the analysis, identify the
input data required to run the analysis, and choose the output
data to be evaluated. The software documentation could support
this task. Input data from sensors were provided in two ways:
deterministic and non-deterministic.
The second phase encompassed the implementation and re-

finement of the analysis. The software functions to be analyzed
were added incrementally. For each inserted function, inclusion
treatment of the libraries, detection of the missing functions,
handling alarms, and analysis of the variation domain were per-

Fig. 2. Activity diagram for executing the verification by abstract interpretation
using Frama-C's value analysis plug-in.

formed. This phase was an iterative and interactive process be-
cause the analysis required user intervention and was performed
repeatedly until the intended result could be obtained. The user
could adjust the accuracy of the analysis through the plug-in
parameters taking into account the trade-off between efficiency
and accuracy.
Inclusion treatment of the libraries was performed because

Frama-C's value analysis plug-in does not support certain ex-
ternal libraries, such as those related to the real-time operating
system (RTOS). Furthermore, the plug-in only partially sup-
ports the mathematics library. Therefore, because keeping these
libraries in the code implies a dependency chain that could not
be provided, we decided to remove all include directives from
the source code and then reinsert them incrementally according
to the compiler error messages. Additionally, it was possible to
detect unnecessary libraries.
Treatment of missing functions was related to the type of ap-

plication submitted to the static analysis. For critical aerospace
source code, missing functions could be categorized in the fol-
lowing types: hardware input/output (I/O), RTOS, mathematics,
and other functions of the application itself. Table I shows the
respective solutions to be provided to each function type.
At this point of the activities, the user was expected to eval-

uate and treat alarms. After this treatment, the variation do-
main for the variables needed to be evaluated, and the analysis
continued until valid values for the observed magnitudes were
obtained.
2) Formal Software Verification by Deductive Verification:

An overview of deductive verification using Frama-C's Jessie
plug-in is shown in Fig. 3. The approach beganwith a behavioral



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

TABLE I
MISSING FUNCTION CLASSIFICATION

Fig. 3. Overview of the approach for deductive verification.

specification of source code to be checked, which consisted of
a safety and functional specification.
In this work, we used a safety specification to check for vul-

nerabilities in the source code. To identify possible source code
vulnerabilities, we conducted a preliminary verification, and its
results guided the safety specification writing, i.e., the code an-
notations. This safety check was associated with the following
components [26]:
• memory safety deals with the validity of memory accesses
to allocated memory;

• integer safety deals with the absence of integer overflow
and the validity of operations with integers, such as ab-
sence of division by zero;

• floating-point safety deals with the absence of floating-
point overflow;

• termination checks whether loops are always terminating,
as well as recursive or mutually recursive functions.

The functional specification was directly related to the func-
tional software requirements that could be obtained from the
software documentation. In this approach, the main concept of
functional verification was to prove the functions' postcondi-
tions when called in situations described by their preconditions.
Performing deductive verification produced proof obligations

that shall (or not) be shown to be valid by ATPs. Ideally, all
the proof obligations are shown to be valid. We investigated the
proof obligations not shown to be valid to determine whether
this is due to an application error or a tool limitation. The result
of this investigation could guide the future use of the approach
in actual software applications. The number of proof obligations

Fig. 4. Activity diagram for executing the deductive verification using
Frama-C's Jessie plug-in.

checked, resulting in a total or partial proof of the source code,
can be summarized in tables. The final result is a behavioral
specification that is completely or partially proven.
To detail the proposed approach, we constructed the activity

diagram presented in Fig. 4, which was performed for each func-
tion to be verified. Similar to verification by abstract interpreta-
tion, this approach consists of a set of activities elaborated and
organized in a systematic manner to perform the verification by
deductive verification.
The first activity was to prepare the context for checking the

function and determining which library and application func-
tions were required to perform this check. To aid this activity,
we used Frama-C's Metrics plug-in. The use of this plug-in al-
lowed for the automatic computation of various measures in the
source code [27]. The syntactic metric used was the list of un-
defined functions.
The next four activities were related to the verification of

source code safety checking: memory safety, integer safety,
termination, and floating-point safety. In these activities,
pragmas (clauses inserted in the source code to parameterize
the type of safety check to be performed) permitted specific
problems to be verified by steps. The pragmas employed in
the safety check were #pragma JessieIntegerModel(math),
#pragma JessieFloatModel(math), and #pragma JessieTermi-
nationPolicy(user).
The final activity was the functional verification. As previ-

ously mentioned, the first annotation inserted was the function's



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

E SILVA et al.: FORMAL VERIFICATION WITH FRAMA-C: A CASE STUDY IN THE SPACE SOFTWARE DOMAIN 5

postcondition, extracted from the software documentation. The
postcondition must be satisfied in situations or initial states sat-
isfying the precondition. It is generally necessary to insert loop
invariant annotations, assertions, and preconditions to prove the
postcondition. The input/output parameters must be previously
understood to identify the postcondition. The software docu-
mentation and Frama-C's Inout plug-in could help in this task.
The main result of these activities was the behavioral speci-

fication that is associated with the number of proof obligations
checked, which characterize it as partial or total.

III. RELATED WORKS

The European Cooperation for Space Standardization stan-
dard ECSS-E-ST-40C on Space engineering Software (2009)
contemplates a software verification process:

The software verification process is intended to confirm
that adequate specifications and inputs exist for every ac-
tivity and that the outputs of the activities are correct and
consistent with the specifications and inputs.

This process is concurrent with all the previous pro-
cesses.

The process consists of a significant number of activities, in-
cluding the following:
1) verification of requirements baseline;
2) verification of the technical specification;
3) verification of the software architectural design;
4) verification of the software detailed design;
5) verification of code;
6) verification of software unit testing (plan and results);
7) schedulability analysis for real-time software.
Although the type of verification advocated in the standard is

primarily based on testing, the use of formal tools is also con-
templated. In particular, the standard recognizes that testing is
not sufficient for verifying particularly difficult properties, e.g.:

The supplier shall verify source code robustness (e.g.,
resource sharing, division by zero, pointers, run-time
errors).

