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Abstract—Formal verification has become increasingly crucial
in ensuring the accurate and secure functioning of modern
software systems. Given a specification of the desired behaviour,
i.e. a contract, a program is considered to be correct when
all possible executions guarantee the specification. Should the
software fail to behave as expected, then a bug is present.
Most existing research assumes that the bug is present in the
implementation, but it is also often the case that the specified
expectations are incorrect, meaning that it is the specification that
must be repaired. Research and tools for providing alternative
specifications that fix details missing during contract definition,
considering that the implementation is correct, are scarce.

This paper presents a preliminary tool, focused on Dafny
programs, for automatic specification repair in contract pro-
gramming. Given a Dafny program that fails to verify, the tool
suggests corrections that repair the specification. Our approach is
inspired by a technique previously proposed for another contract
programming language and relies on Daikon for dynamic invari-
ant inference. Although the tool is focused on Dafny, it makes use
of specification repair techniques that are generally applicable to
programming languages that support contracts. Such a tool can
be valuable in various scenarios, such as when programmers have
a reference implementation and need to analyse their contract
options, or in educational contexts, where it can provide students
with hints to correct their contracts.

The results of the evaluation show that the approach is
feasible in Dafny and that the overall process has reasonable
performance but that there are stages of the process that need
further improvements.

Index Terms—contract programming, automatic program re-
pair, contract repair, Dafny

I. INTRODUCTION

As software becomes increasingly pervasive in our daily

lives — from the ubiquitous presence of mobile phones to the

vital role of medical equipment in diagnosing and treating

medical problems — the dependency on its correct functioning

grows. It is more important than ever to design software

with its correctness in mind, i.e. following approaches that

guarantee that the software is free from bugs.

Contract programming, also known as design by con-
tract [1], [2] or DbC, is a way of programming based on

the idea of precisely and formally specifying the expected

This work is financed by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia within project
EXPL/CCI-COM/1637/2021.

behaviour of software components by providing assertions

(also known as contracts). Created with reliability in mind,

contract programming aids programmers in achieving correct

and robust software.

Contracts serve as a means to specify what obligations and

guarantees are provided by a software component. Program-

ming languages that support contracts provide verifiers for

checking if the contracts are followed by the implementation,

forcing the programmer to implement a program that satisfies

the specified contract. A program that is verified can be trusted

to follow its specification. However, when a program fails to

verify, it can mean one of two things: either the specification

is correct and the implementation is not, or vice versa — the

implementation is correct, but the specification is not. Most

current research, however, assumes that the specification is

correct, focusing on repairing the implementation. Yet, it is

known that many issues with software stem from incorrect

specifications that provide a false sense of security [3]. In this

work, we aim to improve the research in the other direction

by shifting the focus towards fixing the specification.

Research on repairing specifications is valuable in scenarios

where verification fails but we can assume the implementation

to be correct. A good example is when programmers have

a reference implementation of an algorithm and are still

analysing their contract options. In such cases, when the pro-

grammers trust the implementation to be correct, suggestions

to change the contracts based on it would be helpful. Once the

contract is sound according to the reference implementation,

it can then be used in the verification of more advanced and

optimized implementations. This type of work can also be

useful in precisely documenting (in the form of specifications)

the assumptions and guarantees of the environment in which

the software component will be deployed, by suggesting

appropriate specifications for the software. A last scenario

where contract repair may prove useful is in the educational

context, where exercises may expect students to write contracts

for implementations provided by the instructors. Students are

known to struggle when writing formal specifications [4], and

automated repair techniques can be used to provide hints to

help students autonomously correct their contracts.

