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ABSTRACT

In this paper we address soliton-soliton interactions in a nonlinear cubic-quintic optic media, using for that
purpose numerical methods and high performance graphics processor unit (GPU) computing. We describe an
implementation of GPU-based computational simulations of the generalized Nonlinear Schrodinger Equation,
obtaining simulations more than 40 times faster relative to CPU-based simulations, especially in the multidi-
mensional case. We focus our attention in the study of soliton collisions and scattering phenomena that, o�ering
the possibility of steering light with light, open a path towards future optical devices.
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1. INTRODUCTION

Exploring the dynamics of interacting solitons is a problem with major interest in nonlinear optics. Optical spatial
solitons are robust and self-trapped light pulses that can propagate in nonlinear bulk media without changing
their shape. In the presence of other solitons,1�4 linear refraction index5 or optical lattices of nonlinearities,6,7

spatial solitons can display a wide range of behaviors, from wave-like and particle-like to liquid-like. These
facts make solitons natural candidates for the transmission of data in communication systems8 and in optical
processors, like ultra-fast logic gates.9 A material with competitive cubic-quintic nonlinearities can, support
spatial solitons with more than one transverse dimensions. However, contrary to what happens in a cubic
(Kerr) media which can be addressed using elegant analytical tools such Inverse Scattering Technique (IST),
in cubic-quintic media this is not the case since the physical system is described by a non integrable equation.
Because of this, it is preferable to use computational methods to study the dynamics of solitons in such systems.
However, exploring large scale and multidimensional systems poses several challenges as the running times of
the simulations are very large. It is then desirable to have new and more e�cient tools which can speed up the
computational simulations and make the research easier and more e�ective.

Parallel computing is currently one the most powerful tools to do computationally intensive calculations in
both scienti�c research and engineering, and is becoming a common place available to almost anyone. Thanks to
new programming frameworks like CUDA and OpenCL, it is now possible to use high performance heterogeneous
platforms inside home desktops with many central and graphics processing units (CPUs and GPUs) to do scienti�c
computation. Traditionally, graphical processing units are components specialized in image processing and are
very fast in doing large amounts of certain types of calculations. However, in recent years the computer industry
has put out new graphical processing platforms which contain hundreds and even thousands of cores packed
in a single graphical board, working in parallel. This increases tremendously the computing power available,
which can be used to address problems involving massive calculations if adequate control software is available.
CUDA has been developed by NVIDIA speci�cally for general purpose use of graphics processing units (GPGPU)
to do just this. The current version of CUDA includes several parallel numerical packages which simplify the
development of a new generation of scienti�c codes.

In this paper we present our e�orts in the design and implementation of a GPU based SSFM to solve the
multidimensional generalized nonlinear Schrodinger equation (NLSE) for a cubic-quintic media. We show that
this new methodology allows, not only to consider larger problems, but also, to solve them with an important



speedup. As a case study, we address the study the collision of two 2-dimensional spatial solitons. In section
2, we describe the physical model and the basic equations for spatial solitons described by the cubic and cubic-
quintic NLSE, presenting the analytical and approximate solutions for both case. In section 3, we describe the
development of computational methods based on the Split Step Fourier Method (SSFM) to study the NLSE in
nonlinear optical media. We also address the implementation of the code using either the CPU or the GPU,
analyzing the speedups obtained in the later. In section 4, we present the numerical results for a system of colliding
2-dimensional spatial solitons. With the study of the soliton scattering in terms of the impact parameter and
di�erence of global phase between the solitons, it is possible to identify di�erent regimes of scattering and distinct
soliton behavior, which includes not only wave-like but also particle-like and liquid-like behaviors. Finally, in
section 5 we present the conclusions of this work.

2. NLSE AND SOLITON SOLUTIONS

The starting point of analysis is the generalized NLSE

i
∂ψ

∂z
+
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2
∇2
⊥ψ + F (|ψ|2)ψ = 0, (1)

which describes the evolution of the dimensionless amplitude of a light �eld ψ in a nonlinear media with properties
given by the function F (|ψ|2). Here z is the longitudinal coordinate parallel to the propagation and ∇2

⊥ is the
Laplacian in the transverse directions.

Media with a cubic nonlinearity (Kerr) characterized by F
(
|ψ|2

)
= |ψ|2 are a special case since equation (1)

turns out to be integrable using the IST method, which allows to �nd soliton solutions of the form

ψ(z, x) = 2νjsech {2νj (x− x̄j)} exp {i2µj (x− x̄j) + iδj} , (2)

where the parameters νj , x̄j , µj , and δj refer to the amplitude, the position, the frequency and the phase of the
soliton.