AIM: use static analysis for the errors that are difficult
to detect at run-time.

Other aspects of the verification are so demanding at the
higher certification levels that the use of formal tools may be
advisable. For instance, for coverage analysis, several published
studies exist that show that the use of software model checking
tools may be very helpful for increasing the productivity of this
very demanding activity; see, for instance, [28]–[30].
Currently, there are a number of published works that show

the application of formal methods in the verification of crit-
ical software in diverse domains. In particular, techniques based
on abstract interpretation and deductive verification (which are
used in the present paper) have now reached an industrial matu-
rity level that allows them to be employed in addition tomethods
for partial exploration by classic testing. They have indeed been
successfully applied in industrial projects in different domains.
We will now consider examples from each of these domains.

Wiels et al. [31] provide an overview of Onera's research in
applying formal verification at model and code levels in the con-
text of aerospace software. The research explores the specifics
of applying formal methods to aerospace, model-driven
engineering at the platform level, cooperation of analysis
techniques, and test automation using formal methods.
In the avionics domain, companies such as Dassault-Avia-

tion and Airbus have successfully applied formal verification
early on as a cost-effective alternative to testing [9]. They follow
the supplement on formal methods called DO-333, part of the
DO178C standard. Airbus verifies functional properties through
“unit proof” (the term “unit proof” echoes the name of the clas-
sical technique it replaces: unit testing). This activity has re-
placed some of the testing activities at Airbus for parts of crit-
ical embedded software on the A400M military aircraft and
the A380 and A350 commercial aircraft. Dassault-Aviation has
used formal verification techniques experimentally to replace
integration robustness testing. The source code is automatically
generated from a graphical model. The model contains a set of
assertions that are expected to be met in both normal and ab-
normal input conditions for themodel to operate properly. These
assertions are translated into the source code and verified using
Frama-C.
In the railway domain, the results produced by applying

formal verification using Frama-C are compared with tradi-
tional unit testing [32]. The software requirements are written
in ACSL annotations and inserted into the source code to
check whether the implementation is correct with respect to its
specification. The work concludes that the process of formal
specification helps to detect inaccuracies and ambiguities in
the requirements and suggests that it is necessary to discuss
the ways in which formal methods may replace certain test
activities in this domain.
The literature review also demonstrates the viability of em-

ploying deductive verification in a number of industrial case
studies [33]–[35]. In addition to program correctness, deductive
verification can be used for other purposes. The annotations in-
serted in the source code can be used to detect and diagnose
software bugs and to describe contracts between functions [36].
One of the most widely used frameworks for the development

of high-assurance software (in terms of its functional and non-
functional properties) is the SPARK programming language and
toolset [37]. The language itself is based on a restricted subset of
the Ada programming language (adequate for the development
of safety critical software), complemented by annotations that
can be used in particular to write contracts describing aspects
of the system's properties. The SPARK platform provides a set
of verification tools for reasoning about the correctness of the
source code, which makes it possible to detect problems early
in the software life cycle. The toolset contains both automatic
and interactive tools that can check (statically) for the absence
of run-time errors and for functional correctness (based on de-
ductive verification).1
Formal static analysis, based on abstract interpretation, is a

type of formal software verification that is capable of providing

1An up-to-date list of industrial projects using SPARK can be found at http:/
/www.adacore.com/sparkpro/projects.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

valid results for all input values proposed by the user [15]. It ex-
tracts faults detected at run time while requiring little assistance
from the user, in addition to having good scalability at a limited
accuracy cost [38], [39]. These faults may be false positive, but
never false negative, which defines formal static analysis based
on abstract interpretation as conservative. Its application to soft-
ware verification in the aerospace field shows that the perfor-
mance of static analysis tools has significantly improved [40].
The cited works [38]–[40] indicate the viability and efficiency
of using formal static analysis based on abstract interpretation
in a software V&V process for an aerospace application.
Note that there have been considerable advances in au-

tomated approaches to assertion checking (as an alternative
to deductive verification techniques), building on one of the
following techniques to attain a manageable state space to be
explored:
• bounded verification techniques (a limited exploration of
the state space): this is in general always helpful for bug
finding and may in many cases be sound and complete
because a substantial amount of critical code relies on
bounded iteration only.

• existentially abstract models: models of the system that
group many different concrete states into a single abstract
one in a way that preserves safety (reachability) violations
at the cost of introducing spurious safety-violating exe-
cutions. The abstract model is typically constructed iter-
atively by starting with a very abstract approximation that
is progressively refined based on the spurious counterex-
amples found (a process known as counterexample-guided
abstraction refinement [41]).

Examples of tools based on these techniques include CBMC
[42], the flagship bounded model checker for C programs, and
abstraction tools such as SLAM [43], the CEGAR-based MS
Windows device driver verifier, and TASS [44], a suite that uses
symbolic execution and model checking techniques to verify
safety properties.
The present paper explores the application of abstract in-

terpretation and deductive verification, employing Frama-C's
value analysis and Jessie plug-ins, to verify embedded
aerospace control software. In the software verification process,
the activity of applying formal verification is a difficult task,
and one reason for this is the difficulty in learning and applying
the tools that implement such techniques. Due to the very lim-
ited availability of detailed examples of how to use Frama-C,
we elaborated a set of activities organized in simple flowcharts.
In this way, we expect to facilitate the Frama-C usage and its
integration in the software development process.

IV. EXPERIMENTS

We will begin this section by introducing the case study, and
we will then present the experiments and obtained results for
both the abstract interpretation and deductive verification activ-
ities of our approach.

