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Abstract: Learning to program requires diligent of practice and creates room for discovery, trial and
error, debugging, and concept mapping. Learners must walk this long road themselves, supported by
appropriate and timely feedback. Providing such feedback in programming exercises is not a humanly
feasible task. Therefore, the early and steadily growing interest of computer science educators
in automated assessment of programming exercises is not surprising. Automated assessment of
programming assignments has been an active area of research for over a century, and interest in it
continues to grow as it adapts to new developments in Computer Science and the resulting changes
in educational requirements. It is therefore of paramount importance to understand the work that has
been done, who has done it, its evolution over time, the relationships between publications, its hot
topics, and open problems, among others. This paper presents a bibliometric study of the field with a
particular focus on the issue of automatic feedback generation, using literature data from the Web
of Science Core Collection. It includes a descriptive analysis using various bibliometric measures
and data visualizations on authors, affiliations, citations, and topics. In addition, we perform a
complementary analysis focusing only on the subset of publications on the specific topic of automatic
feedback generation. The results are highlighted and discussed.

Keywords: automated assessment; programming education; programming exercises; computer
science; bibliometrics; data visualizations; feedback

1. Introduction

Practice is the key to learning how to program. Practical programming skills can only
be acquired through extensive and varied experience in solving programming challenges [1,
2]. Such an experience should provide the learner with room for discovery, trial and error,
debugging, and concept generation while supporting the learner with individualized,
accurate, rich, and rapid feedback to unlock their progress. Obviously, feedback that
meets these requirements cannot be guaranteed by a human instructor [3,4]. Automated
assessment tools for programming tasks have emerged as a solution to this problem.
They have been part of Computer Science (CS) education almost since learners began
being asked to develop software, and their value is already unanimously recognized by
practitioners. Nevertheless, interest in assessing various program properties (e.g., quality,
behavior, readability, and security), in adapting feedback, and in developing better and
more powerful tools has not waned since then [5].

Several studies have been carried out to synthesize the latest advancements in auto-
mated assessment for Computer Science (CS) education [4-7]. There are studies that focus
on comparing the tools’ features [7], exploring the methods and techniques applied in the
different facets of the automated assessment tools [4,6], and other wider studies covering
both [5]. To the best of the authors” knowledge, a single bibliometric study [8] has been
conducted to analyze the quantitative aspects of scientific publications in the area and their
relationshibibliops [9]. Such a study identifies the authors currently worth following and
their affiliations, explores the evolution of publications and citations over time, establishes
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relationships between emerging topics in publications, computes the co-occurrence of
topics and corresponding clusters, builds the citation networks, and elects the research
trends.

This paper is an extension of the bibliometric study of Paiva et al. [8], previously
introduced. This extension is twofold. Firstly, we extend the time span of the bibliometric
research up to the end of the past year (2022). Lastly, we present a complementary biblio-
metric analysis focusing on a specific topic within the area, automatic feedback generation.
Our goal is to answer the following six groups of research questions, considering the inter-
val 2010-2022. The first group of research questions, RQ1, aims to summarize the collected
data, including the annual scientific production (RQ1-1); the average time interval for a
new publication to get the first citation (RQ1-2); and the main journals/conferences to find
literature in the area (RQ1-3). The second group (RQ2) concerns authors. It aims to find out
the common team size per publication (RQ2-1), the most productive, active, and impactful
authors during the time span (RQ2-2), whether those authors publish alone or in groups
(RQ2-3), the most evident collaboration partnerships (RQ2-4), and the main affiliations
(RQ2-5). The third group (RQ3) targets citations, in particular, we want to identify the most
influential (RQ3-1) and the most relevant (RQ3-2) co-citations. The fourth group (RQ4)
investigates the topics being discussed in publications, including which are the basic, niche,
motor, and emerging (RQ4-1), their evolution during the analyzed time span (RQ4-2), the
frequent terms being used (RQ4-3), and whether those vary during the years (RQ4-4). The
fifth group (RQ5) concentrates on feedback-specific questions, particularly, we want to
know what are the active sub-topics (RQ5-1) and research lines (RQ5-2). Table 1 lists the
research questions addressed in this study.

