
CrimsonHex: a Service Oriented Repository of
Specialised Learning Objects

José Paulo Leal1 and Ricardo Queirós2,

1 CRACS & DCC-FCUP, University of Porto, Portugal
zp@dcc.fc.up.pt

2 CRACS & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Abstract. The corner stone of the interoperability of eLearning systems is the
standard definition of learning objects. Nevertheless, for some domains this
standard is insufficient to fully describe all the assets, especially when they are
used as input for other eLearning services. On the other hand, a standard
definition of learning objects in not enough to ensure interoperability among
eLearning systems; they must also use a standard API to exchange learning
objects. This paper presents the design and implementation of a service oriented
repository of learning objects called crimsonHex. This repository is fully
compliant with the existing interoperability standards and supports new
definitions of learning objects for specialized domains. We illustrate this feature
with the definition of programming problems as learning objects and its
validation by the repository. This repository is also prepared to store usage data
on learning objects to tailor the presentation order and adapt it to learner
profiles.

Keywords: eLearning, Repositories, SOA, Interoperability.

1 Introduction

Component oriented systems are predominant in most of eLearning platforms.
Despite their success, they have also been target of criticism: their tools are too
general and they are difficult to integrate with other eLearning systems [1]. These
issues led to a new generation of service oriented eLearning platforms, easier to
integrate with other systems. This paper focuses the design and implementation of
crimsonHex, a service oriented repository of specialized learning objects (LO). It
provides standard compliant repository services to a broad range of eLearning
systems, exposing its functions using two alternative web services flavours. The
definition of LOs can be customized to the requirements of these systems. To
illustrate this customization we document the process of extending generic LOs to a
specific learning domain – programming exercises.

The extended definition of LOs to programming problems is being used in a
European research project called EduJudge. This project aims to integrate a collection

of problems created for programming contests into an effective educational
environment. This project includes three types of services:

• Learning Objects Repository (LOR) to store the exercises and to retrieve
those suited to a particular learner profile;

• Evaluation Engine (EE) to automatic evaluate and grade the students attempt
to solve the exercises;

• Learning Management System (LMS) to manage the presentation of
exercises to learners.

The remainder of this paper is organized as follows: Section 2 traces the evolution
of eLearning systems with emphasis on the existing repositories. In the following
section we extend the generic definition of a LO as a programming problem. Then,
we present the architecture of the repository and highlight its components, functions
and communication model. The next section, we focus on the main facets of its
implementation: storage, validation, interface and security. In Section 6 we describe
the tests and evaluation of the repository. Finally, we conclude with a summary of the
main contributions of this work and a perspective of future research.

2 State of Art

The evolution of eLearning systems comprises the last two decades. In the “first
generation”, eLearning systems had a monolithic architecture and were used on a
specific learning domain [1]. Gradually, these systems evolved and became
independent from a particular domain, incorporating tools that can be effectively
reused in several scenarios. Different kinds of component based eLearning systems
targeted to a specific aspect of eLearning, such as student or course management.
There are several acronyms trying to differentiate between these types of eLearning
systems. Nevertheless, the trend in eLearning systems is integration therefore most of
them evolved to the same set of standard features and many of these acronyms are
used as synonyms. The most usual designation of such systems is the LMS (e.g.
Moodle, Sakai, and WebCT).

This “second generation” allows the sharing of learning objects and learner
information. In this phase, some standards emerge, namely, IMS Content Packaging
(IMS CP), Sharable Content Object Reference Model (SCORM) and IEEE Learning
Object Metadata (IEEE LOM) that brought interoperability and content sharing to
eLearning. Despite the advantages of these systems and standards, some criticism
arose for several reasons, such as: focus on content, lack of support to response to
specific needs and difficult to integrate with other eLearning systems.

