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Abstract: Machine vision systems are widely used in assembly lines for providing sensing abilities
to robots to allow them to handle dynamic environments. This paper presents a comparison of 3D
sensors for evaluating which one is best suited for usage in a machine vision system for robotic
fastening operations within an automotive assembly line. The perception system is necessary for
taking into account the position uncertainty that arises from the vehicles being transported in an
aerial conveyor. Three sensors with different working principles were compared, namely laser trian-
gulation (SICK TriSpector1030), structured light with sequential stripe patterns (Photoneo PhoXi S)
and structured light with infrared speckle pattern (Asus Xtion Pro Live). The accuracy of the sensors
was measured by computing the root mean square error (RMSE) of the point cloud registrations
between their scans and two types of reference point clouds, namely, CAD files and 3D sensor scans.
Overall, the RMSE was lower when using sensor scans, with the SICK TriSpector1030 achieving
the best results (0.25 mm ± 0.03 mm), the Photoneo PhoXi S having the intermediate performance
(0.49 mm ± 0.14 mm) and the Asus Xtion Pro Live obtaining the higher RMSE (1.01 mm ± 0.11 mm).
Considering the use case requirements, the final machine vision system relied on the SICK TriSpec-
tor1030 sensor and was integrated with a collaborative robot, which was successfully deployed in an
vehicle assembly line, achieving 94% success in 53,400 screwing operations.

Keywords: 3D perception; 3D sensors comparison; assembly automation

1. Introduction

Smart manufacturing began when the vision of Industry 4.0 expanded the efficiency
and flexibility expectations of automation by emphasizing on process digitalization. Now,
over a decade later and witnessing the digital transformation in industries and our shared
challenges in society, a new paradigm shift is changing the expectations from the industries
to go beyond efficiency and accept their role as sustainable service providers for society.

The worldwide automotive industry is already progressing toward the Industry 5.0
transformation. They are, in fact, one of the leading sectors in terms of the adoption of
new technologies, seeking to combine human expertise with the capabilities of intelligent
machines to improve manufacturing processes and empower workers, increasing product
personalization, while retaining or even enhancing their quality. This desire for rapid
adoption stems from the automakers’ and suppliers’ needs to quickly respond to changes
in market demand, resulting in increasingly customized products with shorter lead times.

To achieve these goals, collaborative robotic solutions are one of the most important
technologies of Industry 4.0 and 5.0. They allow for the creation of innovative solutions
to automate manufacturing processes and provide flexibility to the production system.
Using machine vision, these robots can achieve new levels of autonomy by being able to
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understand shapes, calculate volumes, track objects and pack boxes with minimal wasted
space, while, at the same time, enabling dynamic interactions with their human partner [1].

The introduction of machine vision in robotic systems is usually motivated by its
potential to reduce costs by improving efficiency and productivity, reduce errors, enhance
production quality, fill the gaps caused by labor shortages, and gather production data.
Improvements to worker health and safety are also critical benefits of applying robotics
and machine vision to industrial operations. Robots with machine vision can take over
dull, dirty and dangerous industrial activities, as well as interpreting human actions and
interacting to help prevent accidents before they happen [2,3].

Depending on the industrial context, however, the use of machine vision systems is
not always trivial. Several factors may hinder their performance, such as the presence
of textureless surfaces, perspective distortion, adverse lighting conditions, photometric
variations, and moving objects, among many others [4]. Over the past years, the demand for
machine vision solutions that can overcome these problems has increased significantly. This
demand led to the increase of machine vision solutions comprised of three-dimensional (3D)
optical sensors [5] since they are less sensitive to ambient lighting conditions and dirt [6].

Over time, the quality of the data provided and the variety of 3D sensors available on
the market have increased as a result of the advances made in terms of sensing hardware,
with more compact electronic systems with greater processing capacity and also software,
with the emergence of more advanced image-processing algorithms. Moreover, advances
in the quality of the data generated by 3D sensors have had a significant impact on the
use of robotic systems in high-accuracy applications. As a result of these improvements,
3D sensors are being widely adopted to develop machine vision systems in many areas
of R&D and industrial automation, such as mobile robot localization, obstacle detection,
object recognition, pose estimation, security, human–machine interaction, and many others.
Depending on the system’s requirements, various types of 3D sensors can be used [7].

Given this context, this paper presents a comparison of 3D depth sensors to determine
which one is better suited for automating fastening tasks in an automotive assembly line.
More specifically, the automation of bolt-tightening operations [8–10] during the process of
fastening rear axle dampers to the undercarriage of vans will be analyzed.