Table 1. List of research questions addressed in this study

Group No. Question

What is the annual scientific production?

What is the average time interval for a new publication to get the
first citation?

Which are the main journals/conferences to find literature in the
area?

What's the common team size per publication?

Which are the most productive, active, and impactful authors?
Do those authors publish alone or in group?

Which are the most evident author collaboration partnerships?
What are the authors’ main affiliations?

Which are the most influential citations?

Which are the most relevant co-citations?

Which are the basic, niche, motor, and emerging topics?

How did topics evolved during the analyzed time span?

Which are the frequent terms being used?

How is the yearly frequency of the most frequent terms?

Which are the active sub-topics within feedback?

Which are the active research lines within feedback?

RQI1

N

RQ2

RQ3

RQ4

RQ5

N =dEs QONRRLDNROs WON - W

The remainder of this paper is organized as follows. Section 2 presents the methodol-
ogy used to conduct this study. Section 3 presents the results of the bibliometric analysis
and answers each of the research questions. Section 4 discusses the results, and compares
them to recent literature review [5]. Finally, Section 5 summarizes the major contributions
of this study.

2. Methodology

The data for this study has been collected from the Web of Science (WoS) Core Collec-
tion, during the third week of March 2023. To this end, a query [10] has been built to search
all fields of a publication for the following combination of keywords: (automatic OR auto-
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mated) AND (assessment OR evaluation OR grading OR marking) AND (programming
OR computer science OR program).

The query includes a filter to limit results to those published from 2010 up to end of
2022. In addition to that, two refinements were needed. The first to narrow down search
results to the adequate WoS categories for this area, namely: Computer Science Information
Systems, Computer Science Artificial Intelligence, Computer Science Interdisciplinary
Applications, Computer Science Software Engineering, Education Educational Research,
Education Scientific Disciplines, Multidisciplinary Sciences, and Education Special. Even
though some of these categories may still include out-of-scope publications, excluding them
could result in the loss of important publications. The result was a set of 16471 publications.

For these publications, we have extracted their full record, including cited references.
A total of thirty-three BibTeX exports were necessary to obtain the data from all the 16471
publications, due to the limitations of WoS on the number of records allowed to be exported
in a single request (in these conditions, the limit is 500). Finally, the BibTeX files obtained
have been merged into a single BibTeX file. Having this set in a single file, we have
imported it into R using bibliometrix [11] — an open-source R-tool for quantitative research
in scientometrics and bibliometrics, and proceeded with a pre-processing phase. This phase
aims to identify the relevant publications for analysis by applying inclusion/exclusion
criteria identical to that used by Paiva et al. [5], after carefully reading the titles and abstracts
of each paper. The result from this phase is a set of 779 publications, which we used for
further analysis.

After filtering, we extract the 2-grams terms from both the abstract and the title
into two new columns of the dataset, reducing a few synonyms to a single term (e.g.,
“grading tool”, “assessment tool”, and “marking tool” to “aa tool”) and eliminating general
terms (e.g., “automated assessment” or “computer science”). Then, the resulting dataset is
analyzed using R and traditional data processing and visualization packages, except for
bibliometrix package [11]. Bibliometrix is an R package specifically designed to support
bibliometric analyses. In particular, it can import bibliographic data both directly and
indirectly from SCOPUS, Clarivate Analytics” WoS, PubMed, Digital Science Dimensions
and Cochrane databases, and perform a wide range of bibliometric analysis methods,
including citation, co-citation, bibliographic coupling, scientific collaboration, co-word, and
co-authorship analysis.

From these analyses, some visualizations of the data have been produced using R and a
few libraries, particularly, ggplot, VOSViewer, and Bibliometrix. Additional visualizations
were produced in Biblioshiny, a shiny app providing a web-interface for bibliometrix.
Finally, we have curated a bibliometric summary and compiled a brief report of the findings,
which we interpreted to answer the research questions presented in Subsection 1. Figure 1
presents the steps performed in this research.

Data
Collection

Data

Processing | Visualization

Context Interpretation

Method: manual
search, export in
batches, and merge
batch results

Field of Study:
Automated
Assessment of
Programming

Tools: R,
Bibliometrix, dplyR, ...