Unfortunately, 2-d an 3-d spatial solitons are not stable in a Kerr media because (1) is usually non integrable.
Nevertheless, it is assumed that the solutions of equation (1) can be described by a general soliton solution

q(x, z) = A(z)g[B{x− x̄(z)}] exp(−ik(z){x− x̄(z)}+ iθ(z)), (3)

where A, B, g, k, θ,x̄(t) are the amplitude, the width, the shape, the frequency, the phase and the center
of the soliton, respectively. The existence and the dynamics of the soliton can be then be investigated using
variational methods in terms of the variation of these parameters for speci�c forms of F , corresponding to
di�erent nonlinearities. Media with cubic-quintic nonlinearities are known to support solitons in more than
one dimension and have been extensively studied because they are described by a simple nonlinear potential of

the form F
(
|ψ|2

)
= |ψ|2 − α |ψ|4 . In this case, it is possible to obtain approximate solutions in the form of

supergaussians pulses,10 de�ned by

ψ(r, z) = A exp
[
−B2(r − r̄)2m

]
exp (iδz) , (4)

where r is the vector with transverse coordinates and m a parameter related to pulse energy. For the soliton to
be stable, these parameters must be mutually related by the following conditions
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As the system is non integrable, studying the dynamics of the solitons is only possible using either perturbative
methods or numerical simulations. Here, we focus on the numerical simulations because they provide a more
direct way of studying the interactions of solitons in wider range of situations.

3. SSFM AND GPU IMPLEMENTATION

The numerical method used is the extensively used SSFM11 for beam propagation. We start writing the gener-
alized NLSE in the form

∂ψ

∂z
=
(
D̂ + N̂

)
ψ (8)

with D̂ = i
2∇

2
⊥ψ a linear operator relative to the dispersion and N̂ = iF (|ψ|2) relative to the nonlinearities of

the media. From integration of equation (8) the exact solution is given by

ψ (z + h,~r) = exp
[
h
(
D̂ + N̂

)]
ψ (z + h,~r) , (9)

where h is the step of discretization of variable z.

Assuming that for a small propagation distance h the linear and nonlinear parts of the dynamics can be
treated separately, a good approximation of the solution of equation (8) up to the second order of h and with
an error of order of h3 is

ψ (z + h,~r) ≈ exp

(
h

2
D̂

)
exp

(
hN̂
)

exp

(
h

2
D̂

)
ψ (z, ~r) . (10)

This means that computationally the solution ψ (z + h,~r) is calculated from ψ (z, ~r) by applying sequentially the

operators exp
(
hD̂/2

)
, exp

(
hN̂
)
and exp

(
hD̂/2

)
again.

The operator exp
(
hD̂/2

)
is a di�erential operator in the direct space but becomes algebraic in the Fourier

space, which allows it to be quite easy and computationally inexpensive to calculate. Therefore, the idea is to
evaluate the linear step in the Fourier space using

exp

(
h

2
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)
Ψ (z, ~r) = F−1T

{
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(
−ih

~k · ~k
2

)
FT {Ψ (z, ~r)}

}
, (11)

where FT denotes the Fourier-transform operation and ~k is the wave number. Unlike the linear operator,

the nonlinear operator exp
(
hN̂
)
must be calculated in the direct space where it is simple to calculate. This

implies that during each step of the calculations, it is necessary to Fourier transform Ψ (z, ~r), apply the operator

exp
(
hD̂/2

)
, reverse the Fourier transform on Ψ (z, ~r), apply the nonlinear operator exp

(
hN̂
)
, and so on and

so forth. Fortunately, the computational cost of all these Fourier transforms is small because we use the fast
Fourier transform algorithm, which is highly optimized.

Our computational code uses the equations (10) and (11) to solve numerically the NLSE. The code was
developed in the C++ programming environment and can use either the CPU or the GPU to do the calculations,
depending on the choice of the user. The structure of the code is the same for both cases and only di�ers in
the processor used. For the CPU, the Fourier transform is computed using the FFTW12 library and serial
computations. The GPU analog uses the CUFFT13 for the Fourier transform and THRUST library for all
other necessary operations, exploiting the power of parallel computations. The initial conditions, local or global



1d NLSE

Number of time steps N GPU (s) CPU (s) Speedup

250 000

29 3 21 7,0
210 4 45 11,3
211 5 100 20,0
212 9 180 20,0
213 12 375 31,3
2d NLSE

Number of time steps NxN GPU (s) CPU (s) Speedup

1 000

27 × 27 1 34 34,0
28 × 28 3 137 45,7
29 × 29 15 569 37,9

210 × 210 61 2 486 40,8
211 × 211 247 10 744 43,5

3d NLSE

Number of time steps NxNxN GPU (s) CPU (s) Speedup

1 000

26 × 26 × 24 6 266 44,3
26 × 26 × 25 13 532 40,9
26 × 26 × 26 25 1071 42,8
26 × 26 × 27 50 2188 43,8

Table 1. Speedup results for NLSE in a cubic-quintic media. This table contains the running time for di�erent simulations
executed in cthe CPU and the GPU and the corresponding speedup factors. All simulations were done with ∆x = 0.2
and h = 0.01 and using double precision.

nonlinearities, h integration step, ∆x spatial discretization and N total number of points are user-speci�ed for
each physical problem.