This 3D sensor comparison adds to the state of the art the analysis of empirical data
retrieved from three sensors under challenging industrial conditions, namely, white painted
surfaces that have some degree of reflectivity. The comparison analyzed the root mean
square error (RMSE) and overlap percentage between the sensor data and reference point
clouds. Moreover, these metrics were analyzed for different subsampling scales using a
voxel grid algorithm.

The present study offers a comparative analysis of sensors that serves to complement
the metrics proposed in prior evaluations, thereby providing a more comprehensive un-
derstanding of their performance characteristics. Pinto et al. [11] compared a set of depth
cameras by computing the mean distance and standard deviation of the 3D points to planar
surfaces detected with a random sample consensus (RANSAC) algorithm. On the other
hand, Halmetschlager-Funek et al. [12] analyzed the precision, bias and lateral noise of
sensors on different lightning conditions when observing objects with different materials.
Heide et al. [13] evaluated stereo cameras, using as metrics the point cloud density, the
smoothness of the surface points captured from the walls, the consistency of the edges,
and the mean distance between the 3D points and the ground truth surfaces along with a
comparison of their surface normals. For simultaneous localization and mapping (SLAM)
use cases, Neto et al. [14] relied on the mean distance between the poses estimated by the
SLAM algorithm and the ground truth poses, which were known because the sensors were
mounted on a robotic arm for following a pre-programmed trajectory. For the evaluation
of light detection and ranging (LIDAR) sensors, Lambert et al. [15] computed the RMSE
between the 3D points and the ground truth surface along with the analysis of the residual
errors for assessing distance bias in the sensor measurements [16]; besides the Z-depth
precision analysis using RMSE, the authors also evaluated the angle-dependent reflectivity,
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edge precision, spatial resolution (number of measurements per cm2 at a given distance),
radius reconstruction accuracy and surface continuity.For visually displaying the differ-
ence between the sensor data and the surface scanning models (plane, sphere, cube, box,
cylinder and dodecahedron), Chen et al. [17] also relied on color maps to complement the
RMSE analysis.

Besides performing the comparison of the sensors’ performance, this paper also
provides the success rate of an automated bolt-tightening machine that relies on one of the
sensors under analysis. Unlike other approaches of bolt tightening that perform perception
of the bolt itself [18–21], the system deployed relied on the 3D perception of the structure
of the van in which the bolts were attached. This approach allowed for unambiguous
6 degrees of freedom (DoF) pose estimation, as the van’s structure has a surface with
unique geometry and a higher number of points compared to the bolts. Furthermore,
the proposed approach does not have the problem of ambiguity in the 6-DoF pose of the
bolts due to their symmetry axes.

In the assembly line where the automated tightening machine was deployed, a van is
transported by an aerial conveyor throughout different workstations, and when it arrives at
the workstation under analysis, the operator picks an axle damper from a bin, goes under-
neath the vehicle, and installs it in the van rear undercarriage, which has two attachment
points. Later on, the operator places the respective two bolts and gives them a few turns.
Next, using a pantograph, the operator guides two electric screwdrivers for fastening both
bolts at once. For each van, this process is performed for the left and right rear wheels.
This task is repetitive and non-ergonomic, which may cause musculoskeletal injuries to
the human operator. As such, the goal is to develop a collaborative robotic solution, where
the operator is responsible for placing the axle damper and the bolts, and then the robot
performs the fastening operations using two electric screwdrivers. For ensuring reliable
operation, the collaborative robotic system must be capable of locating the axle damper at-
tachment pose and fastening the two bolts using the two electric screwdrivers. Since the van
6-DoF pose at this specific workstation varies due to the mechanical tolerances of the aerial
conveyor and weight of the vehicle, the robot needs to perceive the pose of the axle damper
attachment structure in order to successfully perform the bolt-tightening operations.

The remaining of this paper is organized as follows. Section 2 presents some fun-
damental concepts regarding 3D sensing technology. Section 3 describes in detail the
comparison of the 3D sensors within the described use case, including the methodology
used for this comparison, the results obtained with each sensor and the respective discus-
sion. Section 4 describes the integration of the sensor on the collaborative robotic solution
and the assessment of its performance. Section 5 presents the conclusions of this study.

