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ABSTRACT

Development time and accuracy are measures that need to be taken into account when devising device
models for a new technology. If complex circuits need to be designed immediately, then it is very impor-
tant to reduce the time taken to realize the model. Solely based on data measurements, artificial neural
networks (ANNs) modeling methodologies are capable of capturing small and large signal behavior of the
transistor, with good accuracy, thus becoming excellent alternatives to more strenuous modeling
approaches, such as physical and semi-empirical. This paper then addresses a static modeling methodol-
ogy for amorphous Gallium-Indium-Zinc-Oxide - Thin Film Transistor (a-GIZO TFT), with different ANNs,
namely: multilayer perceptron (MLP), radial basis functions (RBF) and least squares-support vector
machine (LS-SVM). The modeling performance is validated by comparing the model outcome with mea-
sured data extracted from a real device. In case of a single transistor modeling and under the same train-
ing conditions, all the ANN approaches revealed a very good level of accuracy for large- and small-signal
parameters (g, and gy), both in linear and saturation regions. However, in comparison to RBF and LS-SVM,
the MLP achieves a very acceptable degree of accuracy with lesser complexity. The impact on simulation
time is strongly related with model complexity, revealing that MLP is the most suitable approach for
circuit simulations among the three ANNs. Accordingly, MLP is then extended for multiple TFTs with
different aspect ratios and the network implemented in Verilog-A to be used with electric simulators.
Further, a simple circuit (inverter) is simulated from the developed model and then the simulation
outcome is validated with the fabricated circuit response.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Transistor modeling can be broadly categorized into
physical/semi-empirical [8-10], table-based [11] and empirical

Amorphous Gallium-Indium-Zinc Oxide - Thin Film Transistor
(a-GIZO TFT) technology is becoming attractive in various
electronic applications, namely with active matrix liquid crystal
displays (AMLCD) [1] and Radio-frequency identification (RFID)
tags [2]. They can be fabricated at low temperature [3-5], which
results in low-cost transparent devices. Compared to organic [6]
and a-Si:H [7] TFTs, a-GIZO TFT shows better electrical properties,
such as higher mobility [3], and passive resistors can be realized,
unlike in organic TFT technology [6]. All the advantages associated
with a-GIZO TFTs are motivating factors to design circuits for var-
ious applications. The demand for ingenious electronic circuits
with this technology propels the development of accurate device
models for circuit simulations.
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[12]. Physical modeling uses semiconductor physics to develop
analytical equations that approximate the device behavior. Even
though physical models are accurate and desirable for circuit
design and process optimization, they are complex, with high
development time and still too incipient for a-GIZO TFTs. This tech-
nology is not yet stable, with experiments being performed to
attain solid and consistent electrical characteristics, by several
means like employing different structures [13] or multiple chan-
nels [14] for the device, varying processing parameters or source/
drain [15] or dielectric materials [16,17]. Therefore, whenever
there is a modification of device structure and/or materials to
obtain better performances, the complete device physics need to
be studied to develop the physical model. At this stage, physical
modeling for a-GIZO TFT is hard and is not suitable especially when
circuit design is required on a faster pace. Nevertheless, few arti-
cles have already reported physical models for this device [8,9].
Semi-empirical modeling is essentially a physical model where
some fitting (empirical) functions and parameters are added to


http://crossmark.crossref.org/dialog/?doi=10.1016/j.sse.2014.11.009&domain=pdf
http://dx.doi.org/10.1016/j.sse.2014.11.009
mailto:vgt@fe.up.pt
mailto:pmcb@fct.unl.pt
http://dx.doi.org/10.1016/j.sse.2014.11.009
http://www.sciencedirect.com/science/journal/00381101
http://www.elsevier.com/locate/sse

P.G. Bahubalindruni et al./Solid-State Electronics 105 (2015) 30-36 31

improve the model accuracy and generality. Consequently, it
shares similar drawbacks with physical modeling. On the other
hand, table based modeling is simple and fast, but high accuracy
requires huge amount of data storage, and need interpolation algo-
rithms to predict the output for the un-stored input. Empirical
model approximates the device behaviour from the measured
characteristics, irrespective of the device physics i.e. it is a black
box modeling approach. Artificial neural networks (ANNs) can be
considered as one type of empirical modeling.

