
Efficient State-based CRDTs by Delta-Mutation

Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero

HASLab/INESC TEC and Universidade do Minho, Braga, Portugal
{psa,shokerali,cbm}@di.uminho.pt ?

Abstract. CRDTs are distributed data types that make eventual con-
sistency of a distributed object possible and non ad-hoc. Specifically,
state-based CRDTs ensure convergence through disseminating the en-
tire state, that may be large, and merging it to other replicas; whereas
operation-based CRDTs disseminate operations (i.e., small states) as-
suming an exactly-once reliable dissemination layer. We introduce Delta
State Conflict-Free Replicated Datatypes (δ-CRDT) that can achieve the
best of both worlds: small messages with an incremental nature, dis-
seminated over unreliable communication channels. This is achieved by
defining δ-mutators to return a delta-state, typically with a much smaller
size than the full state, that is joined to both: local and remote states.
We introduce the δ-CRDT framework, and we explain it through estab-
lishing a correspondence to current state-based CRDTs. In addition, we
present an anti-entropy algorithm that ensures causal consistency, and
two δ-CRDT specifications of well-known replicated datatypes.
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1 Introduction

Eventual consistency (EC) is a relaxed consistency model that is often adopted
by large-scale distributed systems [11,24,13] where availability must be main-
tained, despite outages and partitioning, whereas delayed consistency is accept-
able. A typical approach in EC systems is to allow replicas of a distributed
object to temporarily diverge, provided that they can eventually be reconciled
into a common state. To avoid application-specific reconciliation methods, costly
and error-prone, Conflict-Free Replicated Data Types (CRDTs) [22,23] were in-
troduced, allowing the design of self-contained distributed data types that are
always available and eventually converge when all operations are reflected at all
replicas. Though CRDTs are being deployed in practice [11], more work is still
required to improve their design and performance.

CRDTs support two complementary designs: operation-based (or op-based)
and state-based. In op-based designs [17,23], the execution of an operation is
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done in two phases: prepare and effect. The former is performed only on the
local replica and looks at the operation and current state to produce a message
that aims to represent the operation, which is then shipped to all replicas. Once
received, the representation of the operation is applied remotely using effect.
On the other hand, in a state-based design [4,23] an operation is only executed
on the local replica state. A replica periodically propagates its local changes to
other replicas through shipping its entire state. A received state is incorporated
with the local state via a merge function (designed as a least upper bound over
a join-semilattice [4,23]) that deterministically reconciles both states.

Op-based CRDTs have more advantages as they can allow for simpler im-
plementations, concise replica state, and smaller messages; however, they are
subject to some limitations: First, they assume a message dissemination layer
that guarantees reliable exactly-once causal broadcast (required to ensure idem-
potence); these guarantees are hard to maintain since large logs must be retained
to prevent duplication even if TCP is used [15]. Second, membership manage-
ment is a hard task in op-based systems especially once the number of nodes
gets larger or due to churn problems, since all nodes must be coordinated by the
middleware. Third, the op-based approach requires operations to be executed
individually (even when batched) on all nodes.

The alternative is to use state-based systems which are deprived from these
limitations. However, a major drawback in current state-based CRDTs is the
communication overhead of shipping the entire state, which can get very large in
size. For instance, the state size of a counter CRDT (a vector of integer counters,
one per replica) increases with the number of replicas; whereas in a grow-only
Set, the state size depends on the set size, that grows as more operations are
invoked. This communication overhead limits the use of state-based CRDTs to
data-types with small state size (e.g., counters are reasonable while sets are not).
Recently, there has been a demand for CRDTs with large state sizes (e.g., in
RIAK DT Maps [6] that can compose multiple CRDTs).

In this paper, we rethink the way state-based CRDTs should be designed,
having in mind the problematic shipping of the entire state. Our aim is to ship a
representation of the effect of recent update operations on the state, rather than
the whole state, while preserving the idempotent nature of join. This ensures
convergence over unreliable communication (on the contrary to op-based). To
achieve this, we introduce Delta State-based CRDTs (δ-CRDT): a state is a join-
semilattice that results from the join of multiple fine-grained states, i.e., deltas,
generated by what we call δ-mutators which are new versions of the datatype
mutators that return the effect of these mutators on the state. Thus, deltas can be
temporarily retained in a buffer to be shipped individually (or joined in groups)
instead of shipping the entire object. The local changes are then incorporated
at other replicas by joining the shipped deltas with their own states.