2. 3D Sensing Technologies

Three-dimensional sensors can be classified as active or passive according to their
imaging technology [22]. Passive sensors, such as stereo cameras, rely on the light reflected
from external sources for observing the environment, while active sensors rely on their own
source of radiation for probing the environment, making them more robust for scanning
textureless surfaces and dark environments. Examples of active sensing technologies
include but are not limited to laser triangulation, structured light and time of flight.

One of the most reliable and accurate optical sensing technology is laser triangu-
lation (point or line). The resulting point cloud 3D data are computed by interpreting
the deformation of the laser line when observed from the camera perspective. Coupled
with a known movement of the object on a conveyor or the sensor mounted on a track or
robotic arm, several 3D scan profiles can be merged together to form a 3D point cloud of
the surface to be analyzed. These sensors are usually small and have a high acquisition
rate (1 kHz). The most significant disadvantage of this technology is the requirement to
generate a known movement, either of the object or of the sensor itself. Despite this, 3D
laser triangulation is often chosen because it provides greater robustness not only in terms
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of variations in ambient light but also in terms of the materials and color of the objects of
interest, making it desirable in many industrial applications [23].

Structured light sensors consist of a light projector and one or more cameras [24].
The light source projects a set of known patterns into the environment, which are distorted
when they hit the surface of objects. Depending on the pattern used, one or more images
need to be captured. For example, a speckle pattern is static and needs only one image
capture for generating sparse depth information, which can be coupled with measurements
interpolation to increase the point cloud density. On the other hand, sequential stripe
patterns can achieve dense surface measurements with much higher point cloud density
but require several image captures with a static environment, one for each pattern with
decreasing stripe thickness. The 3D sensors based on structured light are one of the most
used in the industry for 3D perception and inspection tasks, given their high accuracy, high
density point cloud and robustness for scanning textureless surfaces and operating in a
wide range of light conditions.

Time-of-flight (ToF) cameras rely on infrared light pulses for probing the environment.
They estimate the distance to objects by measuring the time difference between the pulse
emission and the detection of the reflected signal [25]. The interest in these sensors has
been increasing mainly due to their applicability in autonomous vehicles. Typically, these
sensors have less accurate 3D data when compared to structured light sensors and generate
a lot more shadow/veiling points on the border of objects, but they have a much higher
data acquisition rate.

Stereo vision systems can perform 3D reconstruction of the scene by calculating the
correspondence between pixels of two different images taken by cameras in different
perspectives using triangulation. Since the accuracy of 3D measurements depends heavily
on identifying and correctly matching points between images from different cameras, some
stereo vision systems project a pattern into the environment to refine point matching. This
approach significantly improves the measurement accuracy in low-texture environments.
However, the consistency of the measurements is not as reliable as the previously mentioned
technologies. Moreover, passive stereo systems have higher measurements errors when
operating in low-light environments. These sensors are less used in industrial applications
because of these limitations [26].

3. Comparison of 3D Sensors
3.1. Selection of the 3D Sensors

Different types of sensors can be used depending on the requirements of the machine
vision system. The goal of the use case under analysis is to determine with high accuracy
(<3 mm) the 6-DoF pose of the axle damper attachment structure, which does not have
texture and is painted with partially reflective white color. Moreover, the sensor would be
operating without controlled light conditions and needs to be compact to be mounted on
the end effector of a robotic arm.

With this use case in mind, three sensors based on active depth sensing technologies
were chosen, namely, the SICK TriSpector1030 (laser line triangulation), the Photoneo PhoXi
S (visible stripe pattern structured light) and the Asus Xtion Pro Live (IR speckle pattern
structured light). They are presented in Figure 1, and their technical specifications are
presented in Table 1.

From these three sensors, only the 3D point cloud was evaluated. The 2D image
provided by the Photoneo and Asus was not considered since the goal is to estimate the
6-DoF pose of the target object. Moreover, the SICK does not provide a 2D image; it only
provides 3D data.

In relation to embedded processing, only the SICK has this feature, in which the sensor
is programmed using the SOPAS Engineering Tool software. The Photoneo and Asus need
an external PC to process the sensor data. In order to have a fair comparison between these
sensors, the embedded capabilities of the SICK sensor were not used, and the evaluation
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software was run in an external PC for processing the 3D data retrieved from each of the
three sensors.