A. Case Study
The selected case study is the on-board software in the

Brazilian Satellite Launch Vehicle (VLS-V03) developed at
the Institute of Aeronautics and Space (IAE), an organization

subordinated to the Department of Science and Aerospace
Technology (DCTA) of the Brazilian Air Force (FAB). VLS
is a controlled vehicle with four stages capable of launching
satellites weighing 100 to 350 kg to altitudes of up to 1000 km.
Three prototypes have been developed: VLS-V01, VLS-V02,
and VLS-V03. The first launch occurred in 1997 with a failure
in the first stage igniter; the second launch occurred in 1999
with a failure in the second stage booster; and in 2003, there
was an accident in the preparation of the third prototype due to
a failure in a mechanical safety device in the first stage [45].
The embedded software is critical real-time software that is

responsible for navigation and guidance of the vehicle, control
over the actuators, management of the events sequence, trans-
mission of telemetry data, and vehicle pre-launch activities [46].
For simplification, our case study is restricted to the flight con-
trol of the vehicle first stage, with the execution of navigation,
attitude control, and event sequence algorithms.
This case study was selected because of its high criticality

and complexity. Its characteristics allow Frama-C's value anal-
ysis and Jessie plug-ins to be used. Frama-C's value analysis
plug-in is applicable to embedded codes due to their characteris-
tics such as the absence of recursion and dynamic memory allo-
cation and no calls to external libraries (except the RTOS) [15].
Frama-C's Jessie plug-in is appropriate for applications written
in the C programming language because this language has safety
vulnerabilities, such as buffer overflow. Moreover, this plug-in
is appropriate for algorithms with many numerical calculations
that should be checked carefully because they are more prone
to errors because they utilize floating-point arithmetic. The an-
alyzed source code consisted of sixteen functions from the case
study. In addition to these function, another thirteen functions
were added to the context definition such that the verification by
abstract interpretation could be performed.

B. Abstract Interpretation
The final results of this verification are presented according

to each scenario. We generated nine graphs for Scenario 1 and
twenty-three graphs for Scenario 2. However, because classified
data were used, only graphs related to the position and inertial
linear velocity of the vehicle in orbit are presented.
1) Results From Scenario 1: We compared the Frama-C

output to the hybrid simulation output obtained by the control
system team. The hybrid simulation is a hardware-in-loop
simulation that simulates the complete system, that is, the
on-board computer with the control laws, the vehicle dynamics,
the actuator dynamics, and the sensor dynamics, to assess the
performance of a satellite launcher control system [47].
Table II shows the intervals computed by Frama-C's value

analysis plug-in, as well as the minimum and maximum values
of two navigation algorithm variables extracted from the hybrid
simulation profile.
The graphs for Scenario 1 show the variation domain for

the output variables of the navigation and attitude control al-
gorithms. To determine whether the computed variables were
valid, we plotted the data from the hybrid simulation in the same
graph. Figs. 5 and 6 show the maximum and minimum values
of the intervals, at each time instant for the vehicle position data
on the X axis and the inertial linear velocity data on the Z axis,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

E SILVA et al.: FORMAL VERIFICATION WITH FRAMA-C: A CASE STUDY IN THE SPACE SOFTWARE DOMAIN 7

TABLE II
MAXIMUM AND MINIMUM INTERVALS GENERATED BY THE VALUE ANALYSIS

Fig. 5. Graph of X position in Scenario 1.

Fig. 6. Graph of linear velocity on Z axis in Scenario 1.

as computed by Frama-C's value analysis plug-in. We compared
these data to the profile of the same variables from the hybrid
simulation. The use of non-determinism in the analysis implied
that the range between the curves of minimum and maximum
data produced by Frama-C increased over time. A discussion
about this result is presented in Section V-A1.
2) Results From Scenario 2: Frama-C's value analysis

plug-in produced variable profiles that were very similar to the
hybrid simulation, and in most cases, the curves were so similar
that they are visually coincident. Figs. 7 and 8 show the position

data on the X axis, and Figs. 9 and 10 show the inertial linear
velocity data on the Z axis at each instant of time, as computed
by Frama-C's value analysis plug-in. We compared these data
to the results of the same variables from the hybrid simulation.
The behavior of Frama-C as an interpreter produced results
that were coincident with those produced by the simulation. A
discussion of these results is presented in Section V-A2.
3) Final Results: The anomalies detected by the verification

are related to two software products—documentation and im-
plementation—and can be observed in Table III.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

Fig. 7. Graph of X position in Scenario 2.

Fig. 8. Graph of X position in Scenario 2 with zoom.

4) Performance and Size: We optimized the analysis exe-
cution through the -no-result option applied in some functions
to avoid logging unnecessary variables such that the size
of the generated output file would not become too large.
Table IV shows the output file size and processing time ob-
tained using the Unix time command.

C. Deductive Verification

1) Proof Obligations: The final result from the verification
is presented in Table V, which shows the number of proven and
unproven proof obligations. The unproven VCs presented are
related to the following:
• bitwise operations that are not supported by the plug-in;

• floating-point arithmetic that are not mostly proven by
ATPs;

• postcondition and precondition for call.
In program correctness, some types of VCs cannot be shown

to be valid for ATPs, which is a consequence of using first-order
logic. In this case, the solution is to use interactive provers with
manually written proofs.
2) Annotations: The number of annotations included in the

source code of the case study is categorized in accordance with
Table VI. The number of annotations provided an estimation of
the computational effort required to perform the verification.
As an example, not meant to instruct the reader on the use

of Frama-C or Jessie, Fig. 11 shows the function1 source code
with annotations. This function is responsible for reading the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

E SILVA et al.: FORMAL VERIFICATION WITH FRAMA-C: A CASE STUDY IN THE SPACE SOFTWARE DOMAIN 9

Fig. 9. Graph of linear velocity on Z axis in Scenario 2.