These issues triggered a new generation of eLearning platforms based on services
that can be integrated in different scenarios. This new approach provides the basis for
a Service Oriented Architecture (SOA) [2]. In the last few years there have been
initiatives to adapt SOA to eLearning, such as the eLearning Framework (ELF) and
the IMS Abstract Framework. These initiatives contributed with the identification
service usage models and a categorisation of genres of services for eLearning [3].
Some of these services are related with a key system in an eLearning platform – the
repository.

A repository of learning objects can be defined as a ‘system that stores electronic
objects and meta-data about those objects’ [4]. The need for this kind of repositories
is growing as more educators are eager to use digital educational contents and more of
it is available. One of the best examples is the repository Merlot (Multimedia
Educational Resource for Learning and Online Teaching). The repository provides
pointers to online learning materials and includes a search engine. The Jorum Team
made a comprehensive survey [5] of the existing repositories and noticed that most of
these systems do not store actual learning objects. They just store meta-data
describing LOs, including pointers to their locations on the Web, and sometimes these
pointers are dangling. Although some of these repositories list a large number of
pointers to LOs, they have few instances in any category, such as programming
problems. Last but not least, the LOs listed in these repositories must be manually
imported into a LMS. An evaluation engine cannot query the repository and
automatically import the LO it needs. In summary, most of the current repositories are
specialized search engines of LOs and not adequate for interact with other eLearning
systems, such as, feeding an automatic evaluation engine.

Based in other surveys [4] the users are concerned with issues that are not
completely addressed by the existing systems, such as interoperability. Some major
interoperability efforts [6] were made in eLearning, such as, NSDL, POOL,
ELENA/Edutella, EduSource and IMS Digital Repositories (IMS DRI). The IMS DRI
specification was created by the IMS Global Learning Consortium (IMS GLC) and
provides a functional architecture and reference model for repository interoperability.
The IMS DRI provides recommendations for common repository functions, namely
the submission, search and download of LOs. It recommends the use of web services
to expose the repository functions based on the Simple Object Access Protocol
(SOAP) protocol, defined by W3C. Despite the SOAP recommendation, other web
service interfaces could be used, such as, Representational State Transfer (REST) [7].

Besides the interoperability features of the repository its necessary to look to the
current standards that describes learning objects. As we said before, the actual
standards are quite generic and not adequate to specific domains, such as the
definition of programming problems. The most widely used standard for LO is the
IMS CP. This content packaging format uses an XML manifest file wrapped with
other resources inside a zip file. The manifest includes the IEEE LOM standard to
describe the learning resources included in the package. However, LOM was not
specifically designed to accommodate the requirements of automatic evaluation of
programming problems. For instance, there is no way to assert the role of specific
resources, such as test cases or solutions. Fortunately, LOM was designed to be
straightforward to extend it. Next, we enumerate four ways that have been used [8] to
extend the LOM model:

• combining the LOM elements with elements from other specifications;
• defining extensions to the LOM elements while preserving its set of

categories;
• simplifying LOM, reducing the number of LOM elements and the choices

they present;
• extending and reducing simultaneously the number of LOM elements.

Following this extension philosophy, the IMS GLC upgraded the Question & Test
Interoperability (QTI) specification. QTI describes a data model for questions and test

data and, unlike in its previous versions, extends the LOM with its own meta-data
vocabulary. QTI was designed for questions with a set of pre-defined answers, such as
multiple choice, multiple response, fill-in-the-blanks and short text questions. It
supports also long text answers but the specification of their evaluation is outside the
scope of the QTI. Although long text answers could be used to write the program's
source code, there is no way to specify how it should be compiled and executed,
which test data should be used and how it should be graded. For these reasons we
consider that QTI is not adequate for automatic evaluation of programming exercises,
although it may be supported for sake of compatibility with some LMS. Recently,
IMS GLC proposed the IMS Common Cartridge that bundles the previous
specifications and its main goal is to organize and distribute digital learning content.