In our simulations we use a NVIDIA GeForce GTX 660TI GPU with 2GB RAM DDR5 and 915 CUDA cores
and an INTEL core i7-3770K CPU with 16GB of RAM. In Table 1 we see that GPU simulations are up to 40
times faster than the CPU-based simulations. The results show also that the most signi�cative speedups are
obtained for 2-d and 3-d simulations. The fact that the price of the GPU and CPU is almost the same and not
as expensive as a cluster of CPUs with same speedup results, shows that the GPU computation is a good option
for obtaining faster simulations of soliton dynamics, especially in multidimensional systems.

4. SCATTERING OF COLLIDING 2-DIMENSIONAL SPATIAL SOLITONS

In this section we are interested in the computational analysis of two 2-dimensional solitons frontal collisions in the
xy plane. The spatial solitons dynamics are described by the cubic-quintic NLSE with F (|ψ|2) = |ψ|2 − α |ψ|4.
Choosing α = 1 and solitons with parameter m = 1, the other parameters are set according to equations
(4)-(7) all the other necessary parameters. In this study we initialize the solitons with a phase di�erence
δ1 − δ2 = 0 or π and with opposing but equal velocities |k1|, |k2| = k, by multiplying the supergaussian shape
(4) by exp (−ik(z){x− x̄(z)}+ iθ(z)).

The global phase di�erence δ1 − δ2 determines the nature of the interaction between the two solitons and
ultimately their behavior, switching between particle, wave and liquid-like. As shown in,14 the phase di�erence
between solitons determines whether the interaction is attractive or repulsive. In the situations considered
here, the two solitons and their trajectories are completely symmetric (point re�ective symmetry relative to the
origin), therefore their phase di�erence and the character of their interaction remains constant throughout the
simulations. Another determinant parameter in the soliton-soliton scattering is the angular momentum, which
introduces an e�ective repulsion between the solitons, and is determined by the initial velocity k and impact
parameter b of the solitons. For large impact parameters and low velocities, the interaction is very weak and both
soliton almost are not de�ected from a straight trajectory, being almost impossible to classify their behavior.



Instead, for small impact parameters, the interaction is stronger and the wide variety of soliton behaviors can
be observed.

For δ1 − δ2 = π, the two solitons are set to be out-of-phase and their interaction is strongly repulsive, as
seen in �gures 1a)-1o). This is con�rmed in �gure 2a), which shows the dependence of the scattering angle θ
(measured as a de�ection of the original straight trajectory) on the impact parameter. The increase of collision
velocity further strengths the repulsive nature of the interaction but also forces the solitons to come closer to
each other. As a result, in this limit the scattering angle approaches the results predicted by the scattering model
for hard-spheres,15 revealing the particle-like behavior of solitons.

Figure 1. Typical numerical results for the evolution of two colliding solitons. Sequence 1a)-1e) shows a collision between
two out-of-phase solitons with k1 = 0.2 and b = 0, sequence 1f)-1j) displays the results for b = 4 and 1k)-1o) for b = 9.
Sequence 1p)-1t) displays the coalescence of two colliding in-phase solitons with b = 0 and k = 0.3. Sequence 1u)-1y)
shows the results for b = 5 and k = 0.3.

For δ1 − δ2 = 0, the two solitons are set to be in-phase and their interaction is attractive, as seen in �gures



1p) to 1y). However the anticipated particle-like dynamics does not hold for small impact parameter as the light
pulses tend to coalesce, what reveals a liquid-like behavior of solitons. In �gure 2 is seen that with the increase
of the impact parameter the system undergoes a phase transition to a particle-like dynamics. For large impact
parameters it is seen that the solitons almost do not interact, and thus the scattering angle is approximately
null. With the decreasing of the impact parameter we see the expected increase of θ. The peak in �gure 2b)
seems to be related with the formation of a metastable state with angular momentum, however further research
is needed to understand the physics underlying this process.

Figure 2. Computational results for the relation between the scattering angle and the impact parameter, θ(b). Figure
a) displays the results for colliding out-of-phase solitons for k = 0.05 (full line with markers), k = 0.2 (dashed line with
markers) and k = 0.3 (pointed line with markers). The full line without markers shows the hard-sphere limit for a sphere
with radius of 6. Figure b) shows the results for colliding in-phase solitons with k = 0.3. Shaded region is the zone of
coalescence, where solitons reveal liquid-like behavior.

5. CONCLUSIONS

With this work we describe the implementation of a GPU-based code for the numerical simulation of NLSE,
showing that CUDA enabled GPUs could reduce signi�cantly the computation time of the simulation of the
generalized NLSE, especially for multidimensional systems. Obtaining speedups of over 40, we present in this
work a powerful tool that could be used not only in the research on the nonlinear optics �eld, but also in other
physical systems described by nonlinear equations.

Taking advantaged from the signi�cative speedups we have used the developed code to explore the dynamics
of colliding 2-dimensional spatial solitons. We obtain two di�erent regimes for the in-phase and out-of-phase
solitons. While in the �rst case solitons reveal a particle-like behavior for a repulsive potential, the second one
reveals both particle and liquid-like dynamics for attractive interaction potential. This type of dynamical studies
may have potential applications in optical information processing and engineering.
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