Fig. 10. Graph of linear velocity on Z axis in Scenario 2 with zoom.

flight-events table, searching for the time of their occurrence.
To insert the annotations in the code, we first ran the Metrics
plug-in. This plug-in did not indicate any occurrences of func-
tion calls; thus, in this case, inserting contracts in called func-
tions was not required. In addition, the plug-in indicated the ex-
istence of one loop that had to be addressed with annotations.
Memory safety was the first check to be performed. It was ex-
ecuted without annotations, with the relevant pragmas as dis-
cussed in Section II.B2, and it generated one pointer dereference
VC that was proven by inserting an invariant loop annotation
(line 9 in Fig. 11). We addressed the loop inserting annotations
to identify variables modified in the loop (line 12 in Fig. 11) and
to identify properties already ensured by the loop (lines 10–11

in Fig. 11). The second check, integer safety, computed arith-
metic overflow VCs that were successfully proven. The third
check, termination, generated a loop termination VC that was
proven by inserting a loop variant decrease annotation (line 13
in Fig. 11). The fourth check, floating-point safety, did not pro-
duce any VCs. Finally, after these checks, the Inout plug-in was
executed, and its result showed the assigned variables. We used
this result and the information obtained from the software doc-
umentation to insert the final annotations (lines 1–3 in Fig. 11)
and to execute the functional verification. Fig. 12 shows the
graphic interface of the Why Platform. The screenshot shows
the installed ATPs (on the left top side), the VCs (on the center),
the source code translated into the intermediate language (on the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

TABLE III
ANOMALIES DETECTED FROM ABSTRACT INTERPRETATION VERIFICATION

TABLE IV
PROCESSING TIME AND OUTPUT FILE SIZE

TABLE V
PROOF OBLIGATIONS

right top side), and the goals and hypotheses (on the right bottom
side). The status column indicates that all the goals were proven
through the tick icons.
We provide another example to illustrate the occurrence

of unproven VCs. Fig. 13 shows the function11 source code
with annotations. This function acts on the analog I/O of the

TABLE VI
ANNOTATIONS TO THE APPLICATION

Programmed Input/Output (PIO) boards. First, it was necessary
to change the static variable Pio Data to a global variable
[49]. Next, we ran the Metrics plug-in, which did not indicate
the existence of any loops or pointer dereferences. However,
the plug-in identified the existence of an undefined function
that corresponds to an RTOS function that writes a byte to an
I/O address [50]. In this case, it was necessary to provide the
function definition and its contract, as shown in Fig. 14. The
memory safety check was executed with the relevant pragmas
following Section II.B2 and the sysOutByte function contract,
and it generated two unproven pointer dereference VCs and
four unproven precondition for call VCs. After analyzing the
VCs, we identified that the former are related to the array index
passed as a parameter to the function that should be in a valid
range. To prove these VCs, we inserted annotations (line 9 in
Fig. 13). The latter are related to the sysOutByte() function
that is called with a char in the second parameter, whereas an
unsigned char was expected. This is probably an anomaly in
the source code implementation and was reported to the de-
velopment team. Next, an integer safety check was performed
and generated seven unproven arithmetic overflow VCs. We
inserted annotations (lines 10–12 in Fig. 13) to guarantee valid
value ranges to the bitwise operations. However, we verified



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

E SILVA et al.: FORMAL VERIFICATION WITH FRAMA-C: A CASE STUDY IN THE SPACE SOFTWARE DOMAIN 11

Fig. 11. ACSL annotations written to function1.

Fig. 12. Screenshot of function1 in the Why Interactive Proof Session tool.

that the ATPs did not prove the VCs. Researching this issue,
we determined that this is probably related to a problem that
has been reported regarding the bitwise operation [51]. The
termination and floating-point safety checks did not generate
any VCs. Finally, in the functional checks, the Inout plug-in
showed the assigned variables. We wrote the final annotations
based on this result and the software documentation (lines
13–14 in Fig. 13). Fig. 15 shows this example in the graphic
interface of the Why platform.

3) Final Results: The anomalies detected by the verification
are related to two software products—documentation and im-
plementation—and can be observed in Table VII.

V. DISCUSSION

A. Abstract Interpretation

1) Scenario 1: The execution of the verification did not emit
any alarms. Based on the analysis of the results, we did not iden-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON RELIABILITY

Fig. 13. ACSL annotations written to function11.

TABLE VII
ANOMALIES DETECTED FROM DEDUCTIVE VERIFICATION

Fig. 14. ACSL annotations written to the sysOutByte() function.

tify defects such as buffer overflows in the application source
code.
The analysis provided valid domains for all variables, i.e.,

Frama-C computed variation domains that satisfy the (minimum
and) maximum value allowed by the variable type. Table II and
the graphs presented in Figs. 5 and 6 show some selected vari-
ables and their analysis results. Fig. 16 shows the bar graph of
the coordinated position in navigation trihedral on the Y axis.
We selected this type of graph to more clearly illustrate that the
intervals of the variable computed by Frama-C contain the sim-
ulation values, i.e., there is no value of the Py variable from the

simulation that is below the minimum limit or above the max-
imum limit of Frama-C.
Because simulation data are used as a reference to prove the

algorithms correctness of the on-board software, we use these
data as benchmarks for the Frama-C output. If the Frama-C
bounds do not contain the simulation results, then the correct-
ness of the source code of the case study could not be ensured.
In this case, the source code and Frama-C outputs would have
to be analyzed and possibly more experiments performed.
In summary, the analyzed results from Frama-C's value

analysis plug-in indicate that the algorithms are correctly im-
plemented without problems such as division by zero, invalid
pointer access, buffer overflows, and other run-time errors.
2) Scenario 2: Analysis of the results verified that the ex-

ecution of the analysis occurred as expected, compared with a
simulation of a real application execution.
As a result of the Scenario 2 analysis, three aspects are

discussed: the comparison of data from the hybrid simulation



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

E SILVA et al.: FORMAL VERIFICATION WITH FRAMA-C: A CASE STUDY IN THE SPACE SOFTWARE DOMAIN 13

Fig. 15. Screenshot of function11 in the Why Interactive Proof Session tool.