In this paper we present a tool, focused on Dafny pro-

105

2023 38th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)

2151-0849/23/$31.00 ©2023 IEEE
DOI 10.1109/ASEW60602.2023.00019

20
23

 3
8t

h 
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
ut

om
at

ed
 S

of
tw

ar
e 

En
gi

ne
er

in
g 

W
or

ks
ho

ps
 (A

SE
W

) |
 9

79
-8

-3
50

3-
30

32
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

AS
EW

60
60

2.
20

23
.0

00
19

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on January 23,2024 at 11:52:55 UTC from IEEE Xplore.  Restrictions apply. 



grams [5], for automatically fixing specifications in contract

programming. Given a Dafny program that fails to verify, the

tool suggests and applies relevant contract fixes that repair the

bug — in the sense that the program is verified. Our approach

is inspired by a technique previously proposed for contracts in

Eiffel programs [6]. Although our tool is focused on Dafny, it

makes use of specification repair techniques that are generally

applicable to programming languages that support contracts.

We also present the results of our experimental evaluation,

which shows that the approach is feasible in Dafny but also

that the overall process can benefit from improvements to its

efficacy and performance, in particular in what concerns the

invariant detection phase.

The rest of this paper is structured as follows. Section II

presents a motivating example and an overview of the ap-

proach. Section III explores related work relevant for this

work. Section IV presents the proposed approach and its

implementation, whose experimental evaluation is shown in

Section V. Lastly, Section VI wraps up the paper and points

directions for future work.

II. MOTIVATION AND OVERVIEW

Dafny is a high-level verification-aware programming lan-

guage that is widely used in teaching and has significant

adoption in industry, with several companies using it to

develop highly-reliable software. For example, at Amazon

Web Services, Dafny is used to write and prove a variety

of security-critical libraries such as encryption libraries1; at

Consensys, the leading Ethereum software company, Dafny is

used, amongst several other Dafny projects, to verify smart

contracts [7] and consensus protocols.

Dafny programs can be written in a combination of func-

tional and imperative paradigms2 and includes built-in con-

structs for writing specifications and reasoning about pro-

grams. Functions (and predicates) are written in a functional

style and must be free of side effects. Methods are written in

an imperative style, and can contain loops and side effects.

Following design by contract principles, functions, and meth-

ods can be assigned contracts, i.e. formal specifications of an

agreement between a client and a supplier of a component (in

this context, a function/method), where the supplier expects

that certain conditions are met by the client before using the

component (pre-conditions, keyword requires), maintains

certain properties from entry to the component to exit (invari-
ants, keyword invariant), and guarantees certain properties

on exit (post-conditions, keyword ensures). Methods are

used to provide the implementation of the program and are

usually assigned contracts that can call functions that specify

the expected behaviour. During compilation, proof obligations

are generated that test whether the implementations conform

to the contracts. Dafny tries to automatically discharge such

proof obligations by relying on Satisfiability Modulo Theories

1https://github.com/aws/aws-encryption-sdk-dafny
2Dafny also supports object-oriented features, such as classes and class

invariants, but these are still not fully supported by our prototype and will
not be explored in this paper.

function abs(n : int) : int
{
if n < 0 then -n else n

}

method divRem(d : int, n : int)
returns (q : int, r : int)
requires d ≥ 0
requires n > 0
ensures r + q * n = d

{
r := d;
var m := abs(n);
q := 0;
while r ≥ m
invariant r + q * m = d
invariant q ≥ 0
invariant m = abs(n)

{
q := q + 1;
r := r - m;

}
if n < 0 {
q := -q;

}
}

method rem(d : int, n : int)
returns (r : int)
requires d ≥ 0
requires n �= 0

{
var s_;
s_, r := divRem(d, n);

}

Fig. 1. An example Dafny program with a bug, with possible contract fix
locations highlighted in red.

(SMT) solvers, guaranteeing the executables obey the contracts

(which are discarded after the verification process).

Figure 1 presents a simple example of a Dafny program that

happens to fail the verification process. The method divRem
simultaneously calculates the quotient q and the remainder r
of two integers d and n using a simple algorithm based on

repeated subtractions. The contract states that given a non-

negative dividend and a positive divisor, divRem returns the

correct quotient and remainder. During compilation, Dafny is

able to verify that divRem obeys that contract. A second

method rem is also defined, which calls divRem and retains

only the remainder of the division. However, either by dis-

traction or by being unaware of the divRem contract, the

contract assigned to rem allows the divisor to be negative. At

this point, Dafny finds an error during compilation, stating that

it cannot guarantee that the pre-condition of divRem holds
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when called in rem. This means that either the pre-condition

of rem is too weak, or that the one of divRem is too strong.

