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Abstract: Learning to program requires diligent of practice and creates room for discovery, trial and 1

error, debugging, and concept mapping. Learners must walk this long road themselves, supported by 2

appropriate and timely feedback. Providing such feedback in programming exercises is not a humanly 3

feasible task. Therefore, the early and steadily growing interest of computer science educators 4

in automated assessment of programming exercises is not surprising. Automated assessment of 5

programming assignments has been an active area of research for over a century, and interest in it 6

continues to grow as it adapts to new developments in Computer Science and the resulting changes 7

in educational requirements. It is therefore of paramount importance to understand the work that has 8

been done, who has done it, its evolution over time, the relationships between publications, its hot 9

topics, and open problems, among others. This paper presents a bibliometric study of the field with a 10

particular focus on the issue of automatic feedback generation, using literature data from the Web 11

of Science Core Collection. It includes a descriptive analysis using various bibliometric measures 12

and data visualizations on authors, affiliations, citations, and topics. In addition, we perform a 13

complementary analysis focusing only on the subset of publications on the specific topic of automatic 14

feedback generation. The results are highlighted and discussed. 15

Keywords: automated assessment; programming education; programming exercises; computer 16

science; bibliometrics; data visualizations; feedback 17

1. Introduction 18

Practice is the key to learning how to program. Practical programming skills can only 19

be acquired through extensive and varied experience in solving programming challenges [1, 20

2]. Such an experience should provide the learner with room for discovery, trial and error, 21

debugging, and concept generation while supporting the learner with individualized, 22

accurate, rich, and rapid feedback to unlock their progress. Obviously, feedback that 23

meets these requirements cannot be guaranteed by a human instructor [3,4]. Automated 24

assessment tools for programming tasks have emerged as a solution to this problem. 25

They have been part of Computer Science (CS) education almost since learners began 26

being asked to develop software, and their value is already unanimously recognized by 27

practitioners. Nevertheless, interest in assessing various program properties (e.g., quality, 28

behavior, readability, and security), in adapting feedback, and in developing better and 29

more powerful tools has not waned since then [5]. 30

Several studies have been carried out to synthesize the latest advancements in auto- 31

mated assessment for Computer Science (CS) education [4–7]. There are studies that focus 32

on comparing the tools’ features [7], exploring the methods and techniques applied in the 33

different facets of the automated assessment tools [4,6], and other wider studies covering 34

both [5]. To the best of the authors’ knowledge, a single bibliometric study [8] has been 35

conducted to analyze the quantitative aspects of scientific publications in the area and their 36

relationshibibliops [9]. Such a study identifies the authors currently worth following and 37

their affiliations, explores the evolution of publications and citations over time, establishes 38

Version July 6, 2023 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0003-0394-0527
https://orcid.org/0000-0002-0507-7504
https://orcid.org/0000-0002-8409-0300
https://www.mdpi.com/journal/notspecified


Version July 6, 2023 submitted to Journal Not Specified 2 of 17

relationships between emerging topics in publications, computes the co-occurrence of 39

topics and corresponding clusters, builds the citation networks, and elects the research 40

trends. 41

This paper is an extension of the bibliometric study of Paiva et al. [8], previously 42

introduced. This extension is twofold. Firstly, we extend the time span of the bibliometric 43

research up to the end of the past year (2022). Lastly, we present a complementary biblio- 44

metric analysis focusing on a specific topic within the area, automatic feedback generation. 45

Our goal is to answer the following six groups of research questions, considering the inter- 46

val 2010-2022. The first group of research questions, RQ1, aims to summarize the collected 47

data, including the annual scientific production (RQ1-1); the average time interval for a 48

new publication to get the first citation (RQ1-2); and the main journals/conferences to find 49

literature in the area (RQ1-3). The second group (RQ2) concerns authors. It aims to find out 50

the common team size per publication (RQ2-1), the most productive, active, and impactful 51

authors during the time span (RQ2-2), whether those authors publish alone or in groups 52