The use of “deltas” (i.e., incremental states) may look intuitive in state dis-
semination; however, this is not the case for state-based CRDTs. The reason is
that once a node receives an entire state, merging it locally is simple since there
is no need to care about causality, as both states are self-contained (including



meta-data). The challenge in δ-CRDT is that individual deltas are now “state
fragments” and must be causally merged to maintain the correct semantics. This
raises the following questions: is merging deltas semantically equivalent to merg-
ing entire states in CRDTs? If not, what are the sufficient conditions to make this
true in general? And under what constraints causal consistency is maintained?
This paper answers these questions and presents corresponding solutions.

We address the challenge of designing a new δ-CRDT that conserves the
correctness properties and semantics of an existing CRDT by establishing a
relation between the novel δ-mutators with the original CRDT mutators. We
then show how to ensure causal consistency using deltas through introducing
the concept of delta-interval and the causal delta-merging condition. Based on
these, we then present an anti-entropy algorithm for δ-CRDT, where sending
and then joining delta-intervals into another replica state produces the same
effect as if the entire state had been shipped and joined.

As the area of CRDTs is relatively new, we illustrate our approach by ex-
plaining a simple counter δ-CRDT specification; then we introduce a challeng-
ing non-trivial specification for a widely used datatype: Optimized Add-Wins
Observed-Remove Sets [5]; and finally we present a novel design for an Opti-
mized Multi-Value Register with meta-data reduction. In addition, we make a
basic δ-CRDT C++ library available online [2] for various CRDTs: GSet, 2PSet,
GCounter, PNCounter, AWORSet, RWORSet, MVRegister, LWWSet, etc. Our
experience shows that a δ-CRDT version can be devised for most CRDTs, how-
ever, this requires some design effort that varies with the complexity of different
CRDTs. This is referred to the ad-hoc way CRDTs are designed in general (which
is also required for δ-CRDTs). To the best of our knowledge, no model has been
introduced so far to make designing CRDTs generic rather than type-specific.

2 System Model

Consider a distributed system with nodes containing local memory, with no
shared memory between them. Any node can send messages to any other node.
The network is asynchronous; there is no global clock, no bound on the time
a message takes to arrive, and no bounds are set on relative processing speeds.
The network is unreliable: messages can be lost, duplicated or reordered (but
are not corrupted). Some messages will, however, eventually get through: if a
node sends infinitely many messages to another node, infinitely many of these
will be delivered. In particular, this means that there can be arbitrarily long
partitions, but these will eventually heal. Nodes have access to durable storage;
they can crash but will eventually recover with the content of the durable storage
just before crash the occurred. Durable state is written atomically at each state
transition. Each node has access to its globally unique identifier in a set I.



3 A Background of State-based CRDTs

Conflict-Free Replicated Data Types [22,23] (CRDTs) are distributed datatypes
that allow different replicas of a distributed CRDT instance to diverge and
ensures that, eventually, all replicas converge to the same state. State-based
CRDTs achieve this through propagating updates of the local state by dissem-
inating the entire state across replicas. The received states are then merged to
remote states, leading to convergence (i.e., consistent states on all replicas).

A state-based CRDT consists of a triple (S,M,Q), where S is a join-semi-
lattice [12], Q is a set of query functions (which return some result without
modifying the state), and M is a set of mutators that perform updates; a mutator
m ∈ M takes a state X ∈ S as input and returns a new state X ′ = m(X). A
join-semilattice is a set with a partial order v and a binary join operation t
that returns the least upper bound (LUB) of two elements in S; a join is designed
to be commutative, associative, and idempotent. Mutators are defined in such a
way to be inflations, i.e., for any mutator m and state X, the following holds:

X v m(X)

In this way, for each replica there is a monotonic sequence of states, defined under
the lattice partial order, where each subsequent state subsumes the previous state
when joined elsewhere.