Other sensors were considered, such as the Intel Realsense D435 (active stereo sensor),
but from our preliminary tests, it had slightly higher surface measurement error when
compared to the Asus Xtion Pro Live. From the ToF sensor technology field, we also
analyzed the Azure Kinect, but it had a lot of shadow/veiling points, which complicated
the 3D data segmentation stage of the axle damper (even though this issue could be
mitigated with the statistical outlier removal filter from the point cloud library (PCL) [27]).
From the passive stereo range of sensors, the Nerian Scarlet and the Carnegie Robotics
Multisense could be possible candidates, but since this passive sensing technology would
not perform well in the non-textured surface of the van, we opted not to include them in
the comparison.

In the end, we chose to keep the sensor comparison concise and limit the scope
to the two main candidates (SICK TriSpector1030 and Photoneo PhoXi S), which were
built for industrial use cases, while also including a lower cost sensor from the non-
industrial/consumer marker for having a entry level sensor in the comparison results.
In the future, we might consider the Ensenso N35 since it is an industrial rated sensor and
from its specifications it would perform between the Photoneo PhoXi S and the Asus Xtion
Pro Live.

Table 1. Technical specifications of the analyzed 3D depth sensors.

SICK
TriSpector1030

Photoneo
PhoXi S

Asus Xtion
Pro Live

Category Laser
triangulation

Sequential stripe
structured light

Infrared speckle
structured light

Depth camera
resolution 2500 points/scan 2064 × 1544 640 × 480

Depth camera
field of view 65º 40º H, 34º V 58º H, 45º V

Depth error <0.04 mm <0.05 mm <5 mm

Color/Grayscale
point cloud

Grayscale
reflectance Grayscale Color

Minimum
depth 141 mm 384 mm 800 mm

Maximum
depth 541 mm 520 mm 3500 mm

Frame rate 5000 3D profiles/s 4 Hz 30 Hz

Supported OS Linux/Windows Linux, Windows Linux, Windows

Connection Ethernet Ethernet USB 2.0

Dimensions 217 × 62 × 84 mm 296 × 77 × 68 mm 180 × 35 × 50 mm

Weight 1.3 kg 900 g 100 g

Approximated
price 5000 € 10,000 € 150 €

(a) SICK TriSpector1030 (b) Photoneo PhoXi S (c) Asus Xtion Pro Live

Figure 1. Selected 3D depth sensors.
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3.2. Methodology for Evaluating the 3D Sensors

To compare the performance of the three sensors, point clouds of the axle damper
attachment structure with and without the axle damper were acquired in a testing environ-
ment similar to the real assembly line, namely, with a real van and axle damper samples
that could be manually placed and removed (as shown in Figure 2).

(a) Assembly line workstation. (b) Testing workstation.

Figure 2. Workstations on the assembly line and the testing environment for fastening the two rear
axle dampers.

The structured light sensors were mounted on a tripod since they need to be static
during the scanning procedure. The same does not apply to the laser line triangulation
sensor, which was installed on the end effector of a robotic arm (Doosan H2017) to capture
the 3D profiles of the region of interest (ROI). Figure 3 shows the location of the sensors
with respect to the van undercarriage.

(a) SICK TriSpector1030. (b) Photoneo PhoXi S and Asus Xtion Pro Live.

Figure 3. Testing workstation with the 3D sensors placed for capturing measurements.
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For creating the sensor evaluation dataset, 12 scans were captured for both sides of the
van with each sensor. For performing the comparison, the RMSE metric presented in the
Equation (1) was used, which computes the mean distance between the sensor data points
(S) and their respective closest point in the reference point cloud (R):

RMSE =

√
1
n

n

∑
i=1
‖Si − ClosestPoint(R, Si)‖2 (1)

It is important to mention that in this testing workstation, the van was fixed to a rigid
structure and not to an aerial conveyor (that was present in the assembly line workstation).
Therefore, to simulate the aerial conveyor deviations on the van positioning, the sensors
poses were slightly changed manually before performing 3D scanning.

Two reference point clouds were used as the ground truth, one extracted from the
scans without the axle dampers and another from the CAD model of the van, Figure 4.
The CAD model was provided by the car manufacturing company, and a ROI was applied
to extract the required surface section.

(a) Left side. (b) Right side.

Figure 4. Point clouds of the ROI extracted from the van’s CAD file (without the axle damper) for
each side of the van.

To create the reference point cloud from the 3D sensors scans, the point cloud without
the axle dampers was filtered and segmented with the following steps:

1. Scan the van without the axle damper.
2. Crop the point cloud if necessary (only applicable for the Asus Xtion Pro Live sensor

due to its higher scan volume).
3. Segment the point cloud into clusters using the region growing segmentation algo-

rithm [28].
4. Extract the ROI where the axle damper will be placed (considering the acquired point

clouds, this corresponds to the biggest cluster).