(RQ2-3), the most evident collaboration partnerships (RQ2-4), and the main affiliations 53

(RQ2-5). The third group (RQ3) targets citations, in particular, we want to identify the most 54

influential (RQ3-1) and the most relevant (RQ3-2) co-citations. The fourth group (RQ4) 55

investigates the topics being discussed in publications, including which are the basic, niche, 56

motor, and emerging (RQ4-1), their evolution during the analyzed time span (RQ4-2), the 57

frequent terms being used (RQ4-3), and whether those vary during the years (RQ4-4). The 58

fifth group (RQ5) concentrates on feedback-specific questions, particularly, we want to 59

know what are the active sub-topics (RQ5-1) and research lines (RQ5-2). Table 1 lists the 60

research questions addressed in this study. 61

Table 1. List of research questions addressed in this study

Group No. Question

RQ1
1 What is the annual scientific production?

2 What is the average time interval for a new publication to get the
first citation?

3 Which are the main journals/conferences to find literature in the
area?

RQ2

1 What’s the common team size per publication?
2 Which are the most productive, active, and impactful authors?
3 Do those authors publish alone or in group?
4 Which are the most evident author collaboration partnerships?
5 What are the authors’ main affiliations?

RQ3 1 Which are the most influential citations?
2 Which are the most relevant co-citations?

RQ4

1 Which are the basic, niche, motor, and emerging topics?
2 How did topics evolved during the analyzed time span?
3 Which are the frequent terms being used?
4 How is the yearly frequency of the most frequent terms?

RQ5 1 Which are the active sub-topics within feedback?
2 Which are the active research lines within feedback?

The remainder of this paper is organized as follows. Section 2 presents the methodol- 62

ogy used to conduct this study. Section 3 presents the results of the bibliometric analysis 63

and answers each of the research questions. Section 4 discusses the results, and compares 64

them to recent literature review [5]. Finally, Section 5 summarizes the major contributions 65

of this study. 66

2. Methodology 67

The data for this study has been collected from the Web of Science (WoS) Core Collec- 68

tion, during the third week of March 2023. To this end, a query [10] has been built to search 69

all fields of a publication for the following combination of keywords: (automatic OR auto- 70
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mated) AND (assessment OR evaluation OR grading OR marking) AND (programming 71

OR computer science OR program). 72

The query includes a filter to limit results to those published from 2010 up to end of 73

2022. In addition to that, two refinements were needed. The first to narrow down search 74

results to the adequate WoS categories for this area, namely: Computer Science Information 75

Systems, Computer Science Artificial Intelligence, Computer Science Interdisciplinary 76

Applications, Computer Science Software Engineering, Education Educational Research, 77

Education Scientific Disciplines, Multidisciplinary Sciences, and Education Special. Even 78

though some of these categories may still include out-of-scope publications, excluding them 79

could result in the loss of important publications. The result was a set of 16471 publications. 80

For these publications, we have extracted their full record, including cited references. 81

A total of thirty-three BibTeX exports were necessary to obtain the data from all the 16471 82

publications, due to the limitations of WoS on the number of records allowed to be exported 83

in a single request (in these conditions, the limit is 500). Finally, the BibTeX files obtained 84

have been merged into a single BibTeX file. Having this set in a single file, we have 85

imported it into R using bibliometrix [11] – an open-source R-tool for quantitative research 86

in scientometrics and bibliometrics, and proceeded with a pre-processing phase. This phase 87

aims to identify the relevant publications for analysis by applying inclusion/exclusion 88

criteria identical to that used by Paiva et al. [5], after carefully reading the titles and abstracts 89

of each paper. The result from this phase is a set of 779 publications, which we used for 90

further analysis. 91

After filtering, we extract the 2-grams terms from both the abstract and the title 92

into two new columns of the dataset, reducing a few synonyms to a single term (e.g., 93