Inspecting divRem more closely, it becomes clear that its

implementation actually also supports negative divisors, so its

pre-condition can be relaxed.

The tool we propose in this paper automatically explores

possible fixes to the contracts that result in a correct program,

assuming that the implementation is correct. In this particular

case, the tool proposes either strengthening the pre-condition

of rem to forbid negative numbers or weakening the pre-

condition of divRem to also allow negative divisors.

Figure 2 shows an overview of the proposed approach,

inspired by previous work on contract repair for Eiffel [6].

A set of test cases is executed in the incorrect program, so

that, from the resulting traces, invariants can be dynamically

inferred to characterize the states before and after the execution

of each method. These invariants are then used to strengthen

or weaken contracts that result in a correct program. For the

context of this work, we are mostly focused on the repair

generation stage. We leave the automatic generation of test

cases and the integration in an IDE to support the application

of repairs as future work. For dynamic invariant inference, we

rely on Daikon [8].

III. RELATED WORK

A. Automated Software Repair

There is a large body of knowledge addressing the auto-

matic repair of programs (as opposed to the repair of their

contracts or formal specifications) [9], [10]. Such automatic

repair techniques can be roughly divided into two classes:

generate-and-validate (or heuristic) — which explore a search-

space for repair candidates which are subsequently tested for

correctness — and constraint-based (or semantics-driven) —

where constraints representing a correct repair are derived, and

solvers deployed to generate correct-by-construction repairs.

Automated repair techniques require that an oracle is provided,

specifying the correct behaviour of a program. For most of ex-

isting work, this oracle takes the shape of a test suite, but a few

techniques consider program contracts or formal specifications

as oracles, such as the work by Gopinath et al. for repairing

Java programs with associated Alloy specifications [11], or

AutoFix to repair Eiffel programs with contracts [12]. In the

educational context, there are also works that use a reference

implementation of a program as an oracle to fix students’

submissions [13].

To the best of our knowledge, only one technique has been

proposed to automatically repair program contracts, SpeciFix,

for fixing contracts in Eiffel programs [6]. SpeciFix assumes

that the program implementation is correct and uses it as the

oracle. Other work has focused on repairing formal specifi-

cations but without considering implementations as oracles,

including for repairing OCL constraints given inconsistent

information bases [14] and for repairing faulty Alloy specifi-

cations using test cases [15] and reference specifications [16]–

[18]. As far as we are aware, no work has focused on the repair

of Dafny, either program implementations or their contracts.

B. Invariant Inference

An invariant is an expression that is always true at particular

program points during execution. Invariants are useful for,

e.g., software verification, repair, and fault localization [19].

They are also useful in software evolution, as, with explicit

invariants in the code, programmers can be alerted to any

changes that violate assumptions necessary for ensuring the

correctness of a program. They act as constraints that must be

preserved during the program’s execution, regardless of any

modifications or changes made to the code. However, despite

their advantages and uses, most programmers do not annotate

their code with invariants.

A way to increase the existence of invariants in code,

is to automatically infer them. There are several existing

approaches for invariant inference, which are divided mainly

into two main classes: static and dynamic. Static approaches

involve analysing the source code of a program and deriving

information without executing it. Dynamic approaches, on the

other hand, involve observing and evaluating the behaviour of

software while it is executing [20]. The accuracy of dynamic

detection is dependent on the coverage and quality of the

tests [21] and it can be a computationally expensive process.

Combining dynamic invariant detection with static verification

of those detected expressions may be desirable [22].

A well-known example of an invariant detection program,

and the pioneer in dynamic invariant inference, is Daikon [8].