versus data produced by Frama-C, the data accuracy, and
discrepant curves.
We used the hybrid simulation curves to determine whether

the curves obtained by Frama-Cs value analysis plug-in were
correct. The hybrid simulation curves are generated from the
data that the on-board software sends to the telemetry system.
The on-board software generates data at a 64 Hz sampling

rate. However, part of these data are sent to the telemetry
system at 32 Hz due to the system requirements. In addition,
the sent data are also truncated and less precise because of
the formatting process applied to the data due to the charac-
teristics of the data bus used. Thus, to be able to more ac-
curately compare Frama-C and the hybrid simulation curves,
we included the function that formats the data to be sent to the
telemetry system into the source code under Frama-C analysis.
Additionally, sampling data reduction at a frequency of 32 Hz
was required. Figs. 7, 8, 9, and 10 in Section IV-B2 show
that Frama-C and the hybrid simulation curves are similar, as
expected.
Because Frama-C does not have transmission frequency

or data formatting restrictions, it was possible to conduct the
analysis with Frama-C independently of these restrictions.
Fig. 17 shows the linear velocity at a 64 Hz sampling rate
compared with equivalent data from the simulation at a 32
Hz sampling rate. Consequently, Frama-C generates data that
contain more information, accuracy, and similarity with the
real flight data, which assists in analyzing algorithms in devel-
opment and/or in the interpreting the post-flight data.
Exclusively in the graphs of the acting of two motors of

the vehicle (not shown here because it is classified data), there
was a significant difference between the curves of the hybrid

simulation and Frama-C. To determine the cause of this dis-
crepancy, the analysis context was checked. After extensive
inspection, we did not detect any inconsistencies. Therefore,
we performed a new experiment using Scenario 2 in which the
application source code was compiled with the gcc compiler
and executed with the same input data used in Scenario 2. The
generated graph showed that the curve of the compiled code is
equal to the one produced by the tool, which means that there
may have been some loss of information when sending data in
the hybrid simulation. Additionally, rounding errors cause dif-
ferences that should be considered because the hybrid simula-
tion and Frama-C analysis were performed on different hard-
ware and with input data that probably also contained small
differences.
3) Source Code: The results of the analysis detected thirty

unnecessary and/or duplicate library inclusions. Considering
that space critical software systems are embedded applications,
a good programming practice is to keep the source code as
lean as possible. Consequently, keeping the code with unnec-
essary includes, despite not improving the safety assurance,
may create difficulties in understanding it, as well as in the
documentation and maintenance of the code. The code analysis
identified an error related to a global variable that is passed
unnecessarily as a parameter to the function. In this case, it is
necessary to analyze the variable use and decide between the
following options: deleting this function parameter or keeping
the variable as a function parameter and define it locally.
During the analysis, we identified lines of code without any
effect on the results of the application. In this case, removal
of the dead code is recommended. Moreover, we identified an
incorrect comment that must be revised.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON RELIABILITY

Fig. 16. Bar graph of the position on the Y axis in Scenario 1.

4) Documentation: Indirectly, the code analysis identified
discrepancies in the software documentation. In this case, the
recommendation is to review the documentation.
5) Performance: Frama-C's value analysis plug-in as a con-

text-sensitive analyzer proved to be suitable for the case study
analysis because it was possible to obtain sufficiently accurate
results in a short amount of time. Few code annotations were
required to support Frama-C's value analysis plug-in to obtain
this accuracy; most of these annotations are assertions that were
easily discarded.
6) Limitations: In Scenario 1, we encountered difficulties in

the analysis of function8f and function8c. The particular com-
bination of value ranges of some variables and certain calcula-
tions performed by the underlying algorithms make it extremely
difficult to write appropriate annotations that would not be too
convoluted to deal with the algorithm logic implemented by this
part of the source code. This difficulty does not derive from a
tool limitation or an algorithmic error but rather from the in-
herent difficulty of annotating very complicated code, and it will
inevitably occur to some degree in the verification of realistic
software.

B. Deductive Verification
1) Source Code: The establishment of a contract via annota-

tions to a RTOS function, invoked by function11, detected the
passage of arguments incompatible with the function declara-
tion. Previously, a manual source code inspection also found this
error [48]. In this case, correction of the argument type passed
to the RTOS function is recommended.
The precondition insertion for a variable detected that func-

tion10 passes a parameter in the function11 call, which caused
an overflow in this variable. In this case, the developer should be
consulted to determine whether there is a reason for this value
to be passed.
In function2, the initiation of a floating-point variable re-

quires an implicit typecast. Although there is no implicated
consequence for safety assurance, depending on the compiler,
an implicit typecast can generate extra code. In this case, it is
recommended to initialize variables according to its type to

avoid an implicit typecast. Additionally, in the same function,
the writing of the precondition identified one redundant if
conditional statement. Removal of the conditional statement is
recommended.
During the analysis, we identified an incorrect comment

in function8e. In this case, revising the code comment is
recommended.
2) Documentation: The Design Data Dictionary and Soft-

ware Design Document should be corrected.
3) Performance: In the use of Frama-C's Jessie plug-in, the

main activity is the insertion of ACSL annotations in the source
code. Despite the amount of annotations for each function being
quite significant during implementation of the approach, the use
of contracts permits the verification of source code individually
in a scalable way.
4) Limitations: Particularly, the case study contains a large

number of floating-point computations. Most unproven VCs,
approximately 80%, are related to floating-point overflows. One
justification is that the floating-point provers are not designed to
handle this type of checking automatically. In this case, one so-
lution would be to use a proof assistant, where it is necessary to
write the proof manually in an interactive manner. Despite the
success in floating-point proofs using a proof assistant [52], in
our application context, its usage is not viable at present because
it would require significant changes in our work. Nevertheless,
we intend to use interactive theorem provers in our future works.
In addition, the large number of global variables makes writing
the precondition and postcondition more difficult. Regardless,
the proposed approach can automatically benefit from any ad-
vances and developments made in automatic proof involving
floating-point arithmetic.
5) Annotations: Defining annotations to the source code is

a difficult task because they must ensure the representation of
requirements. Knowledge related to the application domain, the
implementation, and annotation language is needed. The Jessie
plug-in produces a semantic model of a program through the
use of annotations that can be used both in the software docu-
mentation and in test case generation. While the insertion of ad-
equate annotations is a valuable source for software documen-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

E SILVA et al.: FORMAL VERIFICATION WITH FRAMA-C: A CASE STUDY IN THE SPACE SOFTWARE DOMAIN 15

Fig. 17. Comparison graph of velocity in the Y-axis in Scenario 2.