“grading tool”, “assessment tool”, and “marking tool” to “aa tool”) and eliminating general 94

terms (e.g., “automated assessment” or “computer science”). Then, the resulting dataset is 95

analyzed using R and traditional data processing and visualization packages, except for 96

bibliometrix package [11]. Bibliometrix is an R package specifically designed to support 97

bibliometric analyses. In particular, it can import bibliographic data both directly and 98

indirectly from SCOPUS, Clarivate Analytics’ WoS, PubMed, Digital Science Dimensions 99

and Cochrane databases, and perform a wide range of bibliometric analysis methods, 100

including citation, co-citation, bibliographic coupling, scientific collaboration, co-word, and 101

co-authorship analysis. 102

From these analyses, some visualizations of the data have been produced using R and a 103

few libraries, particularly, ggplot, VOSViewer, and Bibliometrix. Additional visualizations 104

were produced in Biblioshiny, a shiny app providing a web-interface for bibliometrix. 105

Finally, we have curated a bibliometric summary and compiled a brief report of the findings, 106

which we interpreted to answer the research questions presented in Subsection 1. Figure 1 107

presents the steps performed in this research. 108

Figure 1. Schema of the steps performed in this research
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3. Results 109

The results of the analysis are detailed in this section, where each subsection answers 110

one of the groups of research questions presented in Section 1. Subsection 3.1 provides a 111

summary of the data used in the analysis, including answers to RQ1. Subsection 3.2 encom- 112

passes the results related to the authors’ analysis (i.e., RQ2). Subsection 3.3 demonstrates 113

the results regarding the analysis of citations (i.e., RQ3). Subsection 3.4 presents answers 114

to RQ4, which pertains to topics and keywords. Subsection 3.5 presents answers to RQ5, 115

which contains questions about the feedback on automated assessment of programming 116

assignments. 117

3.1. Data Summary 118

Literature on automated assessment of programming assignments has had a contin- 119

ually growing interest during the analyzed period (2010-2022), as depicted in Figure 2 120

through a visualization of the number of publications per year with a linear trend and the 121

associated confidence interval. The trend line reflects a growth rate of approximately 7.1% 122

in the annual scientific production during the timespan 2010-2022. Nevertheless, a slight 123

decrease in the number of publications between 2019 and 2020 is noticeable, an exceptional 124

situation that can be associated with the COVID-19 pandemic crisis. The years with the 125

highest number (99) of publications, i.e., the peak years, were 2018 and 2021. This responds 126

to RQ1-1. 127

Each of the collected documents was cited by an average of 7.254 other publications, 128

with an average rate of 1.045 per year. Thus, in response to RQ1-2, it takes an average of 129

11.483 months to receive the first citation. The year with the most citations per publication 130

on average was 2014, with a mean of 14.31 citations per publication. However, the year 131

in which publications were most cited per citable year (i.e., following years captured in 132

the analysis) was 2017, having an average of 1.81 citations per publication and citable 133

year. Figure 3 shows the average citations of a document per citable year, for each year 134

of publication. For example, a publication of 2010 (i.e., with 13 citable years) has 0.624 135

citations on average per year (the lowest of this dataset if we exclude the last year, whose 136

information may not be complete). 137

Figure 2. Number of publications per year with
the linear trend (blue line) and its confidence in-
terval

Figure 3. Average publication citations per docu-
ment in citable years

The set of 779 selected publications consists of 7 review papers, 222 journal articles, 138

545 proceedings papers, and 5 classified as other editorial material. These come from 455 139

different sources, including journals, and books, among others. The top-20 publication 140

sources (RQ1-3), presented in the tree-map of Figure 4, account for almost one-fifth of the 141

total publications. The Proceedings of the 51st ACM Technical Symposium on Computer 142

Science Education is the source with the highest number of articles collected (15), followed 143

by ACM Special Interest Group on Programming Languages (SIGPLAN) Notices with 144