Both query and mutator operations are always available since they are per-
formed using the local state without requiring inter-replica communication; how-
ever, as mutators are concurrently applied at distinct replicas, replica states will
likely diverge. Eventual convergence is then obtained using an anti-entropy pro-
tocol that periodically ships the entire local state to other replicas. Each replica
merges the received state with its local state using the join operation in S.
Given the mathematical properties of join, if mutators stop being issued, all
replicas eventually converge to the same state. i.e. the least upper-bound of all
states involved. State-based CRDTs are interesting as they demand little guar-
antees from the dissemination layer, working under message loss, duplication,
reordering, and temporary network partitioning, without impacting availability
and eventual convergence.

Σ = I ↪→ N

σ0
i = {}

inci(m) = m{i 7→ m(i) + 1}

valuei(m) =
∑
i∈I

m(i)

m tm′ = {(i,max(m(i),m′(i))) | i ∈ I}

Fig. 1: State-based Counter CRDT;
replica i.

Example. Fig. 1 represents a
state-based increment-only counter.
The CRDT state Σ is a map from
replica identifiers to positive integers.
Initially, σ0

i is an empty map (as-
suming that unmapped keys implic-
itly map to zero, and only non zero
mappings are stored). A single muta-
tor, i.e., inc, is defined that increments
the value of the local replica i (return-
ing the updated map). The query op-
eration value returns the counter value



by adding the integers in the map entries. The join of two states is the point-wise
maximum of the maps.

Weaknesses. The main weakness of state-based CRDTs is the cost of dis-
semination of updates, as the full state is sent. In this simple example of counters,
even though increments only update the value corresponding to the local replica
i, the whole map will always be sent in messages though the other map values
remained intact (since no messages have been received and merged).

It would be interesting to only ship the recent modification incurred on
the state. This is, however, not possible with the current model of state-based
CRDTs as mutators always return a full state. Approaches which simply ship
operations (e.g., an “increment n” message), like in operation-based CRDTs,
require reliable communication (e.g., because increment is not idempotent). In
contrast, our approach allows producing and encoding recent mutations in an in-
cremental way, while keeping the advantages of the state-based approach, namely
the idempotent, associative, and commutative properties of join.

4 Delta-state CRDTs

We introduce Delta-State Conflict-Free Replicated Data Types, or δ-CRDT for
short, as a new kind of state-based CRDTs, in which delta-mutators are defined
to return a delta-state: a value in the same join-semilattice which represents the
updates induced by the mutator on the current state.

Definition 1 (Delta-mutator). A delta-mutator mδ is a function, correspond-
ing to an update operation, which takes a state X in a join-semilattice S as
parameter and returns a delta-mutation mδ(X), also in S.

Definition 2 (Delta-group). A delta-group is inductively defined as either a
delta-mutation or a join of several delta-groups.

Definition 3 (δ-CRDT). A δ-CRDT consists of a triple (S,Mδ, Q), where
S is a join-semilattice, M δ is a set of delta-mutators, and Q a set of query
functions, where the state transition at each replica is given by either joining the
current state X ∈ S with a delta-mutation:

X ′ = X tmδ(X),

or joining the current state with some received delta-group D:

X ′ = X tD.

In a δ-CRDT, the effect of applying a mutation, represented by a delta-
mutation δ = mδ(X), is decoupled from the resulting state X ′ = X t δ, which
allows shipping this δ rather than the entire resulting state X ′. All state transi-
tions in a δ-CRDT, even upon applying mutations locally, are the result of some
join with the current state. Unlike standard CRDT mutators, delta-mutators do



not need to be inflations in order to inflate a state; this is however ensured by
joining their output, i.e., deltas, into the current state.

In principle, a delta could be shipped immediately to remote replicas once ap-
plied locally. For efficiency reasons, multiple deltas returned by applying several
delta-mutators can be joined locally into a delta-group and retained in a buffer.
The delta-group can then be shipped to remote replicas to be joined with their
local states. Received delta-groups can optionally be joined into their buffered
delta-group, allowing transitive propagation of deltas. A full state can be seen
as a special (extreme) case of a delta-group.

If the causal order of operations is not important and the intended aim is
merely eventual convergence of states, then delta-groups can be shipped using
an unreliable dissemination layer that may drop, reorder, or duplicate messages.
Delta-groups can always be re-transmitted and re-joined, possibly out of order,
or can simply be subsumed by a less frequent sending of the full state, e.g. for
performance reasons or when doing state transfers to new members. Due to space
limits, we only address causal consistency in this paper, while information about
state convergence can be found in the associated technical report [1].