Fig. 18. Impact analysis grouped by area.

tation, we have found that in the present state of development
of the tools, in particular of the Jessie plug-in, some annotations
have to be inserted that have to do only with technicalities of the
plug-in and do not contribute in any useful way to improve the
documentation. In addition, the meaning of such annotations is
sometimes close to trivial, leaving the user with the feeling that
their insertion should not be necessary.

C. Metrics
Themetrics derived from the analysis results, which represent

the anomalies found in the software, were grouped into two cat-
egories: documentation and implementation. Fig. 18 shows the
results in this categorization. The bar graph depicts the two im-
pact areas of verification and the number of anomalies detected
[53]. We did not detect any errors in the source code with an im-
pact on software safety. This is an expected result considering
that the case study is a product of legacy software.

VI. CONCLUSION
Software quality assurance is essential in the spatial critical

systems domain. The challenge is how to successfully achieve
this guarantee through software quality attributes such as pro-
gram correctness because this type of software is generally more
complex due to real-time and interface constraints. The typical

approach for checking program correctness is to employ the tra-
ditional validation activities of testing and simulation. These
activities are often not appropriate for finding subtle bugs in
the software and cannot generally verify all possible execution
scenarios.
We presented an approach, based on abstract interpretation

and deductive verification, for formal software verification as
an activity to be inserted in a software verification process to
complement the validation activities. The use of formal soft-
ware verification can detect, for example, safety vulnerabili-
ties, which are extremely difficult to test. The executed analysis
of the case study detected, in the software documentation and
source code, some errors related to comments and descriptions
of variable input data and components, which could remain un-
noticed through other types of inspection. Although these errors
do not have a direct impact on the current result of the applica-
tion, they can lead to serious future failures. For instance, in
a maintenance process, developers could implement some in-
correct modifications in the source code following the incorrect
documentation.
In summary, the approach may directly contribute to a V&V

process and confirms its viability and efficiency when applied
to aerospace control software. The execution of a V&V process
in critical embedded software systems is mandatory. Any V&V
process that is not rigorous, systematic, and methodical may re-
sult in incorrect software that can lead to hazardous and/or cata-
strophic events. Because the proposed approach consists of a set
of activities organized in a systematic manner, it can be applied
as a tool to help avoid these events, thereby increasing the soft-
ware reliability. Additionally, the approach requires a deep soft-
ware understanding both for its execution and for evaluating re-
sults, which may help in performing maintenance activities and
the software engineering process of new or outsourced software
systems of the same type.
Future works include further exploring the use of interactive

theorem provers and behavioral specification to assist the testing
activity. Furthermore, formal software verification by abstract
interpretation could be exploited as a tool for software simula-
tion. Additionally, future work may investigate the use of au-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON RELIABILITY

tomated alternative techniques for formal software verification,
such as software model checking.

ACKNOWLEDGMENT

The authors would like to thank the Brazilian Space Agency,
Institute of Aeronautics and Space, Technological Institute of
Aeronautics, HASLab/INESC TEC & University of Minho,
MSc. Martha A. D. Abdala, and all the reviewers for their
invaluable work on how to improve the paper.

REFERENCES
[1] C. Ebert and C. Jones, “Embedded software: facts, figures, and future,”

IEEE Comput., vol. 42, no. 4, pp. 42–52, Apr. 2009.
[2] N. G. Leveson, “Role of software in spacecraft accidents,” J. Space-

craft and Rockets, vol. 41, no. 4, pp. 564–575, 2004.
[3] J.-L. Lions, Ariane 5—Flight 501 Failure, European Space Agency,

Paris, France, Tech. Rep., Jul. 1996.
[4] A. G. Stephenson, D. R. Mulville, F. H. Bauer, G. A. Dukeman, P.

Norvig, L. S. LaPiana, P. J. Rutledge, D. Folta, and R. Sackheim, Mars
Climate Orbiter Mishap Investigation Board—Phase I Report, NASA,
Tech. Rep., Nov. 1999 [Online]. Available: ftp://ftp.hq.nasa.gov/pub/
pao/reports/1999/MCO_report.pdf

[5] A. Albee, S. Battel, R. Brace, G. Burdick, P. Burr, J. Casani, D.
Dipprey, J. Lavell, C. Leisinf, D. MacPherson, W. Menard, R. Rose,
R. Sackheim, Al Schallenmuller, and C. Whetsel, Report on the Loss
of the Mars Polar Lander and Deep Space 2 Missions—JPL Special
Review Board, JPL Jet Propulsion Laboratory, Tech. Rep., Mar.
2000 [Online]. Available: http://spaceflight.nasa.gov/spacenews/re-
leases/2000/mpl/mpl_report_1.pdf

[6] M. Trella, E. L. Herring, H. R. Freeman, W. Kilpatrick, A. Reth, M.
Greenfield, J. Credland, R. Laine, D. Machi, and A. Smith, SOHOMis-
sion Interruption Joint NASA/ESA—Investigation Board—Final Re-
port, NASA-ESA, Tech. Rep., Aug. 1998 [Online]. Available: http://so-
howww.estec.esa.nl/whatsnew/SOHO_final_report.html

[7] G. C. Buttazzo, Hard Real-Time Computing Systems Predictable
Scheduling Algorithms and Application, 3rd ed. New York, NY,
USA: Springer, 2011.

[8] Space Engineering—Software, European Cooperation for Space Stan-
dardization Std. ECSS-ST-40C, Mar. 2009.

[9] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate, “Testing or
formal verification: DO-178C alternatives and industrial experience,”
IEEE Softw., vol. 30, no. 3, pp. 50–57, May 2013.

[10] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
model checking using SAT procedures instead of BDDs,” in Proc. 36th
Annu. ACM/IEEE Design Automation Conf. (ser. DAC'99), New York,
NY, USA, 1999, pp. 317–320 [Online]. Available: http://doi.acm.org/
10.1145/309847.309942

[11] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proc. 4th ACM SIGACT-SIGPLAN Symp. Principles of
Programming Languages (ser. POPL'77), New York, NY, USA, 1977,
pp. 238–252.

[12] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969.