12 publications, ACM Transactions on Software Engineering and Methodology with 11 145

publications, and Information and Software Technology with 10. Computers & Education, 146

Empirical Software Engineering, Journal of Systems and Software, Science of Computer 147
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Figure 4. Top-20 sources of publications in a tree-map

Programming, and the Proceedings of the 49th ACM Technical Symposium on Computer 148

Science Education, with 8 publications each, complete the top-5 sources. 149

3.2. Authors 150

The set of publications selected for analysis contains documents from 2120 distinct 151

authors, of which 56 authored at least one of the 62 single-authored documents that are 152

part of this set. The average number of authors per document is 3.26, whereas excluding 153

the 62 single-authored publications, there are 3.47 co-authors per document on average. 154

From these co-authorships, we could identify that 20.28% are international co-authorships. 155

Figure 5 shows a histogram of the number of authors per publication that responds to 156

RQ2-1. The most common are publications with 2 to 4 authors (72.5% of all publications), 157

being 3-author publications the ones in the majority. 158

Figure 5. Distribution of publications by the number of authors

In respect to the “most prolific authors” (i.e., the authors who have made more 159

publications) as asked in RQ2-2, Figure 6 shows the top-10, sorted in descending order 160

from top to bottom, of authors who have made more contributions to the field and, for 161
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those, the number of publications and citations per year. From this perspective, the authors 162

who are more active recently, such as Fraser G. and Edwards S. H., and those who were 163

more active at the beginning of the timespan, such as Kim M., Queirós R., and Leal J. P., 164

are easier to identify. Nevertheless, the most impactful works are that of Monperrus M., 165

who studies mostly automated program repair techniques. The work of Fraser G., which 166

concentrates on software testing techniques, and Kim D., which investigates techniques for 167

automated generation of feedback, complete the podium regarding authors’ impact. This 168

can be confirmed by measuring the authors’ h-index (6, 5, and 5, respectively). 169

Figure 6. Productivity of authors over time (TC stands for Times Cited)

Having the most prolific authors, we construct a histogram of the number of authors 170

per publication for each of them separately to answer RQ2-3. Figure 7 illustrates the 171

result. Among the most prolific authors, the only authors who have worked alone are 172

Queiros R. (1) and Monperrus M. (1), while all others have no single-authored publications. 173

Nevertheless, Edwards S. H. and Marchisio M. publish mostly in small groups with one 174

or two co-authors. Interestingly, Mao X., Wang S., and Kim D. have only worked in large 175

groups of 4 or more authors. 176

Figure 7. Number of authors per publication for the most productive authors

There are several researchers collaborating on projects that publish together very 177

often. RQ2-4 aims to identify them. To this end, we have created a graph of the authors’ 178
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collaboration networks, presented in Figure 8. Bolder edges indicate a stronger partnership 179

relation between authors, i.e., the authors participated together in the same publications 180

more often. For instance, Leal J. P. and Queiros R. authored many of their publications 181

together. The same for Tonisson E. and Sade M., who also collaborated less frequently with 182

Lepp M. and Luik P. 183

Figure 8. Authors’ collaboration networks

Regarding RQ2-5 which aims to find out the main affiliations from the authors, there 184

are 636 distinct identified affiliations within the collected publications. Note that a pub- 185

lication can count to more than one affiliation if it involves either authors with multiple 186

affiliations or documents with multiple authors resulting from a collaboration between 187

different institutions. The top-20 most prolific affiliations, alone, account for more than 39% 188

of the identified affiliations. Carnegie Mellon University is the institution with the most 189

publications (25), followed by North Carolina State University (20), and the University 190

of Porto (19). The Nanjing University and the University of Tartu, both appearing with 191

18 publications, complete the top-5. The top-20 most prolific affiliations are presented in 192

Figure 9, which alone account for more than 37.5% of the identified affiliations. 193