With the help of a test suite that exercises the functionality of

a program, Daikon receives as input an execution trace and

generates a set of invariants that are statistically justified by

the trace. There is no formal assurance that these invariants are

correct, but they match the observed program executions and

there is statistical evidence that their occurrence is meaningful

and relevant to the program’s behaviour. Also, as with any dy-

namic analysis, there is the possibility of reporting redundant

invariants and properties that are true for certain execution

traces but not in general. Although Daikon will still report

invariants that are not useful, efforts have been made to make

the inferred invariants more relevant [8], [23].

Several tools make use of, and improve on, Daikon. For

example, iDiscovery [24] uses symbolic execution to improve

the quality of invariants computed by Daikon by following a

feedback loop of instrumenting the generated invariants into

the code, symbolically executing the code to generate new

tests, and feeding the new tests into Daikon to refine the

results. Daikon has been used and extended in many other

contexts which include the detection of logic vulnerabilities in

web applications [25], invariants for relational databases [26],

distributed systems [27], robotic systems [28], and Ethereum

smart contracts [29].

Although Daikon appears to be the most widely adopted,

there are other works available on dynamic invariant inference.

For example, DySy [30], a tool created with the goal of

increasing the relevance of inferred invariants when compared

with Daikon, which combines the concrete execution of actual

test cases with a simultaneous symbolic execution of the same
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Fig. 2. Overview of the proposed approach, highlighting the main step addressed in this work.

tests. Another example is DIDUCE [31], which dynamically

extracts invariants from program executions, starting with

the strictest invariants and gradually relaxing them when it

detects a violation from continually checking the program’s

behaviour against them. Also, in the context of hardware

design, IODINE [32] uses dynamic analysis to infer likely

invariants based on design simulations.

IV. CONTRACT REPAIR FOR DAFNY

A. Automated Contract Repair

As shown in Section III, SpeciFix [6] is the only technique

that has thus far been proposed for repairing contracts of

programs, namely of Eiffel programs. As a first step towards a

technique to repair Dafny contracts, this work mainly explores

whether that approach can be applied to the Dafny context.

Here we describe how our procedure works, inspired by the

SpeciFix approach. Roughly, given a program with contracts,

test cases are automatically generated, executed, and tested

against the contracts. From the set of passing and failing test

cases, invariants are inferred to both strengthen and weaken

the contracts. The candidates are then validated against the

tests, those that pass being ranked and presented to the user.

More formally, let a test case (or simply a test) t =
r(a1, . . . , am) be defined by a method r being applied to a

sequence of m arguments a1, . . . , am. From the outermost

method r call, other methods may be called, and so on

recursively. We denote the call sequence of a test t by

κt = r1r2 . . . rn, with r1 = r if there are n nested method

calls. Each method is called from a particular pre-state and

produces a post-state. We denote the trace of a test t as

ρt = s1r1s2r2s3 . . . snrn, where si denotes a program state.

Each method ri may be annotated with a pre- and post-

condition, which are denoted by Pri and Qri , respectively.

Given one such assertion A, we denote the fact that it holds

in a state si as si |= A. A test is said to be valid if the pre-

condition of its outermost method Pr holds in its initial state

s1; invalid tests do not represent acceptable executions and are

not even considered during repair. A valid test t is said to be

passing if all states si in its trace ρt pass the pre-condition

of the succeeding method call Pri and the post-condition of

the preceding method call Qri−1 (for i �= 1); it is said to be

failing otherwise. We assume that the execution of a failing

test terminates as soon as an inconsistent state is found, and

thus, for failing tests, rn denotes the routine whose contract

has been broken (either its pre- or post-condition). For our

example, a test rem(20, 0) is invalid, since it breaks the pre-

condition of rem that n �= 0, rem(20,−10) is a failing test

since it fails the pre-condition of divRem that n > 0 when

called from rem, and rem(20, 10) is a passing test.
Whenever a failing test t is found, contracts can be fixed

in two ways: either strengthening the pre-condition of the

outermost method r, making the test invalid; or weakening

the contract (pre- or post-condition) of the failing method rn.