3 Specialised Learning Objects

We defined programming problems as learning objects based on the IMS CP. An
IMS CP learning object assembles resources and meta-data into a distribution
medium, in our case a file archive in zip format, with its content described in a file
named imsmanifest.xml in the root level. The manifest contains four sections: meta-
data, organizations, resources and sub-manifests. The main sections are meta-data,
which includes a description of the package, and resources, containing a list of
references to other files in the archive (resources) and dependency among them.

Fig. 1. Structure of a programming problem as a learning object.

Meta-data information in the manifest file usually follows the IEEE LOM schema,
although other schemata can be used. These meta-data elements can be inserted in any
section of the IMS CP manifest. In our case, the meta-data that cannot be
conveniently represented using LOM is encoded in elements of a new schema - EJ
MD - and included only in the meta-data section of the IMS CP. This section is the
proper place to describe relationships among resources, as those needed for automatic
evaluation and lacking in the IEEE LOM. The compound schema can be viewed as a
new application profile that combines meta-data elements selected from several
schemata. This approach is similar to the SCORM 1.2 application profile that extends
IMS CP with more sophisticated sequencing and Contents-to-LMS communication.
The structure of the archive, acting as distribution medium and containing the
programming problem as a LO, is depicted in Figure 1.

The archive contains several files represented in the diagram as grey rectangles.
The manifest is an XML file and its elements' structure is represented by white
rectangles. Different elements of the manifest comply with different schemata
packaged in the same archive, as represented by the dashed arrows: the manifest root
element complies with the IMS CP schema; elements in the metadata section may
comply either with IEEE LOM or with EJ MD schemas; metadata elements within
resources may comply either with IEEE LOM or IMS QTI. Resource elements in the
manifest file reference assets packaged in the archive, as represented in solid arrows.

4 Architecture

In this section, we present the architecture of the crimsonHex repository described by
the UML component diagram shown in Figure 2. Using the API crimsonHex, the
repository exposes a core set of functions that can be efficiently implemented by a
simple and stable component. All other features are relegated to auxiliary
components, connected to the central component using this API. Other eLearning
systems can be plugged into the repository using also this API.

4.1 Components

In the design of crimsonHex we set some initial requirements, in particular, to be
simple and efficient. Simplicity is the best way to promote the reliability and
efficiency of the repository. In fact, the core operations of the repository are
uploading and downloading LO - ZIP archives - which are inherently simple
operations that can be implemented almost directly over the transport protocol. Other
features may need a more elaborate implementation but do not require the same
reliability and efficiency of the core features. The architecture of crimsonHex
repository is divided in three main components:

• the Core exposes the main features of the repository, both to external
services, such as the LMS and the EE, and to internal components - the Web
Manager and the Importer;

• the Web Manager allows the creation, revision, versioning,
uploading/downloading of LOs and related meta-data, enforcing compliance
with controlled vocabularies;

• the Importer populates the repository with existing legacy repositories. In
the remainder we focus on the Core component, more precisely, its
functions, communication model and implementation.

Fig. 2. Components diagram of the repository.

4.2 Functions

The Core component of the crimsonHex repository provides a minimal set of
operations exposed as web services and based in the IMS DRI specification. The main
functions are the following.

The Register/Reserve function requests a unique ID from the repository. We
separated this function from Submit/Store in order to allow the inclusion of the ID in
the meta-data of the LO itself. This ID is an URL that must be used for submitting a
LO. The producer may use this URL as an ID with the guarantee of its uniqueness and
the advantage of being a network location from where the LO can be downloaded.