Figure 9. Top-20 authors’ affiliations by productivity in a tree-map

3.3. Citations 194

The most influential publications (RQ3-1) are those having more citations, but should 195

also take into consideration the year of publication and the area of the publication citing 196

it (i.e., a citation from a publication in the same area has a different weight from one in 197
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another area). To handle the former, we used the Normalized Citation Score (NCS) of a 198

document, which is calculated by dividing the actual number of cited publications by the 199

expected citation rate for publications of the same year. To address the latter, we have made 200

a twofold answer. 201

On the one hand, the local NCS (i.e., citations within the collected data) determines the 202

most influential publications within the area. The top-5 publications under such conditions 203

are: “Context-Aware Patch Generation for Better Automated Program Repair” by Wen 204

et al. [12]; “Marking student programs using graph similarity” by Naudé et al. [13]; “A 205

distributed system for learning programming on-line” by Verdú et al. [14]; “TBar: revisiting 206

template-based automated program repair” by Liu et al. [15]; and “A system to grade 207

computer programming skills using machine learning” by Srikant S. [16]. 208

On the other hand, looking at all the citations provides a global perspective on the most 209

influential publications. The top-5 publications in this regard are: “PerfFuzz: automatically 210

generating pathological inputs” by Lemieux et al. [17]; “Automated Feedback Generation 211

for Introductory Programming from Assignments” by Singh et al. [18]; “Context-Aware 212

Patch Generation for Better Automated Program Repair” by Wen et al. [12]; “Automated 213

Assessment in Computer Science Education: A State-of-the-Art Review” by Paiva et al. [5]; 214

and “Precise Condition Synthesis for Program Repair” by Xiong et al. [19]. 215

When two publications are cited together by other documents (co-citations) frequently, 216

it indicates they are likely to address the same topic, i.e., they are semantically related. 217

RQ3-2 aims to identify the most relevant of those co-citations. The answer is provided 218

in the historiographic map proposed by E. Garfield [20] (see Figure 10), which presents a 219

chronological network map of the most relevant co-citations from a bibliographic collection. 220

This map identifies six separate groups corresponding to different topics, namely: Group I 221

(Light Blue) includes advancements on automated program repair techniques [12,15,21]; 222

Group II (Pink) contains two studies analyzing difficulties faced by novice programmers in 223

automated assessment tools [22,23]; Group III (Green) encompasses works on automated 224

feedback for CS projects [24,25]; Group IV (Yellow) includes publications on automated 225

program repair techniques and tools [26,27]; Group V (Red) captures works exploring the 226

automated assessment of the computational thinking skills of novice programmers [16,28, 227

29]; Group VI (Blue) captures a group of works aiming to improve feedback on automated 228

assessment [13,30,31]. 229

Figure 10. Historiographical representation of a network map of most relevant co-citations
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3.4. Topics and Keywords 230

Information about current issues, trends, and methods in the field can be derived 231

from keywords. Keywords are mandatorily provided by authors for each publication but 232

are also assigned automatically by the indexing database, or even extracted as n-grams 233

from the title or abstract. Therefore, for the group of research questions RQ4 these are 234

the properties that are the subject of analysis. For the first question of the group (RQ4-1), 235

the answer is provided in Figure 11, through a thematic map based on the analysis of 236

co-word networks and clustering using the authors’ keywords. This approach is similar to 237

the proposal of Cobo et al. [32]. It identifies four types of topics (themes) based on density 238

(i.e., degree of development) and centrality (i.e., degree of relevance), namely: emerging or 239

declining (low centrality and low density), niche (low centrality and high density), motor 240

(high centrality and high density), and basic (high centrality and low density) topics. In 241

emerging or declining topics, a cluster with “Android” is worth noticing as it is an indicator 242

of the increasing interest in automatic assessment of mobile development assignments. 243