Strengthening is always a valid fix, but may break other calls

to r. In our example, the pre-condition of rem could simply be

strengthened to n > 0, but this would disallow calculating the

remainder of a negative divisor, which is actually possible in

the current implementation. Weakening may not always work,

as it may result in incorrect executions. In our example, the

pre-condition of divRem can be relaxed to n �= 0 because

the reference implementation actually works correctly for

negative divisors; if that was not the case, it would not be

possible to fix the contracts by weakening. In [6] the authors

argue that to generate fixes that are consistent with the way

the API is used, strengthening fixes should actually be applied

along the complete trace, and not just to the outermost method.

Moreover, they also use the strength of proposed fixes when

ranking them to be presented to the user; here we leave fix

ranking for future work.
Given this background, the generation of candidate fixes

works as follows, generating weakening and strengthening

candidate fixes (and their combination).
Trace generation: Execute all test cases, and identify

a fault to be fixed, i.e., a set of test cases with the same

call sequence that break assertion An (either a pre- or post-

condition) of method rn. Let Pr be the set of passing test

cases with the outermost method r, and Fr the set of failing

tests for that fault. In our example, An is a pre-condition of

divRem, d > 0.
Generating weakening fixes: The result of this stage is a

set of weakening fixes ΦW and a set of candidate weakening

fixes Ψ that will be combined with strengthening candidates

in the next stage.

• Let r̃n be a version of method rn with the broken asser-

tion An relaxed to true, and create new sets of passing

and failing tests, P̃r and F̃r. From those sets, infer the
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invariants IP̃ and IF̃ . Let W = {p | p ∈ IP̃ ∧ p �∈ IF̃},

the set of minimal weakening assertions required for r̃n
to pass. In our example, n �= 0 is a possible weakening

assertion for divRem.

• For each weakening assertion p ∈ W ∪ {false} create

a candidate fix that replaces An with An ∨ p and add it

to a set of weakening fix candidates Ψ. Dummy assertion

false allows the generation of purely strengthening

candidates in the next stage. In our example, we would

end up with n > 0 ∨ n �= 0 and n > 0 ∨ false,

which simplify to n �= 0 and n > 0 respectively.

• Add every weakening candidate fix f ∈ Ψ that now

passes tests Pr ∪Fr to ΦW and let Ψ′ = Ψ\ΦW . In our

example, candidate n �= 0 would make all tests pass.

Generating strengthening fixes: Since it is not always

possible to fix a contract by simply weakening, this stage

combines invalid weakening fixes with strengthening fixes. To

keep the program API consistent, it tries to strengthen all pre-

conditions in the trace, rather than just the outermost method.

• For every invalid weakening candidate f ∈ Ψ′, determine

IP
i and IF

i as the invariants for the tests currently

passing and failing the pre-condition of each method ri
in the trace, with i < n. For each ri, let Si = {pi |
pi ∈ IP

i ∧ pi �∈ IF
i }, the set of minimal strengthening

assertions that make ri pass. In our simple example,

there is a single method call before the failing assertion,

rem, and a strengthening assertion such as n > 0 could

be generated associated with the remaining weakening

candidate in Ψ (which was actually false, leaving the

pre-condition of divRem unchanged).

• For all combinations of strengthening assertions p ∈ S1×
. . .× Sn−1 for a weakening candidate fix f ∈ Ψ, create

a fix that replaces Pri by Pri ∧ pi and add it to the set

of strengthening candidates, Σ, along with weakening fix

f . For our example, this would create the strengthening

candidate for rem and leave divRem unchanged.

• Add every strengthening candidate fix f ∈ Σ that now

passes tests Pr ∪ Fr to ΦS .

The fixes presented to the user are those in the set ΦW ∪ΦS .

B. Implementation

The implementation of the contract repair technique is built

on top of the Dafny official release3 which is developed in

C#. In particular, our tool relies on the Dafny library to parse

Dafny programs and manipulate their AST.