From past two decades, ANNs have become popular for semicon-
ductor modeling. Litovski proposed ANN-MLP (multilayer percep-
tron) for MOSFET modeling [18] that has also been successfully
applied to nanoscale MOSFETS [19,20]. ANN learns the function that
needs to be estimated from the data provided to the network, dur-
ing the training phase. They are universal approximators and can be
built in very short-time, to a desired accuracy level, independently
of the underlined device physics. Similarly, polynomials are also
universal approximators, and can also be employed, however in
ANNs the error is independent of the input dimensionality [21].
Despite the fact that ANN parameters lack explicit physical mean-
ing, it meets most of the basic model requirements and benchmark
tests suggested in literature [22-24], typically:

e The model should be simple, fast and easily implementable.

e The model and its higher order derivatives should be continu-
ous in the complete region of operation to avoid convergence
problems.

e Some physical basis adds value to the model.

o In order to evaluate the model, it is mandatory to test small sig-
nal parameters [22].

The main focus of this paper is then to develop an accurate, sim-
ple, continuous model with fast development time, which can
effectively characterize all the physical properties of the device
in the complete region of operation. Since ANNs have all the above
mentioned properties and meet most of the model requirements
and benchmarks, they have been adopted in this work. Different
neural modeling methods namely, MLP, RBF and LS-SVM are tested
to model the a-GIZO TFT.

In order to validate the model accuracy and generalization
capability, small signal parameters (i.e. transconductance (g)
and output conductance (g;)) determined from the model are com-
pared with the measured data. Based on the complexity (which
directly impacts the simulation speed) and accuracy tradeoff,
MLP modeling method is selected for circuits simulations, and is
extended for multiple transistors, with different widths. Then,
the MLP ANN is implemented in Verilog-A, the model output for
testing data (that has not been seen by the network during training
phase) is also compared against the measured characteristics to
demonstrate the modeling ability as well as generalization capabil-
ity. A simple circuit has also been simulated with the developed
model and the simulation response is compared against the fabri-
cated circuit outcome to demonstrate the suitability of neural
models for circuit simulation.

The rest of the paper is organized as follows. Section 2 describes
ANN (MLP, RBF, LS-SVM) modeling methodologies, Section 3
describes device structure, experimental setup and results; finally
Section 4 shows conclusions.

2. ANN modeling methodologies

ANNSs are potential candidates for function estimation problems.
They comprise a set of interconnected neurons with data process-
ing ability, which operate in parallel. Each neuron in the network
has a set of inputs, synaptic weights and bias. A set of training sam-
ples are applied to the network so that it can learn the physical pro-
cess, subjected to a cost-function minimization. MLPs and RBFs can

be classified as empirical risk minimization networks, i.e., they
work with training-data error during the learning phase, whereas
LS-SVM employs structural risk minimization, since it operates
with both training and generalization error during learning. In this
sense, LS-SVM promises better generalization results. However, for
all the considered cases, by proper training, weights and bias are
determined to guarantee a specified performance goal. Structurally,
these networks consist of a single input and output layers, one or
more hidden layers, in case of an MLP, and a single hidden layer
for RBF and LS-SVM. The structure of the RBF and LS-SVM networks
is similar, since the last also employs radial basis functions in the
kernels. Actually, other kernels do exist for LS-SVM, but they did
not show any improvement in relation to radial-basis; conse-
quently, they were not considered in this work. MLP network
topology with a single hidden layer is depicted in Fig. 1 and the
RBF/LS-SVM in Fig. 2. The input layer consists of sensory units,
which connect to the outside environment. The Hidden layer(s)
maps the input data from input space to a hidden space. Finally,
the output layer provides the response to input activation by a lin-
ear combination of the hidden-layer outputs.

2.1. Multilayer perceptron

In this work, MLP with a single hidden layer is employed, as this
is a universal approximator when enough number of hidden neu-
rons are used [25]. Back-propagation algorithm is used to train
the network. Proper number of neurons in the hidden layer should
be selected to ensure good training performance without overfit-
ting. If the number of neurons are too high in the hidden layer, then,
even though the network guarantees good training performance, its
generalization capability will be inadequate because of overfitting.
If the number of neurons in the hidden layer is too small, then the
network has poor performance. So, the number of neurons should
be selected properly, based on a trial and error process.