Niche themes include some interesting topics such as Graph Similarity, which is a technique 244

used in automated assessment for comparing source code semantically (e.g., compare to a 245

known solution and derive feedback), and Automatic Question Generation as well as other 246

topics related to tools of the domain itself (e.g., virtual programming lab, systems, and 247

framework). Motor themes include topics such as Fault Localization, Debugging, Program 248

Analysis, and Learning Analytics. Finally, among the basic themes, the clusters of Static 249

Analysis – analyzing source code rather than its runtime behavior –, Automated Program 250

Repair – a technique used to automatically correct programs, which is being applied to 251

generate feedback –, and Test Generation are the most notable. 252

Figure 11. Thematic map based on authors’ keywords

To answer RQ4-2 and after, the analysis focuses on 2-grams extracted from the abstract. 253

Figure 12 divides the decade into three equal-length sections (2010-2014, 2015-2018, and 254

2019-2022) and shows the thematic evolution between the three sections, based on analysis 255

of the co-word network and the clustering of the authors’ keywords [32]. From the first 256

slice, it is noticeable the high interest in Test Generation and the evident importance of 257

Machine Learning in the area already. The second slice includes a wide range of topics 258

with a strong relation to attempts to improve feedback, such as Static Analysis, Automated 259

Program Repair (e.g., apr techniques and program repair), and Symbolic Execution. Finally, 260

in the third slice, the emphasis on topics such as Static Analysis, Automated Program 261

Repair, and Test Generation is maintained. 262



Version July 6, 2023 submitted to Journal Not Specified 10 of 17

Figure 12. Thematic evolution based on authors’ keywords

As for RQ4-3, Figure 13 presents a conceptual structure map created using Multiple 263

Correspondence Analysis (MCA) – a data analysis method to measure the association 264

between two or more qualitative variables – and Clustering of a bipartite network of the 265

extracted terms. Using this approach, 2-grams are divided into four clusters, which can 266

be described as follows: Group I (Blue) includes terms related to feedback and learning 267

analytics; Group II (Green) seems related to static analysis; Group III (Red) contains 268

2-grams related to fault localization and test generation (e.g., fault localization and test 269

generation); and Group IV (Purple) captures terms related to automated program repair 270

(e.g., repair apr and program repair). 271

Figure 13. Conceptual structure map of abstract 2-grams obtained through MCA

With respect to RQ4-4, Figure 14 shows the ten most frequent abstract 2-grams by year, 272

in which colors vary from blue (low occurrence in publications) to red (high occurrence), 273

i.e., using a color temperature scale. The increasing interest in Static Analysis, Automated 274

Program Repair, and Automated Test Generation is readily apparent. Although less visible, 275

Machine Learning and Learning Analytics have also increased slightly over the years. This 276

indicates a large growing interest in improving automated feedback generation, as most 277

topics gaining popularity are related to source code analysis (Static Analysis and Machine 278

Learning – in the current context) and fixing (Automated Program Repair, Automated 279

Test Generation – including counter-example –, Fault Localization, and Machine Learning) 280
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techniques. Moreover, feedback for teachers, through Learning Analytics, seems to be 281

now a topic of interest within the area of Automated Assessment. Note that, for this 282

visualization, the set of generated 2-grams has been preprocessed to remove common terms 283

(e.g., science, introductory, programming, paper, work, result, etc) and match synonyms 284

(e.g., apr tool, repair tool, and program repair count for the same 2-gram). Each publication 285

counts at maximum once for any 2-gram. 286

Figure 14. Top-10 most frequent abstract 2-grams by year

3.5. Feedback 287

The fifth group of research questions RQ5 targets the subset of publications related to 288

feedback. To this end, we filtered the dataset to include only publications whose keywords, 289

title, or abstract contain the term “feedback”. The result is a set of 340 publications from 290

980 distinct authors, with an annual scientific production growth rate of 12.92%. 291

On this set of publications, we aim to re-analyze the topics to discover what exactly 292

is being discussed about automatic feedback generation for programming assignments 293