4.1 Delta-state decomposition of standard CRDTs

A δ-CRDT (S,Mδ, Q) is a delta-state decomposition of a state-based CRDT
(S,M,Q), if for every mutator m ∈M , we have a corresponding mutator mδ ∈
Mδ such that, for every state X ∈ S:

m(X) = X tmδ(X)

This equation states that applying a delta-mutator and joining into the cur-
rent state should produce the same state transition as applying the corresponding
mutator of the standard CRDT.

Given an existing state-based CRDT (which is always a trivial decomposition
of itself, i.e., m(X) = X tm(X), as mutators are inflations), it will be useful
to find a non-trivial decomposition such that delta-states returned by delta-
mutators in Mδ are smaller than the resulting state:

size(mδ(X))� size(m(X))

4.2 Example: δ-CRDT Counter
Σ = I ↪→ N

σ0
i = {}

incδi (m) = {i 7→ m(i) + 1}

valuei(m) =
∑
i∈I

m(i)

m tm′ = {(i,max(m(i),m′(i))) | i ∈ I}

Fig. 2: A δ-CRDT counter; replica i.

Fig. 2 depicts a δ-CRDT specification
of a counter datatype that is a delta-
state decomposition of the state-based
counter in Fig. 1. The state, join and
value query operation remain as be-
fore. Only the mutator incδ is newly
defined, which increments the map en-
try corresponding to the local replica



and only returns that entry, instead of the full map as inc in the state-based
CRDT counter does. This maintains the original semantics of the counter while
allowing the smaller deltas returned by the delta-mutator to be sent, instead
of the full map. As before, the received payload (whether one or more deltas)
might not include entries for all keys in I, which are assumed to have zero val-
ues. The decomposition is easy to understand in this example since the equation
inci(X) = X t incδi (X) holds as m{i 7→ m(i)+1} = mt{i 7→ m(i)+1}. In other
words, the single value for key i in the delta, corresponding to the local replica
identifier, will overwrite the corresponding one in m since the former maps to a
higher value (i.e., using max). Here it can be noticed that: (1) a delta is just a
state, that can be joined possibly several times without requiring exactly-once
delivery, and without being a representation of the “increment” operation (as in
operation-based CRDTs), which is itself non-idempotent; (2) joining deltas into
a delta-group and disseminating delta-groups at a lower rate than the operation
rate reduces data communication overhead, since multiple increments from a
given source can be collapsed into a single state counter.

5 Causal Consistency

Traditional state-based CRDTs converge using joins of the full state, which im-
plicitly ensures per-object causal consistency [8]: each state of some replica of an
object reflects the causal past of operations on the object (either applied locally,
or applied at other replicas and transitively joined).

Therefore, it is desirable to have δ-CRDTs offer the same causal-consistency
guarantees that standard state-based CRDTs offer. This raises the question
about how can delta propagation and merging of δ-CRDT be constrained (and
expressed in an anti-entropy algorithm) in such a manner to give the same re-
sults as if a standard state-based CRDT was used. Towards this objective, it is
useful to define a particular kind of delta-group, which we call a delta-interval :

Definition 4 (Delta-interval). Given a replica i progressing along the states
X0
i , X

1
i , . . ., by joining delta dki (either local delta-mutation or received delta-

group) into Xk
i to obtain Xk+1

i , a delta-interval ∆a,b
i is a delta-group resulting

from joining deltas dai , . . . , d
b−1
i :

∆a,b
i =

⊔
{dki | a ≤ k < b}

The use of delta-intervals in anti-entropy algorithms will be a key ingredient
towards achieving causal consistency. We now define a restricted kind of anti-
entropy algorithm for δ-CRDTs.

Definition 5 (Delta-interval-based anti-entropy algorithm). A given anti-
entropy algorithm for δ-CRDTs is delta-interval-based, if all deltas sent to other
replicas are delta-intervals.

Moreover, to achieve causal consistency the next condition must satisfied:



Definition 6 (Causal delta-merging condition). A delta-interval based anti-
entropy algorithm is said to satisfy the causal delta-merging condition if the al-
gorithm only joins ∆a,b

j from replica j into state Xi of replica i that satisfy:

Xi w Xa
j .