The Submit/Store function copies a LO to a repository and makes it available for
future access. This operation receives as argument an IMS CP with the EJ MD
extension and an URL generated by the Register/Reserve function with a location/
identification in the repository. This operation validates the LO conformity to the IMS
Package Conformance and stores the package in the internal database;

The Search/Expose function enables the eLearning systems to query the repository
using the XQuery language, as recommended by the IMS DRI. This approach gives
more flexibility to the client systems to perform any queries supported by the
repository's data. To write queries in XQuery the programmers of the client systems
need to know the repository's database schema. These queries are based on both the
content of the LO manifest and the LOs’ usage reports, and can combine the two
document types. The client developer needs also to know that the database is
structured in collections. A collection is a kind of a folder containing several
resources and also other folders. From the XQuery point of view the database is a
collection of manifest files. For each manifest file there is a nested collection
containing the usage reports. As an example of a simple search, suppose we want to
find all title elements in the LO collection with an easy difficulty level.

declare namespace imsmd = “http://...”;
for $p in //imsmd:lom
where contains($p//imsmd:difficulty,easy)
return $p//imsmd:title//text()

The previous example displays a FLWOR (“For, Let, Where, Order by, Return”)

expression based in XQuery language to locate all such elements. This approach is
used in SOAP requests. For REST requests we can simple write in a browser the
URL: http://host/crimsonHex?difficulty=easy . In both approaches
the result is a set of strings; alternatively, it can be a XML document. In this case it is
possible to format the result using an XSLT (Extensible Stylesheet Language
Transformation) file. For frequent queries it’s possible to compile and cache them as
XQuery procedures.

The Report/Store function associates a usage report to an existing LO. This
function is invoked by the LMS to submit a final report, summarizing the use of a LO
by a single student. This report includes both general data on the student's attempt to
solve the programming exercise (e.g. data, number of evaluations, success) and
particular data on the student’s characteristics (e.g. gender, age, instructional level).
With this data, the LMS will be able to dynamically generate presentation orders
based on previous uses of LO, instead of using fixed presentation orders. This
function is an extension of the IMS DRI.

The Alert/Expose function notifies users of changes in the state of the repository
using a Really Simple Syndication (RSS) feed. With this option a user can have up-to-
date information through a feed reader.

4.3 Communication Model

The communication model of the repository defines the interaction between the
repository and the other eLearning systems. The model is composed by a set of core
functions, most of them, exposed in the previous section. The figure 3 shows an UML
diagram to illustrate the sequence of core functions invocations from these eLearning
systems to repositories.

Fig. 3. Communication between the repository and the other eLearning systems.

The life cycle of a LO starts with the reserve of an identification and the

submission of a LO to the repository. Next, the LO is available for searching and
delivering to other eLearning systems. Then, the learner in the LMS could use the LO
and submit it sending an attempt of the problem solution to the EE. Based in the
feedback the learner could repeat the process. In the end, the LMS sends a report of
the LO usage data back to the repository. This DRI extension will be, in our view, the
basis for a next generation of LMS with the capability to adjust the order of
presentation of the programming exercises in accordance with the needs of a
particular student.

5 Implementation

In this section we detail the design and implementation of the Core component of
crimsonHex on the Tomcat servlet container.

Reliability and efficiency were our main concern when designing the Core. The
best way to achieve them is through the simplicity. These are the main design goal
that guided us in the development of the four main facets of the Core - storage,
validation, interface and security - analysed in the following subsections.

5.1 Storage

Searching LOs in the repository is based on queries on their XML manifests. Since
manifests are XML documents with complex schemata we paid particular attention to
databases systems with XML support: XML enabled relational databases and Native
XML Databases (NXD).

XML enabled relational databases are traditional databases with XML
import/export features. They do not store internally data in XML format hence they
do not support querying using XQuery. Since queries in this standard are a DRI
recommendation this type of storage is not a valid option. In contrast, NXD uses the
XML document as fundamental unit of (logical) storage, making it more suitable for
data schemata difficult to fit in the relational model. Moreover, using XML
documents as storage units enables the following standards:

• XPath for simple queries on document or collections of documents;
• XQuery for queries requiring transformational scaffolding;
• SOAP, REST, WebDAV, XmlRpc and Atom for application interface;
• XML:DB API (or XAPI) as a standard interface to access XML datastores.
• XSLT to transform documents or query-results retrieved from the database.