To extract the execution trace of each test case, we rely

on a compilation of Dafny into Python. This translation was

adapted to wrap the Python-version of the Dafny methods with

a decorator that registers the state of the program in a trace

logger before and after each function call, including cases

when a Python exception occurs (e.g., division by zero and

infinite recursion) and this is marked in the trace. Python.NET
is then used to retrieve the resulting trace information back

into the C# module. Note that execution traces are obtained

3https://github.com/dafny-lang/dafny

without testing for the contracts, so they always completely run

regardless of failing the assertions. This allows us to reuse the

same execution traces in different stages of the process.

Once the execution trace of a program is retrieved, it is then

enhanced with information indicating whether the contracts are

holding at each state. To that purpose, the main C# module

evaluates the contracts (i.e., pre- and post-conditions) at each

state of the traces. This evaluation is very effective since it is

only evaluating an assertion over a specific program state.

Execution traces, along with that contract passing informa-

tion, are then passed to Daikon to infer the dynamic invariants.

By having information regarding passing contracts as a trace

variables, Daikon is able to determine sufficient and necessary

conditions for a contract to hold. The header of the Daikon
trace format, dtrace, contains the trace point definitions. Fig-

ure 3 shows an example of a declaration for the entering state

of rem from our running example. It contains the name of the

point (with the method’s qualified name and argument types,

along with information about the point type), its type (either

enter or subexit), and for each variable, its name, kind (either

field, function, array, variable or return value), how its value is

represented in the trace, and its comparability value (Daikon
only creates comparison invariants for variables with the same

comparability value). Here, there are two variables for the

rem arguments d and n, and a Boolean pre_condition,

registering whether the pre-condition passed. An identical

variable post_condition would occur in exit trace points,

together with a variable that indicates if, during its execution,

any other contract was broken.

To detect conditional invariants, Daikon requires a splitter,

which can be manually provided by the user. This is done by

indicating which Boolean variables the invariants should be

split on depending on their value. For our context, we define

the invariant splitter on the variables that identify whether

contracts pass or fail, namely on the values of variables

pre_condition and post_condition.

The actual body of a dtrace file contains the trace it-

self, conforming to the point declarations. Each trace point

contains concrete values for the variables declared for that

point, representing a concrete state of the trace. Currently,

our tool supports only variables of primitive types in the

states of the traces. Figure 4 shows a particular trace point

from the execution of test case for rem, identifying the point

name, a unique identifier (repeated only in the exit point

for the same call), and a list of the point’s variable state,

with their names, concrete values, and whether they were

changed or not. In the example, we have d = 5, n = -3
and pre_condition = 1 since the pre-condition of rem
holds for those arguments.

After Daikon executes, the provided invariants are processed

back into the repair module and converted into Dafny ex-

pressions. Daikon generates invariants for all entry points and

variables, many of which are not relevant to the repair process,

so they are filtered before being considered as fix candidates.

In particular, an invariant A is considered relevant if:
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ppt module_.default__.rem():::ENTER
ppt-type enter
variable d

var-kind variable
dec-type int
rep-type int
comparability 2

variable n
var-kind variable
dec-type int
rep-type int
comparability 2

variable pre_condition
var-kind variable
dec-type boolean
rep-type boolean
comparability 1

Fig. 3. Entry point declaration for rem in the dtrace format.

module_.default__.rem():::ENTER
this_invocation_nonce
192
d
5
0
n
-3
0
pre_condition
1
0

Fig. 4. Entry point example for test case rem(5,-3) in the dtrace format.

• A is in the format (<contract variable> ==
<boolean value>) <==> <expression>;

• the right-hand <expression> in A refers to variables

other than contract variables;

• A is not structurally equivalent to others;

• when calculating fixes for pre-conditions, A cannot refer

to return values;

• in the weakening phase, A cannot refer to methods other

than the faulty call rn.