This means that a delta-interval is only joined into states that at least reflect
(i.e., subsume) the state into which the first delta in the interval was previously
joined. The causal delta-merging condition is important since any delta-interval
based anti-entropy algorithm of a δ-CRDT that satisfies it, can be used to obtain
the same outcome of standard CRDTs; this is formally stated in Proposition 1.

Proposition 1. (CRDT and δ-CRDT correspondence) Let (S,M,Q) be a stan-
dard state-based CRDT and (S,Mδ, Q) a corresponding delta-state decomposi-
tion. Any δ-CRDT state reachable by an execution Eδ over (S,Mδ, Q), by a
delta-interval based anti-entropy algorithm Aδ satisfying the causal delta-merging
condition, is equal to a state resulting from an execution E over (S,M,Q), hav-
ing the corresponding data-type operations, by an anti-entropy algorithm A for
state-based CRDTs.

Proof. Please see the associated technical report [1].

Corollary 1. (δ-CRDT causal consistency) Any δ-CRDT in which states are
propagated and joined using a delta-interval-based anti-entropy algorithm satis-
fying the causal delta-merging condition ensures causal consistency.

Proof. From Proposition 1 and causal consistency of state-based CRDTs.

5.1 Anti-Entropy Algorithm for Causal Consistency

Algorithm 1 is a delta-interval based anti-entropy algorithm which enforces the
causal delta-merging condition. It can be used whenever the causal consistency
guarantees of standard state-based CRDTs are needed. For simplicity, it excludes
some optimizations that are important, but easy to derive, in practice. The
algorithm distinguishes neighbor nodes, and only sends them delta-intervals that
are joined at the receiving node, obeying the delta-merging condition.

Each node i keeps a contiguous sequence of deltas dli, . . . , d
u
i in a map D from

integers to deltas, with l = min(dom(D)) and u = max(dom(D)). The sequence
numbers of deltas are obtained from the counter ci that is incremented when
a delta (whether a delta-mutation or delta-interval received) is joined with the
current state. Each node i keeps an acknowledgments map A that stores, for
each neighbor j, the largest index b for all delta-intervals ∆a,b

i acknowledged by

j (after j receives ∆a,b
i from i and joins it into Xj).

Node i sends a delta-interval d = ∆a,b
i with a (delta, d, b) message; the re-

ceiving node j, after joining ∆a,b
i into its replica state, replies with an acknowl-

edgment message (ack, b); if an ack from j was successfully received by node i,



1 inputs:
2 ni ∈ P(I), set of neighbors
3 durable state:
4 Xi ∈ S, CRDT state; initially

Xi = ⊥
5 ci ∈ N, sequence number; initially

ci = 0

6 volatile state:
7 Di ∈ N ↪→ S, sequence of deltas;

initially Di = {}
8 Ai ∈ I ↪→ N, acknowledges map;

initially Ai = {}
9 on receivej,i(delta, d, n)

10 if d 6v Xi then
11 X ′

i = Xi t d
12 D′

i = Di{ci 7→ d}
13 c′i = ci + 1

14 sendi,j(ack, n)

15 on receivej,i(ack, n)
16 A′

i = Ai{j 7→ max(Ai(j), n)}

17 on operationi(m
δ)

18 d = mδ(Xi)
19 X ′

i = Xi t d
20 D′

i = Di{ci 7→ d}
21 c′i = ci + 1

22 periodically // ship delta-interval or
state

23 j = random(ni)
24 if Di = {} ∨ min(dom(Di)) > Ai(j)

then
25 d = Xi
26 else
27 d =

⊔
{Di(l) | Ai(j) ≤ l < ci}

28 if Ai(j) < ci then
29 sendi,j(delta, d, ci)

30 periodically // garbage collect deltas
31 l = min{n | ( , n) ∈ Ai}
32 D′

i = {(n, d) ∈ Di | n ≥ l}

Algorithm 1: Anti-entropy algorithm ensuring causal consistency of δ-CRDT.

it updates the entry of j in the acknowledgment map, using the max function.
This handles possible old duplicates and messages arriving out of order.

Like the δ-CRDT state, the counter ci is also kept in a durable storage. This
is essential to avoid conflicts after potential crash and recovery incidents. Other-
wise, there would be the danger of receiving some delayed ack, for a delta-interval
sent before crashing, causing the node to skip sending some deltas generated af-
ter recovery, thus violating the delta-merging condition.