Analysis: Results: Curate a

Table 1

Database: Web of
Science (WoS) Core
Collection

inclusion/exclusion
criteria

Pre-processing:
abstract/title term
extraction (2-grams)

- Co-word analysis,
- Co-authorship
analysis,

- Clustering

Assignments Format: BibTeX - Citation analysis, . ; bibliometric summary
- Co-citation analysis, g?tﬁil(?s.hliaﬁ \//Iglsl\llolfnv(\;?:l and compile a report

Research Filtering: read title - Bibliographic X lot Y of the findings.

Questions: See and abstract, apply coupling, » 9gp Answer RQs and

select adequate
visualizations.

Figure 1. Schema of the steps performed in this research
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3. Results

The results of the analysis are detailed in this section, where each subsection answers
one of the groups of research questions presented in Section 1. Subsection 3.1 provides a
summary of the data used in the analysis, including answers to RQ1. Subsection 3.2 encom-
passes the results related to the authors” analysis (i.e., RQ2). Subsection 3.3 demonstrates
the results regarding the analysis of citations (i.e., RQ3). Subsection 3.4 presents answers
to RQ4, which pertains to topics and keywords. Subsection 3.5 presents answers to RQ5,
which contains questions about the feedback on automated assessment of programming
assignments.

3.1. Data Summary

Literature on automated assessment of programming assignments has had a contin-
ually growing interest during the analyzed period (2010-2022), as depicted in Figure 2
through a visualization of the number of publications per year with a linear trend and the
associated confidence interval. The trend line reflects a growth rate of approximately 7.1%
in the annual scientific production during the timespan 2010-2022. Nevertheless, a slight
decrease in the number of publications between 2019 and 2020 is noticeable, an exceptional
situation that can be associated with the COVID-19 pandemic crisis. The years with the
highest number (99) of publications, i.e., the peak years, were 2018 and 2021. This responds
to RQ1-1.

Each of the collected documents was cited by an average of 7.254 other publications,
with an average rate of 1.045 per year. Thus, in response to RQ1-2, it takes an average of
11.483 months to receive the first citation. The year with the most citations per publication
on average was 2014, with a mean of 14.31 citations per publication. However, the year
in which publications were most cited per citable year (i.e., following years captured in
the analysis) was 2017, having an average of 1.81 citations per publication and citable
year. Figure 3 shows the average citations of a document per citable year, for each year
of publication. For example, a publication of 2010 (i.e., with 13 citable years) has 0.624
citations on average per year (the lowest of this dataset if we exclude the last year, whose
information may not be complete).

©
o

Publications
@
3

Citations

o
S

0.5-

2010 2012 2014 2016 2018 2020 2022 0.0

Year 2010 2012 2014 2016 2018 2020 2022
Year

Figure 2. Number of publications per year with Figure 3. Average publication citations per docu-
the linear trend (blue line) and its confidence in- L.
ment in citable years
terval

The set of 779 selected publications consists of 7 review papers, 222 journal articles,
545 proceedings papers, and 5 classified as other editorial material. These come from 455
different sources, including journals, and books, among others. The top-20 publication
sources (RQ1-3), presented in the tree-map of Figure 4, account for almost one-fifth of the
total publications. The Proceedings of the 51st ACM Technical Symposium on Computer
Science Education is the source with the highest number of articles collected (15), followed
by ACM Special Interest Group on Programming Languages (SIGPLAN) Notices with
12 publications, ACM Transactions on Software Engineering and Methodology with 11
publications, and Information and Software Technology with 10. Computers & Education,
Empirical Software Engineering, Journal of Systems and Software, Science of Computer
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Figure 4. Top-20 sources of publications in a tree-map

Programming, and the Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, with 8 publications each, complete the top-5 sources.

3.2. Authors

The set of publications selected for analysis contains documents from 2120 distinct
authors, of which 56 authored at least one of the 62 single-authored documents that are
part of this set. The average number of authors per document is 3.26, whereas excluding
the 62 single-authored publications, there are 3.47 co-authors per document on average.
From these co-authorships, we could identify that 20.28% are international co-authorships.
Figure 5 shows a histogram of the number of authors per publication that responds to
RQ2-1. The most common are publications with 2 to 4 authors (72.5% of all publications),
being 3-author publications the ones in the majority.