(RQ5-1). Figure 15 shows the most impactful/central clusters of 2-grams extracted from 294

the abstract of these publications. The Purple cluster includes Automated Program Repair 295

and Fault Localization. Cluster Red and Blue refer mostly to common terms in the area of 296

automated assessment of programming assignments, such as “programming assignments”, 297

“automated assessment”, or “assessment tool”. Nevertheless, the Blue cluster also includes 298

terms related to the use of data for feedback purposes, namely “data-driven feedback” and 299

“heatmaps”. Finally, the Green cluster includes some interesting branches such as “test 300

generation” and “symbolic execution” (e.g., for generating counter-example test cases), and 301

interactive feedback. 302

RQ5-2 asks what are the research lines within the feedback topic. To answer this 303

question, we have rebuilt the historiographic map proposed by E. Garfield [20] for the new 304

data. Figure 16 presents the result. The following relevant co-citations networks: Green 305

captures feedback on exercises to stimulate the computational thinking skills of novice pro- 306

grammers [28,29]; Purple involves works evaluating the effects of feedback [33–36]; Light 307

Blue encompasses works about automated program repairing [12,15,21,37]; Pink contains 308

works comparing human and machine-generated feedback [38,39]; Light Green involves 309

works providing feedback on student-developed test cases [40,41]; Orange has another 310

series of works providing feedback on the accuracy of student-developed test cases [42–44]; 311

Red includes efforts on exploring patterns of source code for feedback purposes [45,46]; 312

Blue includes publications evaluating automated program repair techniques [26,27,47]. 313
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Figure 15. Frequent terms under feedback topic

Figure 16. Historiographical representation of a network map of most relevant co-citations under
feedback topic

4. Discussion 314

Automated assessment of programming assignments is a research area with several 315

years of investigation, but still, an increasing research interest as demonstrated by the 316

significant and growing number of publications in the analyzed years. The only exception 317

coincides with (and can be justified by) the COVID-19 pandemic situation, which occurred 318

between the start of 2020 and the start of 2022. Most of these publications appear in journals 319

and conference proceedings, with shares of nearly 30% and 70%, respectively. The number 320

of citations has maintained a nearly constant rate over the years (see Figure 3). 321
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4.1. Authors 322

Authors of publications in this area are typically active Computer Science educators. 323

They explore new ways of facilitating their tasks of creating and assessing programming 324

assignments and, at the same time, provide students with a richer and more personalized 325

practicing experience to soften the difficulties of learning how to program. The research 326

teams are mostly small, with 2 to 4 authors, and publish several times together. For instance, 327

Queirós R. and Leal J. P. have authored 6 of their 7 publications in the area together (one of 328

each is separate). Nevertheless, works with more than 4 authors are common in publications 329

introducing techniques from static source code analysis [12,48,49]. 330

4.2. Citations 331

The top-5 most influential citations, both local and global, have been identified, hav- 332

ing one common publication. The total 9 most influential citations include a systematic 333

literature review [5], an assessment tool [14], a technique for the assessment using graph 334

similarity [13], a technique for the assessment using machine learning on graph repre- 335

sentations of source code [16], three techniques for automated program repair [12,15,19], 336

a worst-case test generation approach [17], and a technique to generate feedback given 337

a reference solution and an error model [16]. This highlights the great interest among 338

researchers in generating better feedback, as 7 out of 9 most influential citations have that 339

end goal. 340

4.3. Topics 341

The systematic literature review on automated assessment by Paiva et al. [5] is the 342

most closely related to the one and recent review. This review identified a new era of 343

automated assessment in Computer Science, the era of containerization, among other 344

interesting findings. In particular, the growing interest in static analysis techniques to 345

assess not only the correct functionality of a program but also the code quality and presence 346

of plagiarism. Furthermore, it notices the efforts towards better feedback primarily by 347

introducing techniques from other research areas, such as automated program repair, fault 348