The algorithm for node i periodically picks a random neighbor j. In principle,
i sends the join of all deltas starting from the latest delta acked by j and forward.
Exceptionally, i sends the entire state in two cases: (1) if the sequence of deltas
Di is empty, or (2) if j is expecting from i a delta that was already removed from
Di (e.g., after a crash and recovery, when both deltas and the ack map, being
volatile state, are lost); i tracks this in Ai(j). To garbage collect old deltas, the
algorithm periodically removes the deltas that have been acked by all neighbors.

Proposition 2. Algorithm 1 produces the same reachable states as a standard
algorithm over a CRDT for which the δ-CRDT is a decomposition.

Proof. Please see the associated technical report [1].

6 δ-CRDTs for Add-Wins OR-Sets

An Add-wins Observed-Remove Set (OR-set) is a well-known CRDT datatype
that offers the same sequential semantics of a sequential set and adopts a specific



Σ = P(I×N× E)× P(I×N)

σ
0
i = ({}, {})

addδi (e, (s, t)) = ({(i, n+ 1, e)}, {})
with n = max({k | (i, k, ) ∈ s})

rmvδi (e, (s, t)) = ({}, {(j, n) | (j, n, e) ∈ s})
elementsi((s, t)) = {e | (j, n, e) ∈ s ∧ (j, n) 6∈ t}

(s, t) t (s
′
, t

′
) = (s ∪ s′, t ∪ t′)

(a) With Tombstones

Σ = P(I×N× E)× P(I×N)

σ
0
i = ({}, {})

addδi (e, (s, c)) = ({(i, n+ 1, e)}, {(i, n+ 1)})
with n = max({k | (i, k) ∈ c})

rmvδi (e, (s, c)) = ({}, {(j, n) | (j, n, e) ∈ s})
elementsi((s, c)) = {e | (j, n, e) ∈ s}

(s, c) t (s
′
, c

′
) = ((s ∩ s′) ∪ {(i, n, e) ∈ s | (i, n) 6∈ c′}

∪{(i, n, e) ∈ s′ | (i, n) 6∈ c}, c ∪ c′)

(b) Without Tombstones (optimized)

Fig. 3: Add-wins observed-remove δ-CRDT set, replica i.

resolution semantics for operations that concurrently add and remove the same
element. Add-wins means that an add prevails over a concurrent remove. Remove
operations, however, only affect elements added by causally preceding adds. The
purpose of these δ-CRDT OR-set versions is to design δ-mutators that return
small deltas to be lightly disseminated, as discussed above, instead of shipping
the entire state as in classical CRDTs [22,23,5].

6.1 Add-wins OR-Set with tombstones

Fig. 3a depicts a simple, but inefficient, δ-CRDT implementation of a state-based
add-wins OR-Set. The state Σ consists of a set of tagged elements and a set of
tags, acting as tombstones. Globally unique tags of the form I × N are used
and ensured by pairing a replica identifier in I with a monotonically increasing
natural counter. Once an element e ∈ E is added to the set, the delta-mutator
addδ creates a globally unique tag by incrementing the highest tag present in
its local state and that was created by replica i itself (max returns 0 if no tag
is present). This tag is paired with value e and stored as a new unique triple in
s. Since an “add” wins any concurrent “remove”, removing an element e should
only be tombstoned if it was preceded by an add operation (i.e., the element is
in s), otherwise it has no effect. Consequently, the delta-mutator rmvδ retains in
the tombstone set all tags associated to element e, being removed from the local
state. This is essential to prevent a removed element to reappear once the local
state is merged with another replica state that still have that element (i.e., it
has not been removed yet remotely as replicas are loosely coupled). The function
elements returns only the elements that are added but not yet tombstoned. Join
t simply unions the respective sets that are, therefore, both grow-only.

6.2 Optimized Add-wins OR-Set

A more efficient design is presented in Fig. 3b allowing also the set of tagged
elements (i.e., tombstone set above) to shrink as elements are removed. This



design offers the same semantics and have a similar state structure to the former;
however, it has a different behavior. Now, elements returns all the elements in
the tagged set s, without consulting t as before. Added and removed items are
now tagged in the causal context set c. Although, the set c and t look similar
in structure, they have a different behavior (we call it c instead of t to remove
this confusion): a tombstone set t simply stores all removed elements tags, while
c retains only the causal information needed to add/remove an element. For
presentation simplicity, c in Fig. 3b simply retains all removed elements tags;
however, after compression, c will be very concise and look different from t; this
is explained in the next section.