V. EXPERIMENTAL EVALUATION

For the evaluation of the developed prototype, we developed

a few simple Dafny programs with faulty contracts:

• Catalan numbers, composed by a single recursive

method that calculates the nth Catalan number;

• DivRem, composed by divRem running example that

receives two integers and calculates their integer division

and respective remainder, which is called by rem that

discards the quotient and returns the remainder only;

• Harmonic Sum, composed by HarmonicSum, a

method that calculates the sum of the nth and (n +
1)th harmonic terms, which are obtained by a call to

NthHarmonic, a method that requires a positive num-

ber, wrongly disallowing its argument to be 0;

• Inverse Sign, having a method Enter that receives an

integer n and calls div which calculates 1/sgn(n) using

a method inverse for the calculation of this division;

• Opaque Keyword, having a single empty method with

a post-condition that is only valid when its argument is

in the interval [0, 100);
• Two Requires, having a method Enter that calls an

empty method with a strict pre-condition, allowing it to

only be called with 0 as an argument.

The repair generation process requires a set of test cases

from which to retrieve the execution traces. These tests ideally

should be generated automatically for the program to be fixed,

but that has been left as future work. To have access to a large

set of test cases to perform the evaluation, we have manually

implemented a script to generate test cases within a certain

range for each example program defined above.
The repair procedure was run 20 times for each example

and execution times averaged. All tests were run on an En-

deavourOS 2022.06.23 machine with 12 GiB of memory and

a 2.1 GHz AMD Ryzen 5 4-core CPU. When running Daikon,

the confidence level was set to 0 in order to obtain a maximum

number of invariants, and the splitter was set on the contract

passing variables as explained in Section IV-B. Results are

presented in Table I, with detailed information about the

various stages of the process. Note that the strengthening

stage must be run for each invalid weakening candidate in Ψ′;
the presented values refer to the sum of all those iterations.

After execution, we manually inspected the produced fixes and

realized many were actually logically equivalent. To discuss

that issue, we also added to the table the number of fixes we

found to be effectively unique (i.e., not logically equivalent).
Our prototype was able to generate fixes for all the

faulty examples except for opaqueKeyword. This partic-

ular example required a strengthening assertion of the shape

0 ≤ x < 100 but Daikon was only able to detect invari-

ant 0 ≤ x despite our configuration efforts. For divRem,

harmonicSum, and twoRequires our tool found both

weakening and strengthening fixes, and for the remainder

examples only strengthening fixes, which was expected. Inter-

estingly, we also detected a case where the returned strength-

ening fix was stronger than required, namely for the divRem
program. Rather than just forcing n > 0 in the pre-condition

of rem, the weakest strengthening fix, Daikon actually inferred

that n > d, which associated with the other pre-condition

d ≥ 0 is stronger than n > 0 (e.g., d = 9 and n = 3 is

not accepted by the stronger pre-condition).
Regarding execution times, evaluation shows that our tool

takes from 6s to 12s to generate the fixes for our examples.

While we feel such times are acceptable to a tool of this

nature, it must be noted that our benchmark consists of

very simple programs. Looking at the different stages of the
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TABLE I
EXPERIMENTAL EVALUATION RESULTS.

divRem catalanNumber harmonicSum inverseSign opaqueKeyword twoRequires

Trace Number of test cases 225 15 15 15 170 15
Test execution (ms) 1114 1216 1107 1062 1083 1347

Weakening

Weakening fixes generation (ms) 2631 2807 2543 2717 2424 2520
Invariant detection (ms) 2571 2631 2527 2699 2405 2510
Invariant detection relative weight 97.7% 93.7% 99.3% 99.3% 99.2% 99.6%
Weakening candidate fixes (#Ψ) 3 3 3 3 1 2
Valid pure-weakening fixes (#ΦW ) 2 0 2 0 0 1
Unique pure-weakening fixes 1 0 1 0 0 1

Strengthening

Iterations (#(Ψ′)) 1 3 1 3 1 1
Strengthening fixes generation (ms) 2723 8294 2523 8174 2433 2569
Invariant detection (ms) 2639 8072 2514 8131 2420 2565
Invariant detection relative weight 96.9% 97.3% 99.6% 99.5% 99.5% 99.8%
Strengthening candidate fixes (#Σ) 6 6 4 12 1 3
Valid strengthening fixes (#ΦS ) 2 6 2 12 0 2
Unique strengthening fixes 1 1 1 2 0 1

Total

Runtime (ms) 5913 12154 6469 15557 6127 7431
Invariant detection relative weight 88.1% 88.1% 77.9% 69.6% 78.8% 68.3%
Fixes (#(ΦW ∪ ΦS)) 4 6 4 12 0 3
Unique fixes 2 1 2 2 0 2

procedure, the evaluation shows that, perhaps as expected,

most of the time is spent during invariant detection using

Daikon, followed by the time spent initially executing the test

cases to retrieve the traces. This indicates that future effort

should focus on this stage of the process, either fine-tuning

the Daikon configuration or exploring alternative approaches.