Mathematically, the MLP network hidden-layer outputs can be
expressed by,

yh = Sig(x - wh + bh) (1)
and the output of the MLP network given by,
y =yh wo + bo (2)

where Sig() represents the tanh sigmoid function, x represents the
input vector, wh and bh denote the synaptic-weight vector, con-
necting inputs to the hidden neurons, and the hidden-neurons bias
vector, respectively. The output layer weight vector and bias are
represented by wo and bo. The weights and biases are determined
during the training phase.

2.2. Radial basis function

Basically, RBF [26] performs curve fitting/approximation in a
high dimensional space. During the training phase, RBF network
finds a surface in a multi-dimensional space that provides the best

Input Hidden

Output

Fig. 1. MLP network topology.
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Input Hidden
layer layer layer

Fig. 2. RBF network topology.

fit to the training data. The hidden layer output can be described
as (3).

yh = G(([(x — wh)|[bh) = exp~ (- w#/bh* 3)

RBF network output is given by (2); where Gaussian functions are
the kernels chosen for this work. The input weight vector is again
wh (centers of the Gaussian functions), x is the training data vector
i.e. input to the network. The hidden-layer bias is given by
bh = 9832 where ¢ is the spread or standard deviation of the basis
function. This bh value was chosen such that the output of the hid-
den layer neuron is >0.5 when the distance between the input and
the input weight is <o. The centers of the Gaussian functions
(which directly gives the number of neurons in the hidden layer)
are determined from the training samples. The output weight vec-
tor (wo) and output bias (bo) are calculated by solving linear con-
straints formed by the output layer [27].

In the Gaussian function, if ¢ is too small, then the basis func-
tion is highly localized, hence the network cannot guarantee good
generalization. If it is too high, neurons respond in the same way to
all the activation samples, consequently the network is not able to
learn from the training samples. Hence, ¢ should be greater than
the smallest difference between neighboring input training sam-
ples and less than the largest difference in the set, so that the basis
function is neither localized nor too flat.

2.3. Least squares-support vector machine

Least Square-Support Vector Machine (LS-SVM) is a powerful
technique for non-linear regression or functional approximation
problems. LS-SVM for function estimation in primal and dual form
are expressed in (4) and (5) respectively [21].

2
such that y; = wO(x;) + b +e;,

1 18
Min. e J,(W,€) = =Ww+7=) e
e 22, (4)

i=1,...,N

L(w,b,e;o) = J,(w,e) — ZN:%, W ®(x;) + b+ e — ]

such that
oL N
0o w=Y gd(x) (5)
ow ; i i
oL N
g =0~ 2=

i=1,...,N

= 0—-wdKx)+b+e—y; =0, i=1,...,N

The factor y is aregularization parameter, which impacts the gen-
eralization capability of the network and e gives the accuracy of the
model, o; is Lagrange multiplier and ¢ is nonlinear transformation

from input space to feature space. After solving (5), the resulting
LS-SVM model for function estimation is expressed in (6)

N
Y(x) = wKxx)+b (6)
i=1

where K(x,x;) = ¢(x)"¢(x;). In this work, the kernel (K) is a radial
basis function.

3. Experimental setup and results

First, a single TFT static behavior is modeled with all the men-
tioned ANN methods. The inputs are gate-to-source voltage (V¢s),
drain-to-source voltage (Vps) and the output corresponds to the
drain current (Ip). For the training data, V¢s, Vps are ranging from
0to 10V and 0 to 15 V respectively, in steps of 1 V. MATLAB2011b
is used to get the trained network for MLP and RBF, whereas, a
Matlab toolbox [28] is used for LS-SVM.

3.1. Device structure

The transistors utilized in this work were fabricated at CENI-
MAT, FCT-UNL. The device structure and thickness of the materials
are shown in Fig. 3. It corresponds to a bottom-gate staggered
structure, where the gate, drain and source material is 1ZO, and
the semiconductor layer is amorphous GIZO with 2:4:2 composi-
tion (Ga:In:Zn atomic ratio). The dielectric material is a multilay-
ered/multi-component structure (SiO,—Ta,0s - Si0,—Si0,). This
structure is employed to minimize gate leakage currents, while
allowing for a large dielectric constant, above 13. Source to gate
or drain to gate overlap is 2-5 pm.