Adding an element creates a unique tag by resorting to the causal context c
(instead of s). The tag is paired with the element and added to s (as before).
The difference is that the new tag is also added to the causal context set c.
The delta-mutator rmvδ is the same as before, adding all tags associated to the
element being removed to c. The desired semantics are maintained by the novel
join operation t. To join two states, their causal contexts c are simply unioned;
whereas, the new element set s only preserves: (1) the triples present in both
sets (therefore, not removed in either), and also (2) any triple present in one of
the sets and whose tag is not present in the causal context of the other state.

Causal Context Compression In practice, the causal context c can be effi-
ciently compressed without any loss of information. When using an anti-entropy
algorithm that provides causal consistency, e.g., Algorithm 1, then for each
replica state Xi = (si, ci) and replica id j ∈ I, we have a contiguous sequence:

1 ≤ n ≤ max({k | (j, k) ∈ ci})⇒ (j, n) ∈ ci.

Thus, the causal context can always be encoded as a compact version vector [21]
I ↪→ N that keeps the maximum sequence number for each replica. Even under
non-causal anti-entropy, compression is still possible by keeping a version vector
that encodes the offset of the contiguous sequence of tags from each replica,
together with a set for the non-contiguous tags. As anti-entropy proceeds, each
tag is eventually encoded in the vector, and thus the set remains typically small.
Compression is less likely for the causal context of delta-groups in transit or
buffered to be sent, but those contexts are only transient and smaller than those
in the actual replica states. Moreover, the same techniques that encode contigu-
ous sequences of tags can also be used for transient context compression [19].

7 Optimized Multi-value Register δ-CRDT

Multi-Value Registers (MVR) are popular constructions in which a read opera-
tion returns the set of values concurrently written, but not causally overwritten;
these values are then reduced to a single value by applications [13]. Until now,
these types have been implemented by assigning a version vector to each writ-
ten value [22,8]. In Figure 4, we show that the optimization that was developed



Σ = P(I×N× V )× P(I×N)

σ
0
i = ({}, {})

wrδi (v, (s, c)) = ({(i, n+ 1, v)}, {(i, n+ 1)} ∪ {(j,m) | (j,m, ) ∈ s}) with n = max({k | (i, k) ∈ c})
rdi((s, c)) = {v | (j, n, v) ∈ s}

(s, c) t (s
′
, c

′
) = ((s ∩ s′) ∪ {(i, n, v) ∈ s | (i, n) 6∈ c′} ∪ {(i, n, v) ∈ s′ | (i, n) 6∈ c}, c ∪ c′)

Fig. 4: Optimized δ-CRDT multi-value register, replica i.

for Sets, can also be used to compactly tag the values in a multi-value register.
On a write operation wr, it is enough to assign a new scalar tag, from I × N,
using a replica id i and counter to uniquely tag the written value v. To ensure
that values overwritten are deleted, the produced causal context c lists all tags
associated to those values. Since those values are absent from the payload set s
they will be deleted in replicas that still have them, applying join definition t
(that is in common with Figure 3b). The causal context compression techniques
defined earlier also apply here.

8 Message Complexity

Our delta-based framework, δ-CRDT, clearly introduces significant cost improve-
ments on messaging. Despite being a generic framework, δ-CRDT requires delta
mutators to be defined per datatype. This makes the bit-message complexity
datatype-based rather than generic. To give an intuition about this complexity,
we address the three datatypes introduced above: counter, OR-Set, and MVR.

Counters. In classical state-based CRDTs, the entire map of a counter is
shipped. As the map-size grows with the number of replicas, this leads a bit-
message complexity of Õ(|I|) 1. In the δ-CRDT case, only recently updated map

entries α are shipped yielding a bit-complexity Õ(α), where α� |I|.
OR-set. Shipping in classical OR-set CRDTs delivers the entire state which

yields a bit-message complexity of O(S), where S is the state-size. In δ-CRDT,
only deltas are shipped, which renders a bit-message complexity O(s) where s
represents the size of the recent updates occurred since the last shipping. Clearly,
s� S since the updates that occur on a state in a period of time are often much
less than the total number of items.