It is also worth noting that the tool is generating equivalent

fixes due to equivalent assertions being provided by the

invariant detection stage, meaning additional costly, but irrel-

evant, iterations of the strengthening stage (besides possibly

encumbering the user with spurious repair candidates). For

instance, for the divRem program, Daikon returns n �= 0
and ¬(n = 0) as weakening assertions, and d < n and

¬(d ≥ n) as strengthening assertions. It may also be worth

to employ techniques for the detection of equivalent assertions

to reduce the number of candidate assertions.

To further illustrate the fixes suggested by the tool, we

present in Figure 5 a simple example, the Harmonic Sum,

used in our evaluation. In this example, the pre-condition of the

method NthHarmonic incorrectly requires its argument to be

a positive number, but a value of zero should also be accepted.

The tool proposes four fixes, two for each method. For the

NthHarmonic, it suggests the weakening assertions x ≥ 0
and ¬(x ≤ -1), both equivalent; for the HarmonicSum, it

suggests strengthening fixes n ≥ 1 and ¬(n ≤ 0), both also

equivalent. Although fixing the NthHarmonic by weakening

its pre-conditions would likely be the most desirable fix, the

suggestions for the HarmonicSum also results in a program

that verifies and, as such, corresponds to a valid repair.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a prototype tool for the repair of faulty

contracts in Dafny programs, assuming the correctness of a

reference implementation. We were inspired by a technique

previously proposed for another contract programming lan-

method NthHarmonic(x : int)
returns (c : int)
requires x ≥ 1

{
if x < 0 {
return 1 / 0;

}
return 1 / (x + 1);

}

method HarmonicSum(n : int)
returns (r : int)
requires n ≥ 0

{
var n0 := NthHarmonic(n);
var n1 := NthHarmonic(n + 1);
r := n0 + n1;

}

Fig. 5. The faulty Harmonic Sum example used in the evaluation, with
possible contract fix locations highlighted in red.

guage [6], and currently rely on a third-party tool for dynamic

invariant inference [8].

Our preliminary evaluation shows that the procedure is

feasible in Dafny for our simple examples. It also shows

that the steps performed by our tool take reasonable time to

execute, but the overall process suffers from some efficacy

and performance issues that stem from the invariant detec-

tion phase performed by Daikon. Although some fine-tuning

of Daikon’s input parameters may improve its performance,

scaling the procedure for more complex programs will likely

require further research on this topic.

There is still substantial work to be done before the tool

can be deployed in the development of Dafny programs. For
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example, language features such as mutable elements and

classes have not yet been addressed. Also, the evaluation must

be expanded to consider more complex and realistic programs.

In addition, user-studies must be carried out to explore how

helpful users find the generated fixes and if these fixes do

contribute positively to produce a program that verifies.
Although previous work suggests that inferred contracts

are important to complement contracts written by program-

mers [33], work on human factors that affect the use of inferred

contracts is lacking. Further work in this area should be carried

out, for example, to support programmers with determining the

relevance and validity of the inferred invariants, as previous

studies have shown that users have difficulty deciding if the

invariants inferred by Daikon are true [34].
Moreover, techniques for automated test generation should

be employed to create the test cases, and there is some work

on this topic for Dafny [35], [36]. To be useful for the

community, such a repair technique should integrate the Dafny

IDE, namely its plug-in for VS Code. Lastly, as part of our

future work, we aim to build a large dataset of faulty Dafny

programs that will be made available to the community to

foster further research in the area of Dafny program repair.
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