250-
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S T S T S S

Nr. of Authors

o
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Nr. of Publications
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o
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o

Figure 5. Distribution of publications by the number of authors

In respect to the “most prolific authors” (i.e., the authors who have made more
publications) as asked in RQ2-2, Figure 6 shows the top-10, sorted in descending order
from top to bottom, of authors who have made more contributions to the field and, for
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those, the number of publications and citations per year. From this perspective, the authors e
who are more active recently, such as Fraser G. and Edwards S. H., and those who were 16
more active at the beginning of the timespan, such as Kim M., Queirés R., and Leal J. P., 164
are easier to identify. Nevertheless, the most impactful works are that of Monperrus M., 1es
who studies mostly automated program repair techniques. The work of Fraser G., which 16
concentrates on software testing techniques, and Kim D., which investigates techniques for e
automated generation of feedback, complete the podium regarding authors’ impact. This 1es

can be confirmed by measuring the authors’ h-index (6, 5, and 5, respectively). 169
FRASERG- ] ©
EDWARDS SH- ® Nr. of Articles
LEALJP- Y ® .
[ ¥
MAO X~ - ([ X
5 QUEIROS R~ o TC per Year
] 0
< KIMM- (s} o 2
e 4
MARCHISIO M - < ol ¢
® 8
MONPERRUS M- L L J e 10
* 12
WANG'S - *—@———
KIMD- L
Year

Figure 6. Productivity of authors over time (TC stands for Times Cited)

Having the most prolific authors, we construct a histogram of the number of authors 17
per publication for each of them separately to answer RQ2-3. Figure 7 illustrates the in
result. Among the most prolific authors, the only authors who have worked alone are 17
Queiros R. (1) and Monperrus M. (1), while all others have no single-authored publications. 17
Nevertheless, Edwards S. H. and Marchisio M. publish mostly in small groups with one 17
or two co-authors. Interestingly, Mao X., Wang S., and Kim D. have only worked in large 175

groups of 4 or more authors. 176
EDWARDS SH FRASER G KIM D KIM M
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Figure 7. Number of authors per publication for the most productive authors

There are several researchers collaborating on projects that publish together very i
often. RQ2-4 aims to identify them. To this end, we have created a graph of the authors’ 17
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collaboration networks, presented in Figure 8. Bolder edges indicate a stronger partnership
relation between authors, i.e., the authors participated together in the same publications
more often. For instance, Leal J. P. and Queiros R. authored many of their publications
together. The same for Tonisson E. and Sade M., who also collaborated less frequently with
Lepp M. and Luik P.

- cu@' b @
maicus e . 91 Q X
wang k peveler m
- 7
® "
9 "z m X lid
A ' -
ol kim d ®
@ Jissy BN
o »
marques puig jm kim m buyr Kol ki
daradoumis t 5
— calvetTinan | % -
arguedas m B marchisio m

mon;rg‘us m tonis%)n e Sag m qqu)s r

r

lepp m Iu-? p
Figure 8. Authors’ collaboration networks

Regarding RQ2-5 which aims to find out the main affiliations from the authors, there
are 636 distinct identified affiliations within the collected publications. Note that a pub-
lication can count to more than one affiliation if it involves either authors with multiple
affiliations or documents with multiple authors resulting from a collaboration between
different institutions. The top-20 most prolific affiliations, alone, account for more than 39%
of the identified affiliations. Carnegie Mellon University is the institution with the most
publications (25), followed by North Carolina State University (20), and the University
of Porto (19). The Nanjing University and the University of Tartu, both appearing with
18 publications, complete the top-5. The top-20 most prolific affiliations are presented in
Figure 9, which alone account for more than 37.5% of the identified affiliations.