MVR. In classical MVR, the worst case state is composed of |I| concurrently
written values, each associated with a |I| sized version vector. This makes the

bit-message complexity Õ(|I|2). In the novel delta design in Figure 4, no version
vector is used, whereas the number of possible values remain the same (summing
up the values set s and meta-data in c), this reduces the bit-message complexity

to Õ(|I|) as well as the worst case state complexity.

1 Õ is a variant of big O ignoring logarithmic factors in the size of integers and ids.



9 Related Work

Eventually convergent data types. The design of replicated systems that are al-
ways available and eventually converge can be traced back to historical designs in
[25,16], among others. More recently, replicated data types that always eventu-
ally converge, both by reliably broadcasting operations (called operation-based)
or gossiping and merging states (called state-based), have been formalized as
CRDTs [17,4,22,23]. These are also closely related to BloomL [10] and Cloud
Types [7].

Deltas. A key feature of δ-CRDT is message size reduction (not improving local
state lower bounds [8]), by using small-sized deltas, while preserving the advan-
tages of classical state-based CRDTs. The general old idea of using differences
between things, called “deltas” in many contexts, can lead to many designs, de-
pending on how exactly a delta is defined. The state-based deltas introduced for
Computational CRDTs [20] require an extra delta-specific merge (in addition to
the standard join) which does not ensure idempotence. In [14], an improved syn-
chronization method for non-optimized OR-set CRDT [22] is presented, where
delta information is propagated; in that paper deltas are a collection of items
(related to update events between synchronizations), manipulated and merged
through a protocol, as opposed to normal states in the semilattice. No generic
framework is defined (that could encompass other data types) and the protocol
requires several communication steps to compute the information to exchange.

Operation-based CRDTs. These CRDTs [22,23,3] also support small message
sizes, and in particular, pure flavors [3] that restrict messages to the operation
name, and possible arguments. Though pure operation-based CRDTs allow for
compact states and are very fast at the source (since operations are broadcast
without consulting the local state), the model requires more systems guarantees
than δ-CRDT do, e.g., exactly-once reliable delivery and membership informa-
tion, and impose more complex integration of new replicas. The work in [9]
shows a different trade-off among state deltas and pure operations, by tagging
operations and creating a globally stable log of operations while allowing local
transient logs to preserve availability. While having other advantages, the cre-
ation of this global log requires more coordination than our gossip approach for
causally consistent delta dissemination, and can stall dissemination.

Encoding causal histories. State-based CRDT are always designed to be causally
consistent [4,23]. Optimized implementations of sets, maps, and multi-value reg-
isters can build on this assumption to keep the meta-data small [8]. In δ-CRDT,
however, deltas and delta-groups are normally not causally consistent, and thus
the design of join, the meta-data state, as well as the anti-entropy algorithm used
must ensure this. Without causal consistency, the causal context in δ-CRDT can
not always be summarized with version vectors, and consequently, techniques
that allow for gaps are often used. A well known mechanism that allows for



encoding of gaps is found in Concise Version Vectors [18]. Interval Version Vec-
tors [19], later on, introduced an encoding that optimizes sequences and allows
gaps, while preserving efficiency when gaps are absent.

10 Conclusion

We introduced the new concept of δ-CRDTs and devised delta-mutators over
state-based datatypes which can detach the changes that an operation induces
on the state. This brings a significant performance gain as it allows only shipping
small states, i.e., deltas, instead of the entire state. The significant property in
δ-CRDT is that it preserves the crucial properties (idempotence, associativity
and commutativity) of standard state-based CRDT. In the worst case, deltas can
be forgotten and the entire state can always be shipped, allowing scenarios such
as long duration partitions, which would be problematic for op-based CRDTs.

In addition, we have shown how δ-CRDT can achieve causal consistency;
and we presented an anti-entropy algorithm that allows replacing classical state-
based CRDTs by more efficient ones, while preserving their properties. As an
application for our approach, we designed two novel δ-CRDT specifications for
two well-known datatypes: an optimized observed-remove set [5] and an opti-
mized multi-value register [13].
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