These TFTs are fabricated at room temperature by RF magne-
tron sputtering, being the patterns of the composing layers defined
by lift-off and dry-etching processes. An SU-8 passivation layer on
top of the structure was deposited by spin-coating. Final devices
were annealed in air, for one hour, at 150 °C. Electrical characteris-
tics (sub-threshold swing, turn-on voltage, on-off current ratio,
mobility and leakage current) and stress behavior of these TFTs,
with respect to different processing parameters, are reported in
[29-31]. The fabricated transparent chip, which contains the TFTs,
is shown in Fig. 4. Measurements (Ip as a function of Vs and Vps)
have been taken using a semiconductor parameter analyzer Keith-
ley 4200-SCS, and probe station Cascade Microtech M150 under
darkroom conditions.

3.2. ANN modeling results

From a large signal perspective, the modeled drain current may
display a good agreement, on average, with the measured data, but
the correspondent small signal parameters (g,, and g,) may show
otherwise. It is fundamental to test g,, and g, since they have a
direct impact on the small-signal behavior of the device (gain). Fur-
thermore, if overfitting occurs, the variations in the characteristic
predicted by the model will be emphasized in small signal param-
eters due to their derivative nature, and thus helps to infer about
the generalization capability of the network. For this reason, the
small signal parameters are presented for all the above mentioned

Dielectric @250nm

Substrate

Fig. 3. TFT bottom gate structure.
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Pads

Fig. 4. (a) Fabricated transparent chip (b) micrograph of a single a-GIZO TFT.
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Fig. 5. Small signal parameters (a) g,,: when Vps=1.5V (b) g,,: when Vps =10V (c) g4: when Vs =8V (d) g4: when Vgs=1.5V.

modeling methods, with the TFT (W =160 pm) operating in the
linear and saturation regions, as shown in Fig. 5. The figure of merit
used for relative comparison amount the different ANN approaches
is defined by the MARE (mean absolute relative error) as in (7),
where Ipmes(i) and Ipmoger(i) refer to the measured and modeled
drain current respectively. The g,, and g, are determined from
numerical differentiation and the resulting MARE for each
modeling approach is presented in Table 1, together with the cor-
responding ANN complexity

Table 1

MARE of small signal parameters (in percentage) from all the ANN modeling methods
in linear and saturation regions and the number of neurons in the hidden layer is
mentioned next to the ANN method in parenthesis.

MLP (15) RBF (60) LS-SVM (176)

&m &a &m 8d Em 8d
Linear 14 34 1.6 4.8 1.2 23
Saturation 0.7 5.5 145 6.2 0.4 25
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Fig. 6. Verilog-A ANN model (a) test setup (b) TFT output characteristics (2 < Vgs < 10V and 0.5 < Vps < 14.5V, in steps of 1V).
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Fig. 7. Inverter: (a) schematic (b) micrograph of the transparent inverter based on
a-GIZO TFTs: T1 and T2 have same dimensions (W =40 pm and L = 20 pm).
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From these results it can be observed that all ANNs tested seem
to be potential candidates for modeling the non-linear behavior of
the semiconductor. It can be noticed that the LS-SVM presents the
best performance, however at a cost of a higher complexity. RBF net-
work shows a relatively less performance compared to both MLP
and LS-SVM, with lower complexity than LS-SVM, but higher than
MLP. Finally, MLP expresses better performance than the RBF, but
slightly less than LS-SVM. Yet, it accomplishes the results with min-
imal complexity. Therefore, this method represents the best option
for circuit simulations, since its complexity is minimal with a com-
parable accuracy to LS-SVM. This way, a better simulation speed is
expected, as the number of computations involved is smaller.

3.3. Circuit level simulation and validation

Once the optimum weights and bias are determined, MLP net-
work (using multiple TFTs, with widths - 10, 60, 80, 100, 120,
160, 180, 220, 260 and 300 um) is implemented in Verilog-A to
enable the creation of a generic cell. A brief description of the ver-
ilog-A code is presented in annex.