CARNEGIE NANJING UNIV NANYANG TECHNOL || UNIV PASSAU UNIV CALIF PEKING UNIV
(18) BERKELEY (13)
(14)

NATL UNIV UNIV' N CAROLINA|UNIV SZEGED KOREA ADV
UNIV TARTU INST SCI
(18) AND TECHNOL

NORTH CAROLINA

STATE UNIV
(20)
UNIV LUXEMBOURG
(11)
UNIV ILLINOIS tJl";')V il
UNIV PORTO DEPT COMP (15)
(19)

UNIV POLITEHN
BUCURESTI
(11)

Figure 9. Top-20 authors’ affiliations by productivity in a tree-map

3.3. Citations

The most influential publications (RQ3-1) are those having more citations, but should
also take into consideration the year of publication and the area of the publication citing
it (i.e., a citation from a publication in the same area has a different weight from one in
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another area). To handle the former, we used the Normalized Citation Score (NCS) of a 108
document, which is calculated by dividing the actual number of cited publications by the 190
expected citation rate for publications of the same year. To address the latter, we have made 200
a twofold answer. 201

On the one hand, the local NCS (i.e., citations within the collected data) determines the 202
most influential publications within the area. The top-5 publications under such conditions  zos
are: “Context-Aware Patch Generation for Better Automated Program Repair” by Wen 204
et al. [12]; “Marking student programs using graph similarity” by Naudé et al. [13]; “A 205
distributed system for learning programming on-line” by Verd et al. [14]; “TBar: revisiting 206
template-based automated program repair” by Liu et al. [15]; and “A system to grade =zo
computer programming skills using machine learning” by Srikant S. [16]. 208

On the other hand, looking at all the citations provides a global perspective on the most 200
influential publications. The top-5 publications in this regard are: “PerfFuzz: automatically 210
generating pathological inputs” by Lemieux et al. [17]; “Automated Feedback Generation 211
for Introductory Programming from Assignments” by Singh et al. [18]; “Context-Aware 212
Patch Generation for Better Automated Program Repair” by Wen et al. [12]; “Automated 212
Assessment in Computer Science Education: A State-of-the-Art Review” by Paiva et al. [5]; 214
and “Precise Condition Synthesis for Program Repair” by Xiong et al. [19]. 215

When two publications are cited together by other documents (co-citations) frequently, =16
it indicates they are likely to address the same topic, i.e., they are semantically related. =217
RQ3-2 aims to identify the most relevant of those co-citations. The answer is provided 21s
in the historiographic map proposed by E. Garfield [20] (see Figure 10), which presents a 21
chronological network map of the most relevant co-citations from a bibliographic collection. 220
This map identifies six separate groups corresponding to different topics, namely: Group I = z2:
(Light Blue) includes advancements on automated program repair techniques [12,15,21]; 222
Group II (Pink) contains two studies analyzing difficulties faced by novice programmers in 223
automated assessment tools [22,23]; Group III (Green) encompasses works on automated 224
feedback for CS projects [24,25]; Group IV (Yellow) includes publications on automated =2s
program repair techniques and tools [26,27]; Group V (Red) captures works exploring the 226
automated assessment of the computational thinking skills of novice programmers [16,28, 227
29]; Group VI (Blue) captures a group of works aiming to improve feedback on automated 225

assessment [13,30,31]. 220
baderg, 20
v
wen gy 2018
liu kgR01¢
o
pratheg)j, 2018
pettit #2017
sridharejs, 2016
dener@. 2017
monperris m, 2014

motwanism, 2018

dacruz alyes n
von wangenheim cg, 2018
srikantss, 2014 T

insa @»2015
ide ka, 2010 falknern, 2014
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Figure 10. Historiographical representation of a network map of most relevant co-citations
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3.4. Topics and Keywords 230