[13] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B.
Yakobowski, “Frama-c: A software analysis perspective,” Formal
Aspects Comput. vol. 27, no. 3, pp. 573–609, 2015 [Online]. Available:
http://dx.doi.org/10.1007/s00165-014-0326-7

[14] L. Correnson, P. Cuoq, F. Kirchner, V. Prevosto, A. Puccetti,
J. Signoles, and B. Yakobowski, Frama-C User Manual Release
Neon-20140301, CEA List, Saclay, France, 2014 [Online]. Available:
http://frama-c.com/download/user-manual-Neon-20140301.pdf

[15] P. Cuoq, B. Yakobowski, and V. Prevosto, Frama-C's Value Anal-
ysis Plug-in Neon-20140301, CEA List, Saclay, France, 2015
[Online]. Available: http://frama-c.com/download/value-anal-
ysis-Neon-20140301.pdf

[16] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival, “Static analysis and verification of aerospace software by ab-
stract interpretation,” Proc. AIAA Infotech@Aerospace (I@A 2010), p.
38, Apr. 2010, no. AIAA-2010-3385. American Institute of Aeronau-
tics and Astronautics (AIAA) [Online]. Available: http://www.di.ens.
fr/~mine/publi/bertrane-al-aiaa10.pdf

[17] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich, “Why3: Shep-
herd your herd of provers,” in Proc. Boogie 2011: 1st Int. Workshop
Intermediate Verification Languages, 2011, pp. 53–64.

[18] P. Baudin, P. Cuoq, J.-C. Filliatre, C. Marche, B. Monate, Y. Moy,
and V. Prevosto, ACSL: ANSI/ISO C Specification Language
Neon-20140301, CEA LIST and INRIA, FR, release 1.8, 2014
[Online]. Available: http://frama-c.com/download/acsl-implementa-
tion-Neon-20140301.pdf

[19] Alt-Ergo., The Alt-Ergo SMT Solver Homepage, 2015 [Online]. Avail-
able: http://alt-ergo.lri.fr/

[20] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: A theorem prover
for program checking,” J. ACM vol. 52, no. 3, pp. 365–473, May 2005
[Online]. Available: http://doi.acm.org/10.1145/1066100.1066102

[21] C. Barrett and C. Tinelli, “Cvc3,” in Proc. 19th Int. Conf. Com-
puter Aided Verification (ser. CAV'07), Berlin, Heidelberg, Ger-
many: Springer-Verlag, 2007, pp. 298–302 [Online]. Available:
http://dl.acm.org/citation.cfm?id=1770351.1770397

[22] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proc.
Theory and Practice of Software, 14th Int. Conf. Tools and Algorithms
for the Construction and Analysis of Systems (TACAS'08/ETAPS'08),
Berlin, Heidelberg, Germany: Springer-Verlag, 2008, pp. 337–340
[Online]. Available: http://dl.acm.org/citation.cfm?id=1792734.
1792766

[23] Gappa, Gappa (génération automatique de preuves de pro-
priétés arithmétiques) homepage, 2015 [Online]. Available:
http://gappa.gforge.inria.fr/

[24] P. Cuoq, B.Monate, A. Pacalet, V. Prevosto, J. Regehr, B. Yakobowski,
and X. Yang, “Testing static analyzers with randomly generated pro-
grams,” in Proc. 4th Int. Conf. NASA Formal Methods (ser. NFM'12),
Berlin, Heidelberg, Germany: Springer-Verlag, 2012, pp. 120–125.

[25] Frama-C news and ideas homepage, 2015 [Online]. Available: http://
blog.frama-c.com/index.php?pages/Csmith-testing

[26] C. Marche and Y. Moy, “The Jessie plugin for deductive verification in
Frama-C,” ser. Blue Book, No. 4, INRIA, Toccata, France, Mar. 2014
[Online]. Available: http://krakatoa.lri.fr/jessie.pdf

[27] R. Bonichon and B. Yakobowski, “Frama-C's Metrics Plug-in
20140301 (Neon),” ser. Blue Book, No. 4, CEA LIST. Saclay,
France, Jun. 2013 [Online]. Available: http://frama-c.com/down-
load/metrics-manual-Neon-20140301.pdf

[28] D. Angeletti, E. Giunchiglia, M. Narizzano, A. Puddu, and S. Sabina,
“Using bounded model checking for coverage analysis of safety-crit-
ical software in an industrial setting,” J. Automat. Reason. vol. 45, no.
4, pp. 397–414, 2010 [Online]. Available: http://dx.doi.org/10.1007/
s10817-010-9172-3

[29] E. Rodriguez, M. Dwyer, J. Hatcliff, and Robby, , G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, Eds., “A
flexible framework for the estimation of coverage metrics in
explicit state software model checking,” in Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices, ser.
Lecture Notes in Computer Science. Berlin, Heidelberg, Ger-
many: Springer, 2005, vol. 3362, pp. 210–228 [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30569-9_11

[30] D. Beyer, A. Chlipala, T. Henzinger, R. Jhala, and R. Majumdar, “Gen-
erating tests from counterexamples,” in Proc. 26th Int. Conf. Software
Engineering (ICSE), May 2004, pp. 326–335.

[31] V. Wiels, R. Delmas, D. Doose, P.-L. Garoche, J. Cazin, and G.
Durrieu, “Formal verification of critical aerospace software,” J.
AerospaceLab, no. 4, pp. 1–8, May 2012.

[32] V. Prevosto, J. Burghardt, J. Gerlach, K. Hartig, H. Pohl, and K.
Voellinger, “Formal specification and automated verification of
railway software with frama-C,” in Proc. 11th IEEE Int. Conf. Indus-
trial Informatics (INDIN), Jul. 2013, pp. 710–715.

[33] S. Duprat, P. Gaufillet, V. M. Lamiel, and F. Passarello, “Formal ver-
ification of SAM state machine implementation,” in Proc. Embedded
Real Time Software and Systems (ser. ERTS'10), May 2010.

[34] D. Pariente and E. Ledinot, “Formal verification of industrial C code
using frama-C: A case study,” in Proc. 1st Int. Conf. Formal Verifica-
tion of Object-Oriented Software (ser. FoVeOOS'10), Jun. 2010.