The region growing segmentation algorithm starts by sorting the points by their
curvature and then selects as the first seed the point with the lowest curvature. Then, it
keeps expanding the current cluster seeds by adding neighboring points that have an angle
between the current seed normal and the neighboring point normal below a given threshold.
After no more points can be added to the current cluster, a new cluster is initialized with a
seed point that has the lowest curvature from the points that do not yet belong to a cluster.
The algorithm for growing and creating new clusters keeps repeating until all the points
are associated with a labeled cluster.

This segmentation algorithm was selected because the van support structure has
a locally smooth surface with transition zones to the axle damper surfaces with large
curvature differences. Moreover, the support structure has a surface area that is much
higher when compared with the axle damper, allowing the segmentation selector to pick
the cluster with the largest number of points.

After this procedure was executed for all the reference point clouds without the axle
damper, the point clouds acquired with the axle damper were filtered by following the same
steps as described above. Then, the registration of both point clouds was performed with
different voxel grids (1 and 5 mm). The accuracy of the point cloud registration using the
iterative closest point (ICP) algorithm [29] was measured by computing the RMSE, which
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was obtained by computing the Euclidean distance between corresponding points from
the scan and reference point clouds. The RMSE was calculated for each registration [30],
in which points with a corresponding reference point distance lower than a given threshold
were marked as inliers.

The ICP algorithm aligns the sensor data with the reference point cloud by iteratively
computing the 6-DoF matrix transformation that minimizes the RMSE of a given set of
correspondences. For each iteration, every point in the sensor data is matched with the
respective closest point in the reference point cloud. Points that have a correspondence
distance higher than a given threshold are discarded from the list of correspondences to
allow the algorithm to tolerate outliers. Then, the singular value decomposition (SVD)
method is used to compute the 6-DoF transformation that minimizes the RMSE of the
correspondences distances. The algorithm stops when the RMSE is below a given threshold
or when the computed matrix has converged and stabilized, having a difference in relation
to the previous iterations below specified translation and rotation thresholds. On the other
hand, to bound its computation time, the algorithm can have an upper limit to its number of
iterations and its maximum run time. At the end stage, the ICP algorithm returns the 6-DoF
matrix that aligns and transforms the 3D sensor data into the reference point cloud, which
corresponds to the sensor’s 6-DoF pose in the reference point cloud coordinate system.

The evaluation relied on the Dynamic Robot Localization perception pipeline (https:
//github.com/carlosmccosta/dynamic_robot_localization, accessed on 22 April 2023)
for performing the point cloud registrations and computing the RMSE. The perception
pipeline [31–33] uses filtering, segmentation and alignment algorithms from PCL and was
developed with the robot operating system (ROS) [34].

Figure 5 summarizes the steps associated with the generation of the reference point
clouds and the registration process.

Figure 5. Diagram of the methodology used for comparing the different sensors.

https://github.com/carlosmccosta/dynamic_robot_localization
https://github.com/carlosmccosta/dynamic_robot_localization
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3.3. Sensors Evaluation

As described in the previous section, the first step consists of multiple scans, with and
without the axle damper mounted in the van. Figures 6 and 7 present samples of the point
clouds generated by each sensor, without and with the axle damper mounted on the van.
The point clouds without the axle damper were segmented to extract only the ROI and
then used as the reference point cloud for the point cloud registration.

Figure 8 shows an example of the whole point cloud segmentation and registration
process. The orange point cloud is the result of the point cloud segmentation using the
region growing algorithm. In the point cloud alignment result, the color of the points are
associated with the corresponding distances between the reference and the new point cloud,
with green indicating that the Euclidean distance between a pair of matched points is close
to zero and red indicating that the distance between the points is higher than the maximum
inlier distance.

(a) SICK TriSpector1030. (b) Photoneo PhoXi S. (c) Asus Xtion Pro Live.

Figure 6. Example of the point clouds extracted from each sensor of the axle damper attachment
structure (without the axle damper). It should be noted that the point cloud depicted in (c) is already
cropped to a smaller volume.

(a) SICK TriSpector1030. (b) Photoneo PhoXi S. (c) Asus Xtion Pro Live.

Figure 7. Example of the point clouds extracted from each sensor of the axle damper attachment
structure (with the axle damper). It should be noted that the point cloud depicted in (c) is already
cropped to a smaller volume.