Information about current issues, trends, and methods in the field can be derived 23
from keywords. Keywords are mandatorily provided by authors for each publication but  =2s:
are also assigned automatically by the indexing database, or even extracted as n-grams 23s
from the title or abstract. Therefore, for the group of research questions RQ4 these are 23
the properties that are the subject of analysis. For the first question of the group (RQ4-1), =35
the answer is provided in Figure 11, through a thematic map based on the analysis of 236
co-word networks and clustering using the authors” keywords. This approach is similar to 237
the proposal of Cobo et al. [32]. It identifies four types of topics (themes) based on density =ss
(i-e., degree of development) and centrality (i.e., degree of relevance), namely: emerging or 230
declining (low centrality and low density), niche (low centrality and high density), motor 240
(high centrality and high density), and basic (high centrality and low density) topics. In 24
emerging or declining topics, a cluster with “Android” is worth noticing as it is an indicator —zs2
of the increasing interest in automatic assessment of mobile development assignments. 243
Niche themes include some interesting topics such as Graph Similarity, which is a technique 244
used in automated assessment for comparing source code semantically (e.g., compare toa  zas
known solution and derive feedback), and Automatic Question Generation as well as other  zas
topics related to tools of the domain itself (e.g., virtual programming lab, systems, and 247
framework). Motor themes include topics such as Fault Localization, Debugging, Program  zas
Analysis, and Learning Analytics. Finally, among the basic themes, the clusters of Static 24
Analysis — analyzing source code rather than its runtime behavior —, Automated Program zso
Repair — a technique used to automatically correct programs, which is being applied to  zs:
generate feedback —, and Test Generation are the most notable. 252

software testing
rogram analysis

teaching“programming
virtual programming lab

framework [
’/‘E debugging
automatic question generation ' localization
graph similarity

[computer-based assessment] | ment system
(computer-aided education [knowledge assessment] __—|__visual analytics
[sysEmatic literature review]

automatic eorrection Fl-== == =2 =200

program repair

android
test generation

model-driven engineering

web—bésed learning

processing automJaUc forrT1at|ve assessment
natural lanaua |pteract|ve feedback

self-efficacy
student performance

classification
peer assessment

Development degree
(Density)

‘computer programming
static analysis

(functional programminb]

Relevance degree
(Centrality)

Figure 11. Thematic map based on authors” keywords

To answer RQ4-2 and after, the analysis focuses on 2-grams extracted from the abstract. 2ss
Figure 12 divides the decade into three equal-length sections (2010-2014, 2015-2018, and  2s4
2019-2022) and shows the thematic evolution between the three sections, based on analysis zss
of the co-word network and the clustering of the authors” keywords [32]. From the first 2se
slice, it is noticeable the high interest in Test Generation and the evident importance of 2s
Machine Learning in the area already. The second slice includes a wide range of topics =zss
with a strong relation to attempts to improve feedback, such as Static Analysis, Automated  =so
Program Repair (e.g., apr techniques and program repair), and Symbolic Execution. Finally, ze0
in the third slice, the emphasis on topics such as Static Analysis, Automated Program ze:
Repair, and Test Generation is maintained. 262
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Figure 12. Thematic evolution based on authors’ keywords

As for RQ4-3, Figure 13 presents a conceptual structure map created using Multiple
Correspondence Analysis (MCA) — a data analysis method to measure the association
between two or more qualitative variables — and Clustering of a bipartite network of the
extracted terms. Using this approach, 2-grams are divided into four clusters, which can
be described as follows: Group I (Blue) includes terms related to feedback and learning
analytics; Group II (Green) seems related to static analysis; Group III (Red) contains
2-grams related to fault localization and test generation (e.g., fault localization and test
generation); and Group IV (Purple) captures terms related to automated program repair
(e.g., repair apr and program repair).

0.5|auto

Dim 2 (2.97%)
°
>

o
&

Dim 1(93.16%)

Figure 13. Conceptual structure map of abstract 2-grams obtained through MCA

With respect to RQ4-4, Figure 14 shows the ten most frequent abstract 2-grams by year,
in which colors vary from blue (low occurrence in publications) to red (high occurrence),
i.e., using a color temperature scale. The increasing interest in Static Analysis, Automated
Program Repair, and Automated Test Generation is readily apparent. Although less visible,
Machine Learning and Learning Analytics have also increased slightly over the years. This
indicates a large growing interest in improving automated feedback generation, as most
topics gaining popularity are related to source code analysis (Static Analysis and Machine
Learning — in the current context) and fixing (Automated Program Repair, Automated
Test Generation — including counter-example —, Fault Localization, and Machine Learning)
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techniques. Moreover, feedback for teachers, through Learning Analytics, seems to be  2e
now a topic of interest within the area of Automated Assessment. Note that, for this 2.
visualization, the set of generated 2-grams has been preprocessed to remove common terms  zes
(e.g., science, introductory, programming, paper, work, result, etc) and match synonyms  zss
(e.g., apr tool, repair tool, and program repair count for the same 2-gram). Each publication  zss
counts at maximum once for any 2-gram. 286