[35] S. Boldo and T. M. T. Nguyen, “Hardware-independent proofs of
numerical programs,” in Proc. 2nd NASA Formal Methods Symp.,
2010.

[36] C. Hoare, “Viewpoint: Retrospective: An axiomatic basis for computer
programming,” Commun. ACM vol. 52, no. 10, pp. 30–32, Oct. 2009
[Online]. Available: http://doi.acm.org/10.1145/1562764.1562779

[37] J. Barnes, High Integrity Software: The SPARK Approach to Safety and
Security. Boston, MA, USA: Addison-Wesley Longman, 2003.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

E SILVA et al.: FORMAL VERIFICATION WITH FRAMA-C: A CASE STUDY IN THE SPACE SOFTWARE DOMAIN 17

[38] V. D'silva, D. Kroening, and G. Weissenbacher, “A survey of au-
tomated techniques for formal software verification,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 7, pp.
1165–1178, 2008.

[39] A. Puccetti, “Static analysis of the XEN kernel using frama-C,” J. Uni-
versal Comput. Sci., vol. 16, no. 4, pp. 543–553, Feb. 2010.

[40] O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, E.
Goubault, D. Lesens, L. Mauborgne, A. Miné, S. Putot, X. Rival, and
M. Turin, “Space software validation using abstract interpretation,” in
Proc. Int. Space System Engineering Conf., Data Systems in Aerospace
(DASIA 2009), Istanbul, Turkey: ESA,May 2009, vol. SP-669, pp. 1–7.

[41] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM
vol. 50, no. 5, pp. 752–794, Sep. 2003 [Online]. Available: http://doi.
acm.org/10.1145/876638.876643

[42] E. Clarke, D. Kroening, and F. Lerda, , K. Jensen and A. Podelski,
Eds., “A tool for checking ANSI-C programs,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, ser. Lecture Notes
in Computer Science. Berlin, Heidelberg, Germany: Springer, 2004,
vol. 2988, pp. 168–176 [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-24730-2_15

[43] T. Ball and S. Rajamani, , G. Berry, H. Comon, and A. Finkel,
Eds., “The SLAM toolkit,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science. Berlin, Heidelberg, Ger-
many: Springer, 2001, vol. 2102, pp. 260–264 [Online]. Available:
http://dx.doi.org/10.1007/3-540-44585-4_25

[44] S. F. Siegel and T. K. Zirkel, “TASS: The toolkit for accurate scientific
software,” Math. Comput. Sci., vol. 5, no. 4, pp. 395–426, 2011.

[45] Instituto de aeronáutica e espaço—projeto VLS-1 homepage, 2015
[Online]. Available: http://www.iae.cta.br/site/page/view/en.vls1.html

[46] W. D. Castro, “Estrutura do sistema de controle do VLS,” Controle e
Instrumentação, vol. 7, no. 72, pp. 71–77, 2002.

[47] D. S. Carrijo, A. P. Oliva, and W. D. Castro, “Hardware-in-loop simu-
lation development,” Int. J. Model. Simul., vol. 22, no. 3, pp. 167–175,
2002.

[48] M. A. Santos, P. Takahashi, and C. H. N. Lahoz, “A process of code
inspection for space software,” in Proc. Int. Astronautical Congr., Dae-
jeon, Korea, 2009.

[49] Jessie—static variable, 2007 [Online]. Available: http://lists.gforge.
inria.fr/pipermail/frama-c-discuss/2013-February/003519.html

[50] Tornado 2.0 Online Manuals—BSP Reference, 1999, ser. Blue Book,
No. 4.

[51] 2015, Possible bug in bitwise operators and jessie [Online]. Avail-
able: http://lists.gforge.inria.fr/pipermail/frama-c-discuss/2010-Feb-
ruary/001794.html

[52] S. Boldo and C. Marche, “Formal verification of numerical programs:
From C annotated programs to mechanical proofs,” Mathematics in
Computer Science, vol. 5, no. 4, pp. 377–393, 2011 [Online]. Available:
http://dx.doi.org/10.1007/s11786-011-0099-9

[53] IEEE Standard Classification for Software Anomalies, IEEE Std. 1044,
IEEE Computer Society Std., 2009.

Rovedy Aparecida Busquim e Silva received the doctoral degree in elec-
tronics and computing engineering at the Technological Institute of Aeronautics
in 2013.
She is a system analyst employed by the Institute of Aeronautics and Space,

an organization subordinated to the Department of Science and Aerospace Tech-
nology of the Brazilian Air Force, Sao Jose dos Campos, Brazil. Her current
research is in real-time systems development and software system development
process.

Nanci Naomi Arai received the Master's degree in applied computing at the
National Institute for Space Research in 2001.
She is a research assistant at the Institute of Aeronautics and Space, an organ-

ization subordinated to the Department of Science and Aerospace Technology
of the Brazilian Air Force, Sao Jose dos Campos, Brazil. Her main research in-
terests are software engineering and real-time systems development.

Luciana Akemi Burgareli received the doctoral degree in electrical engi-
neering with an emphasis in digital systems at the Polytechnic School of the
University of Sao Paulo in 2009.
She is a system analyst at the Institute of Aeronautics and Space, an organ-

ization subordinated to the Department of Science and Aerospace Technology
of the Brazilian Air Force, Sao Jose dos Campos, Brazil. Her main research in-
terests are software engineering and real-time systems development.

Jose Maria Parente de Oliveira received the Master's and doctoral degrees
in electronics and computer engineering at the Technological Institute of
Aeronautics.
He is an Associate Professor at the Technological Institute of Aeronautics. He

is a Chief of the Division of Computer Science and Coordinator of the Graduate
Program in electrical and computer engineering from Technological Institute of
Aeronautics.

Jorge Sousa Pinto received the doctoral degree from L’Ecole Polytechnique,
France, in 2001.
He is an Associate Professor at the Department of Informatics of the Univer-

sity of Minho, Portugal, and a senior researcher at HASLab/INESC TEC.