Tables 2 and 3 summarize the registration results obtained using the sensor and the
CAD model as reference point clouds, respectively, presenting the average RMSE of inliers
and the average percentage of inliers in the alignment result. Although each side of the van
had a different reference point cloud, resulted from a slightly different surface geometry,
the assessment did not evaluate the sides separately, as the objective was to identify the
sensor with the best overall results for both sides. As such, for each sensor, 12 scans were
captured from the left side of the van and another 12 scans from the right side of the
van. From these 24 scans for each sensor, the methodology presented in the previous
subsection (with its overview in Figure 5) was used to compute the mean values and
standard deviations for each metric presented in Tables 2 and 3.
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Figure 8. Process of segmenting and registering the point clouds (example using point clouds
generated by the SICK TriSpector1030 sensor).

Table 2. Registration results using the sensor-based reference point cloud (average results for the
12 scans, providing the mean and standard deviation).

SICK TriSpector1030

Voxel Grid
(mm)

Maximum Inliers
Distance (mm)

RMSE
(mm)

Point Cloud Size
(Registered Points)

Inliers
(%)

Processing
Time (s)

1 3 0.25± 0.03 16, 485± 2479 99± 1 8.01± 1.34
1 2.5 0.26± 0.03 16, 485± 2479 99± 1 7.09± 1.02
1 2 0.25± 0.03 16, 485± 2479 99± 1 8.79± 1.43
5 3 1.72± 0.07 1074± 193 95± 4 3.07± 0.02
5 2.5 1.57± 0.08 1074± 193 86± 4 3.07± 0.01
5 2 1.30± 0.10 1074± 193 65± 4 3.07± 0.01

Photoneo PhoXi S

Voxel grid
(mm)

Maximum inliers
distance (mm)

RMSE
(mm)

Point cloud size
(registered points)

Inliers
(%)

Processing
time (s)

1 3 0.52± 0.17 28, 434± 2473 92± 8 15.81± 1.81
1 2.5 0.50± 0.15 28, 434± 2473 91± 10 13.49± 1.41
1 2 0.49± 0.14 28, 434± 2473 92± 9 15.97± 1.92
5 3 1.79± 0.04 1810± 151 89± 9 3.11± 0.01
5 2.5 1.65± 0.03 1810± 151 80± 9 3.12± 0.01
5 2 1.40± 0.03 1810± 151 60± 8 3.12± 0.01

Asus Xtion Pro Live

Voxel grid
(mm)

Maximum inliers
distance (mm)

RMSE
(mm)

Point cloud size
(registered points)

Inliers
(%)

Processing
time (s)

1 3 1.17± 0.14 10, 113± 3460 96± 2 5.34± 1.34
1 2.5 1.18± 0.15 10, 113± 3460 80± 13 5.48± 1.42
1 2 1.01± 0.11 10, 113± 3460 88± 4 5.33± 1.34
5 3 1.99± 0.08 968± 122 85± 5 3.06± 0.01
5 2.5 1.79± 0.04 968± 122 69± 8 3.06± 0.01
5 2 1.49± 0.03 968± 122 46± 8 3.06± 0.01
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Analyzing Tables 2 and 3, it is possible to verify that the alignment results (RMSE
and inliers percentage) were better when using reference point clouds based on a previous
scan performed by the respective sensor instead of using CAD models. This was expected
since the production of the van structure has some deviations and tolerances in relation to
the CAD model. Moreover, registering a new point cloud with a previously captured and
filtered scan can be used to evaluate the repeatability of both the sensor and the alignment
algorithms. On the other hand, the RMSE difference when comparing the usage of a
reference point cloud using CAD models or scans is less significant when using a bigger
voxel grid (5 mm) since the voxel grid replaces all the points within a cell with their mean
XYZ value. This can result in the absorption of the van structure production tolerances and
the sensor measurements noise but can also raise the mean RMSE if the reference and scan
voxel grids do not have overlapping coordinate systems, resulting in an offset between the
cells that grows as the voxel size increases.

Focusing solely on the results achieved when using the sensor-based reference point
cloud and the voxel grid of 1 mm, the relative difference between the RMSE of the point
clouds captured by each sensor is more clear. Namely, the lower RMSEs were 0.25 mm,
0.49 mm and 1.01 mm when using the SICK TriSpector1030, Photoneo PhoXi S and Asus
Xtion Pro Live, respectively. Additionally, the percentages of inliers were 99%, 92% and 88%,
respectively. Moreover, no significant difference was found when varying the maximum
inlier distance.