AUTOMATED PROGRAM-
PROGRAMMING COURSES -
FAULT LOCALIZATION -

COMPUTER PROGRAMMING -
value

W 40

30
20
10

LEARNING ANALYTICS -

MACHINE LEARNING-
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TEST GENERATION -
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Year

STATIC ANALYSIS -

Figure 14. Top-10 most frequent abstract 2-grams by year

3.5. Feedback 287

The fifth group of research questions RQ5 targets the subset of publications related to  zss
feedback. To this end, we filtered the dataset to include only publications whose keywords, 2ee
title, or abstract contain the term “feedback”. The result is a set of 340 publications from  ze0
980 distinct authors, with an annual scientific production growth rate of 12.92%. 201

On this set of publications, we aim to re-analyze the topics to discover what exactly 2.2
is being discussed about automatic feedback generation for programming assignments 203
(RQ5-1). Figure 15 shows the most impactful/central clusters of 2-grams extracted from 204
the abstract of these publications. The Purple cluster includes Automated Program Repair o5
and Fault Localization. Cluster Red and Blue refer mostly to common terms in the area of 206
automated assessment of programming assignments, such as “programming assignments”, 2o
“automated assessment”, or “assessment tool”. Nevertheless, the Blue cluster also includes zes
terms related to the use of data for feedback purposes, namely “data-driven feedback” and 200
“heatmaps”. Finally, the Green cluster includes some interesting branches such as “test 300
generation” and “symbolic execution” (e.g., for generating counter-example test cases), and o
interactive feedback. 302

RQ5-2 asks what are the research lines within the feedback topic. To answer this 303
question, we have rebuilt the historiographic map proposed by E. Garfield [20] for the new  sos
data. Figure 16 presents the result. The following relevant co-citations networks: Green sos
captures feedback on exercises to stimulate the computational thinking skills of novice pro- os
grammers [28,29]; Purple involves works evaluating the effects of feedback [33-36]; Light o7
Blue encompasses works about automated program repairing [12,15,21,37]; Pink contains = sos
works comparing human and machine-generated feedback [38,39]; Light Green involves 1o
works providing feedback on student-developed test cases [40,41]; Orange has another s
series of works providing feedback on the accuracy of student-developed test cases [42—44]; 31
Red includes efforts on exploring patterns of source code for feedback purposes [45,46]; 312
Blue includes publications evaluating automated program repair techniques [26,27,47]. 213
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Figure 16. Historiographical representation of a network map of most relevant co-citations under
feedback topic

4. Discussion

Automated assessment of programming assignments is a research area with several

years of investigation, but still, an increasing research interest as demonstrated by the
significant and growing number of publications in the analyzed years. The only exception
coincides with (and can be justified by) the COVID-19 pandemic situation, which occurred
between the start of 2020 and the start of 2022. Most of these publications appear in journals
and conference proceedings, with shares of nearly 30% and 70%, respectively. The number
of citations has maintained a nearly constant rate over the years (see Figure 3).
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4.1. Authors

Authors of publications in this area are typically active Computer Science educators.
They explore new ways of facilitating their tasks of creating and assessing programming
assignments and, at the same time, provide students with a richer and more personalized
practicing experience to soften the difficulties of learning how to program. The research
teams are mostly small, with 2 to 4 authors, and publish several times together. For instance,
Queir6s R. and Leal J. P. have authored 6 of their 7 publications in the area together (one of
each is separate). Nevertheless, works with more than 4 authors are common in publications
introducing techniques from static source code analysis [12,48,49].

4.2. Citations

The top-5 most influential citations, both local and global, have been identified, hav-
ing one common publication. The total 9 most influential citations include a systematic
literature review [5], an assessment tool [14], a technique for the assessment using graph
similarity [13], a technique for the assessment using machine learning on graph repre-
sentations of source code [16], three techniques for automated program repair [12,15,19],
a worst-case test generation approach [17], and a technique to generate feedback given
a reference solution and an error model [16]. This highlights the great interest among
researchers in generating better feedback, as 7 out of 9 most influential citations have that
end goal.