localization, symbolic execution, and machine learning. Regarding automated assessment 349

tools, more than half of the mentioned tools are open source. Finally, the increasing interest 350

in incorporating Learning Analytics into automated assessment tools to help teachers 351

understand student difficulties is also mentioned. A technical report by Porfirio et al. [50] 352

presents a systematic literature mapping of the research literature on automatic source 353

code evaluation until 2019, which also had similar findings. In particular, it (1) shows 354

the increasing number of publications; (2) notices a few attempts to extract knowledge 355

and visualize information about students from data produced during the automated 356

assessment of source code (i.e., first attempts on Learning Analytics); and (3) demonstrates 357

that functional correctness is the aspect receiving most attention. 358

The responses given in subsection 3.4 to research questions of group RQ4 confirm most 359

of the findings of previous works, namely the recent focus on static analysis approaches 360

and the introduction of techniques from other research areas, such as automated program 361

repair, fault localization, and machine learning. Traditional automated assessment based on 362

running the program against a set of test cases is still the dominating strategy. Moreover, the 363

high frequency of some keywords related to Learning Analytics corroborates the interest in 364

integrating outcomes from this research area into automated assessment tools. Nevertheless, 365

this research could not capture enough information to confirm the trend of containerization 366

of automated assessment. As the conducted analysis had minimal human interference, if 367

“docker” (or a related term) was neither a frequent keyword nor part of a frequent abstract 368

2-gram, then it was not identified. In contrast, in the aforementioned review [5], a number 369

of publications were manually annotated with a predetermined set of tags after reading. 370
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4.4. Feedback 371

Automatic feedback generation is the most explored topic in the area, representing 372

more than 43% of the collected publications and with an annual scientific production 373

growth rate of almost 6 percentage points higher than the area itself. Works under this 374

topic range from the introduction of static analysis, machine learning, and source code 375

analysis techniques to experiments assessing the quality of the tools/techniques against a 376

dataset, experiments comparing the use of a tool/technique against either manual or before 377

treatment feedback, and learning analytics approaches. 378

5. Conclusion 379

This paper presents a bibliometric study of the literature on automatic assessment 380

in Computer Science from 2010 up to the end of 2022, based on the WoS Core Collection. 381

The collected data shows the ever-increasing research interest in the area, particularly, in 382

integrating and developing techniques to improve automatically generated feedback. Static 383

analysis, machine learning, and source code analysis techniques used in other research 384

areas opened room for improvement of current solutions, so it is important to continue 385

pursuing this area in the coming years. 386

The analysis performed allowed us to answer all the research questions posed at the 387

beginning of this study and presented in section 1. Results regarding topics are identical to 388

those reported in a recently published systematic literature review on automated assessment 389

in computer science [5] and, thus, validate each other. Novel results include, for instance, 390

the identification of the most active/productive researchers in the field, their groups and 391

affiliations, the collaborations between them, the most impactful publications, the evolution 392

of important research lines, and the sources with most publications in the area. Moreover, 393

the analysis of the subset of research related to automatic feedback generation allowed to 394

identify the different branches being explored in this topic as well as the research lines. 395

Admittedly, this study has some limitations. In particular, the WoS Core Collection 396

does not include publications from all sources. Second, the names of some authors and 397

affiliations appear in different forms over the decade, which may introduce some bias 398

into the analysis. In this case, the work of a database such as the WoS Core Collection to 399

standardize affiliations and authors is important. 400

In the upcoming years we expect research in this area to continue growing. We foresee 401

that the development of static analysis techniques to assess different aspects and types 402

of programming assignments and the integration of source code analysis and machine 403

learning techniques to improve automatically generated feedback will drive research in 404

the area. Furthermore, we recommend another bibliometric study of this type (at least) in 405

the next decade as, in such an active area, it is important to understand where research is 406

heading to and for new researchers in the field to know the paths of research and authors 407

to follow. 408
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