Table 3. Registration results using CAD-based reference point cloud (average results for the 12 scans,
providing the mean and standard deviation).

SICK TriSpector1030

Voxel Grid
(mm)

Maximum Inliers
Distance (mm)

RMSE
(mm)

Point Cloud Size
(Registered Points)

Inliers
(%)

Processing
Time (s)

1 3 0.92± 0.16 16, 485± 2479 90± 9 8.05± 1.38
1 2.5 0.86± 0.14 16, 485± 2479 89± 9 7.17± 1.02
1 2 0.81± 0.12 16, 485± 2479 87± 10 8.90± 1.50
5 3 1.81± 0.18 1074± 193 83± 11 3.08± 0.02
5 2.5 1.68± 0.14 1074± 193 75± 14 3.07± 0.01
5 2 1.42± 0.10 1074± 193 54± 17 3.07± 0.02

Photoneo PhoXi S

Voxel grid
(mm)

Maximum inliers
distance (mm)

RMSE
(mm)

Point cloud size
(registered points)

Inliers
(%)

Processing
time (s)

1 3 1.18± 0.18 28, 434± 2473 72± 5 15.88± 1.96
1 2.5 1.12± 0.17 28, 434± 2473 72± 8 13.28± 1.22
1 2 1.02± 0.11 28, 434± 2473 66± 8 16.11± 1.85
5 3 2.01± 0.06 1810± 151 64± 6 3.12± 0.01
5 2.5 1.80± 0.03 1810± 151 52± 8 3.12± 0.01
5 2 1.50± 0.02 1810± 151 34± 6 3.12± 0.01

Asus Xtion Pro Live

Voxel grid
(mm)

Maximum inliers
distance (mm)

RMSE
(mm)

Point cloud size
(registered points)

Inliers
(%)

Processing
time (s)

1 3 1.35± 0.07 10, 113± 3460 94± 2 5.45± 1.39
1 2.5 1.35± 0.13 10, 113± 3460 75± 18 5.59± 1.45
1 2 1.09± 0.04 10, 113± 3460 81± 4 5.45± 1.39
5 3 2.05± 0.02 968± 122 82± 5 3.06± 0.01
5 2.5 1.81± 0.01 968± 122 64± 5 3.06± 0.01
5 2 1.50± 0.02 968± 122 40± 3 3.06± 0.01



Sensors 2023, 23, 4310 12 of 16

The difference between sensors was lower when using a voxel grid of 5 mm. The lower
RMSE was 1.30 mm, 1.40 mm and 1.49 mm, with a maximum inlier distance of 2 mm when
using the SICK TriSpector1030, Photoneo PhoXi S and Asus Xtion Pro Live, respectively.
In this case, there were significant differences when varying the maximum inlier distance.
The RMSE decreases with a smaller maximum inlier distance; however, the percentage of
inliers decreases as well. Although the RMSE was smaller, the value refers to a smaller
number of corresponding points.

As detailed in Table 1, the depth error listed in the SICK TriSpector1030 technical
specifications is smaller than the other two sensors, and this specification is reflected in
these results. This sensor provides the best alignment results when using both types of
reference point clouds and when varying the voxel grid and the maximum inlier distance.
Considering the voxel grid of 1 mm, the RMSE was always below 1 mm with a percentage of
inliers above 85% even when using the CAD point cloud as the reference model. The RMSE
increased above 1 mm when changing the voxel grid for 5 mm, but, overall, the SICK
TriSpector1030 sensor performed better than the other sensors.

We were also able to achieve an RMSE below 1.00 mm (around 0.50 mm) with the
Photoneo PhoXi S using a sensor-based reference point cloud with a voxel grid of 1 mm.
Overall, the Photoneo PhoXi S performed worse than the SICK TriSpector1030 but better
than the Asus Xtion Pro Live. In general, the Asus Xtion Pro Live generated the worse
results, with an RMSE always above 1 mm. This was mainly related to the lower quality of
the captured point cloud, which had less accuracy and higher sensor noise.

The lower RMSE achieved by the SICK TriSpector1030 was likely due to the usage
of camera lens filters that block all light with the exception of light frequencies associated
with the laser line. This way, the SICK TriSpector1030 will have better repeatability since
the camera sensor will have less pixel noise when compared with the other two sensors,
which capture light from a much wider frequency range. On the other hand, by being a
line triangulation system, SICK can also employ subpixel algorithms to estimate the center
of the detected laser line, further increasing its precision and repeatability.