4.3. Topics

The systematic literature review on automated assessment by Paiva et al. [5] is the
most closely related to the one and recent review. This review identified a new era of
automated assessment in Computer Science, the era of containerization, among other
interesting findings. In particular, the growing interest in static analysis techniques to
assess not only the correct functionality of a program but also the code quality and presence
of plagiarism. Furthermore, it notices the efforts towards better feedback primarily by
introducing techniques from other research areas, such as automated program repair, fault
localization, symbolic execution, and machine learning. Regarding automated assessment
tools, more than half of the mentioned tools are open source. Finally, the increasing interest
in incorporating Learning Analytics into automated assessment tools to help teachers
understand student difficulties is also mentioned. A technical report by Porfirio et al. [50]
presents a systematic literature mapping of the research literature on automatic source
code evaluation until 2019, which also had similar findings. In particular, it (1) shows
the increasing number of publications; (2) notices a few attempts to extract knowledge
and visualize information about students from data produced during the automated
assessment of source code (i.e., first attempts on Learning Analytics); and (3) demonstrates
that functional correctness is the aspect receiving most attention.

The responses given in subsection 3.4 to research questions of group RQ4 confirm most
of the findings of previous works, namely the recent focus on static analysis approaches
and the introduction of techniques from other research areas, such as automated program
repair, fault localization, and machine learning. Traditional automated assessment based on
running the program against a set of test cases is still the dominating strategy. Moreover, the
high frequency of some keywords related to Learning Analytics corroborates the interest in
integrating outcomes from this research area into automated assessment tools. Nevertheless,
this research could not capture enough information to confirm the trend of containerization
of automated assessment. As the conducted analysis had minimal human interference, if
“docker” (or a related term) was neither a frequent keyword nor part of a frequent abstract
2-gram, then it was not identified. In contrast, in the aforementioned review [5], a number
of publications were manually annotated with a predetermined set of tags after reading.
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4.4. Feedback

Automatic feedback generation is the most explored topic in the area, representing
more than 43% of the collected publications and with an annual scientific production
growth rate of almost 6 percentage points higher than the area itself. Works under this
topic range from the introduction of static analysis, machine learning, and source code
analysis techniques to experiments assessing the quality of the tools/techniques against a
dataset, experiments comparing the use of a tool/technique against either manual or before
treatment feedback, and learning analytics approaches.

5. Conclusion

This paper presents a bibliometric study of the literature on automatic assessment
in Computer Science from 2010 up to the end of 2022, based on the WoS Core Collection.
The collected data shows the ever-increasing research interest in the area, particularly, in
integrating and developing techniques to improve automatically generated feedback. Static
analysis, machine learning, and source code analysis techniques used in other research
areas opened room for improvement of current solutions, so it is important to continue
pursuing this area in the coming years.

The analysis performed allowed us to answer all the research questions posed at the
beginning of this study and presented in section 1. Results regarding topics are identical to
those reported in a recently published systematic literature review on automated assessment
in computer science [5] and, thus, validate each other. Novel results include, for instance,
the identification of the most active/productive researchers in the field, their groups and
affiliations, the collaborations between them, the most impactful publications, the evolution
of important research lines, and the sources with most publications in the area. Moreover,
the analysis of the subset of research related to automatic feedback generation allowed to
identify the different branches being explored in this topic as well as the research lines.

Admittedly, this study has some limitations. In particular, the WoS Core Collection
does not include publications from all sources. Second, the names of some authors and
affiliations appear in different forms over the decade, which may introduce some bias
into the analysis. In this case, the work of a database such as the WoS Core Collection to
standardize affiliations and authors is important.

In the upcoming years we expect research in this area to continue growing. We foresee
that the development of static analysis techniques to assess different aspects and types
of programming assignments and the integration of source code analysis and machine
learning techniques to improve automatically generated feedback will drive research in
the area. Furthermore, we recommend another bibliometric study of this type (at least) in
the next decade as, in such an active area, it is important to understand where research is
heading to and for new researchers in the field to know the paths of research and authors
to follow.
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