10 Input |
z
Z 5 ~
>
0
0 0.5 1 1.5 2 25
Time (ms)
10 ____ -- -Simulati_orl _ Measurergellt_ _ A
<
S s
O
>
0 s . ! !
0 0.5 1 1.5 2 25
Time (ms)

(b)

Fig. 8. Inverter characterization from: (a) DC analysis (b) transient analysis.
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The I/V characteristic of a TFT, never seen by the network during
the training phase, with a width of 200 pm, is generated from the
Verilog-A ANN model using Cadence Spectre simulator. The simu-
lation results are further compared with the measured data, as
shown in Fig. 6b (the I/V measurement setup is shown in Fig. 6a).
The voltages V¢s and Vps are varied from 2 to 10V and 0.5 to
14.5V, in steps of 1V, respectively. From these results it can be
understood that the network is capable of predicting the I/V rela-
tion for any aspect ratio that lies within the training range.

As a next step, an inverter is simulated with the developed
Verilog-A model for a power supply of 10V and input voltage
sweep of 0 to 10 V. The schematic and the fabricated circuit are
shown in Fig. 7(a) and (b) respectively. The fabricated inverter
was also characterized under the same test set-up as the simula-
tion environment. The circuit response, both from simulation and
measurements are shown in Fig. 8, with DC and transient analysis.
These results demonstrate that the ANN model is capable of pre-
dicting the device behavior under circuit simulations. However, a
minor mismatch between the measured and simulated output
can be observed. It should be noted, however, that the ANN model
is developed from isolated transistors located in opposite direc-
tions of the same chip. Some non-uniformities along the chip,
due to the fabrication process, justifies well the differences.

4. Conclusions

Results for modeled drain current and small signal parameters
have shown good agreement with the measured data, implying
that the ANNs (MLP, RBF, LS-SVM) are potential candidates for
TFT modeling. Among the three ANN techniques, MLP is the most
suitable approach for circuit simulations, since it resulted in mini-
mal complexity with good accuracy. The MLP model was then
implemented in Verilog-A for circuit simulations with Cadence
Spectre. The model ability for predicting the behavior of devices,
never seen during training, was assessed by comparing the I/V
characteristics generated through simulation with the actual mea-
surements. Results demonstrated that the model is able to antici-
pate the behavior of TFTs with any dimensions that lay within
the training range. Later, an inverter was designed and simulated
using the developed Verilog-A model, subsequently validated with
the measured circuit response.
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Appendix A. Verilog-A code

‘include “constants.h”

‘include “disciplines.h”

module gizo-tft(d,g,s); //Module declaration

inout g, d,s; // Input/Output terminals declaration

electrical d,g,s;

parameter integer NI, NO; //No. of inputs (vgs, vds) and ops
(Id-Drain current) //Define parameters

parameter integer NNHL; //No. of neurons in hidden layer

real hlayer-w[0:(NIxNNHL)-1], hlayer-b[0:NNHL-1], hlayer-
y[0:NNHL-1], hlayer-v[0:NNHL-1]; //hidden layer

real olayer-w[0:(NO«xNNHL)-1], olayer-b[0:NO-1], olayer-
y[0:NO-1], olayer-v[0:NO-1]; //output layer

real vgs,vds, width, inputs[0:1];

integer i, j, i, jj;

// Define pre and post processing parameters

real train-input-range[0: (NI-1)], train-output-range,id;

analog begin

@(initial-step or initial-step(“static”))

begin

//assignment of hidden layer neurons weights and bias

//assignment of output layer neurons weights and bias

end // end of initialization

//Preprossessing inputs

for (i=0; i< (NNHL); i =i+ 1) //calculating local field and non
linear activation of hidden neurons

begin

hlayer-v[i] = 0;

hlayer-v][i] = hlayer-v[i] + width*hlayer-w[NI*(i)] + vgs*hlayer-
W[NI*(i) + 1] + vds*hlayer-w[NI*(i) + 2];

hlayer-v[i] = hlayer-v[i] + hlayer-b[i];

hlayer-y[i] = tanh(hlayer-v[i]);

end

for (ii = 0; ii< (NO); ii =ii + 1) //calculating local field and
output of op neurons

begin

olayer-v[ii] = 0;

for (jj = 0; jj< (NNHL); ji=jj+1)

begin

olayer-v[ii] = olayer-v[ii] + hlayer-y[jj] *olayer-wl[jjl;

end

olayer-v[ii] = olayer-v[ii] + olayer-b[ii];

id = olayer-vl[ii];

end

//post processing to bring the drain current to normal scale

I(d,s) <+(id);

I(gss) <+0;

I(g.d) <+0;

end

endmodule
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