The time needed to process the registration and pose estimation was lower when using
a bigger voxel grid (5 mm) since the point cloud was less dense (had fewer points), when
compared with a point cloud generated with a smaller voxel grid (1 mm). Additionally,
due to the usage of voxel grids, the density of the point clouds from each sensor was
similar, which resulted in similar processing times. When considering a smaller voxel
grid, there was a noticeable difference in the processing time since the density of the point
clouds was higher, with a processing time proportional to the number of points registered.
As described in Tables 2 and 3, the processing time was higher when using the Photoneo
PhoXi S sensor because the raw point clouds from this sensor had much higher number of
points than the other sensors.

4. Machine Vision System for Fastening Operations

Taking into account the experimental results presented earlier and the use case require-
ments, such as the process cycle time limit for fastening the two axle dampers (which must
be under 160 s) and the 3 mm accuracy, as well as the cost of each individual sensor, we
implemented the automated axle damper fastening system with the SICK TriSpector1030
sensor. Namely, the fastening platform was equipped with the following:

1. One Doosan H2017 robotic arm with a range of 1700 mm and payload of 20 kg.
2. One SICK TriSpector1030 sensor.
3. Two screwdrivers attached to the end effector of the robotic arm.

The robot base was placed centered in relation to the left and right axle dampers
locations (as seen in Figure 9) for ensuring that the platform could perform the desired
fastening operations on both axle dampers without needing to move its base.
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(a) (b) (c) (d)

Figure 9. Testing environment for the automated axle damper fastening platform. (a) Robot tool with
the 3D sensor (blue) and the two screwdrivers. (b) Robot with base centered with the left and right
axle dampers. (c) Robot and tool positioned to scan the ROI. (d) Robot and tool positioned to perform
the tightening operation.

The approach implemented to determine the pose of the axle damper attachment
structure was as follows:

1. Setup phase:

(a) Robotic arm moves the 3D sensor to scan the ROI of the van without the axle
damper (reference point cloud).

(b) The pose of the attachment structure with respect to the robot is determined.

2. Operation phase performed for each side of the van:

(a) Operator places the axle dampers on a new van.
(b) Robotic arm moves the sensor to capture a new scan of the ROI of the van with

the axle damper (seen in Figure 9c).
(c) The sensor point cloud is aligned with the reference point cloud using the

ICP algorithm.
(d) The point cloud alignment is validated for ensuring that it has a minimum

percentage overlap between the reference point cloud and the new scan.
(e) The transformation matrix between the robot base and the axle damper attach-

ment structure is computed.
(f) Robotic arm moves the screwdrivers and performs the bolt-tightening opera-

tions (shown in Figure 9d).

The machine vision was deployed at the van assembly workstation at the factory,
where it was tested during two weeks (split into two shifts of seven hours and twenty-five
minutes each). At the screwing workstation, the vehicles stopped at 160 s. Table 4 presents
the performance results obtained from these trials.

Table 4. Performance results obtained at the car assembly workstation.

Metric Result

Number of fastenings operations 53,400
Successful screwing operations percentage 94%

Cycle time for screwing the two axle dampers 80 s
Robot occupancy percentage 50%
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5. Conclusions

The usage of 3D sensors to tackle perception challenges keeps expanding since they
are able to provide accurate depth information and have fewer limitations regarding the
environment light conditions when compared with 2D cameras. This paper presented
a comparison of three depth sensors to evaluate which one is more suitable for proving
3D data for a machine vision system that estimates the 6-DoF pose of the attachment
structure of axle dampers in the undercarriage of vans. The sensor analysis was focused
on comparing the suitability of the sensors when using as metrics the RMSE and overlap
percentage computed after point cloud registration. For the described use case, the results
indicate that the SICK TriSpector1030 is the most appropriate, given its lowest RMSE
(0.25 mm ± 0.03 mm) and highest overlap percentage (99%), followed by the Photoneo
PhoXi S, with RMSE (0.49 ± 0.14). On the other hand, for applications that require less
accuracy and in which the low cost is an important factor, the Asus Xtion Pro live can
also be a feasible option, given that it achieved an acceptable RMSE (1.01 mm ± 0.11mm).
After deploying the machine vision with the SICK TriSpector1030 on an assembly line,
the automated bolt-tightening system was able to achieve 94% of success in 53,400 screwing
operations, with an operation time below 80 s.

Future work may include the comparison of other 3D sensors along with the inclusion
of other perception algorithms that rely on fusion between 2D and 3D data for increasing
the reliability of the segmentation stage for other use cases.
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