We analysed several open source NXD, including SEDNA, OZONE, XIndice and
eXist, Only eXist implements the complete list of the features enumerated above,
which led us to select it as the storage component of crimsonHex. It has also two
important features [9] worth mentioning: support for collections, to structure the
database in groups of related documents and automatic indexes to speed up the
database access.

5.2 Validation

The crimsonHex is a repository of specialized learning objects. To support this multi
typed content the repository must have a flexible LO validation feature. The eXist
NXD supports implicit validation on insertion of XML documents in the database but
this feature could not be used for several reasons: LO are not XML documents (are
ZIP files containing an XML manifest); manifest validation may involve many XML
Schema Definition (XSD) files that are not efficiently handled by eXist; and manifest
validation may combine XSD and Schematron validation and this last is not fully
supported by eXist.

All LOs stored in crimsonHex must comply with the IMS Package Conformance
that specifies it structure and content. This standard also requires the XSD validation
of their manifests. For particular domains it is possible to configure specialized
validations in crimsonHex by supplying a Java class implementing a specific
interface. These validations extend those of the IMS Package Conformance and may
introduce new schemata, even using different type definition languages, such as
Schematron.

Validations are configured per collection of documents. Thus, different types of
specialized LO may coexist in a single instance of crimsonHex. As mentioned before,
IMS CP main schema imports many other schemata (more than 30) that according to
the IMS Package Conformance must be downloaded from the Internet. This

requirement has a huge impact on the performance of the submit function. To
accelerate this function we implemented a cache. A newly stored schema has a time to
live of 1 hour. Outdated schemata are reloaded from their original Internet location
using a conditional HTTP request that downloads it only if it has effectively changed.

5.3 Interface

To comply with standards, the IMS DRI recommends the implementation of core
functions as web services. We chose to implement two distinct flavours of web
services: SOAP and REST. SOAP web services are usually action oriented, mainly
when used in Remote Procedure Call (RPC) mode and implemented by an off the
shelf SOAP engine such as Axis.

Table 1. Core functions of the repository.

Function SOAP REST
Reserve URL getNextId() GET /nextId > URL
Submit submit(URL loid, LO lo) PUT URL < LO
Request LO retrieve(URL loid) GET URL > LO
Search XML search(XQuery query) POST /query < XQUERY > XML
Report Report(URL loid,LOReport rep) PUT URL/report < LOREPORT
Alert RSS getUpdates() GET /rss > RSS

The web services based on the REST style are object (resource) oriented and

implemented directly over the HTTP protocol, using, for example, Java servlets,
mostly to put and get resources, such as LOs and usage data. The reason to implement
two distinct web service flavours is to promote the use of the repository by adjusting
to different architectural styles. The repository functions are summarized in Table 1.
Each function is associated with the corresponding operations in both SOAP and
REST web services interfaces.

5.4 Security

Following the design principles of simplicity and efficiency we decided to avoid the
management of users and access control in the Core. This decision does not preclude
the security of this component since we can control these features in the
communication layer. Since both web services flavours use HTTP as transport
protocol we secure the channel using Secure Sockets Layer (SSL) (i.e. HTTPS). This
ensures the integrity and confidentiality of assets in LO. To achieve authentication
and authorization we rely on the verification of client certificates provided by SSL. In
practice, to implement this approach we just needed to configure the servlet container
(e.g. Tomcat) to support HTTPS requests with authorized certificates. Nevertheless,
managing certificates is a comparatively complex procedure thus we provide a set of
auxiliary functions in the core that act as a mini Certificate Authority (CA). These
functions are used for managing and signing client certificates and their
implementation is based on the Java Security APIs.

6 Tests and Evaluation

Reliability is one of our main concerns regarding the Core component of crimsonHex.
We adopted JUnit as our automated unit testing framework since crimsonHex is
implemented in Java and this tool is support by Eclipse, the Integrated Development
Environment (IDE) used in this project. Apart from the unit tests, we created a tool
for automatic generation of random requests to the repository, following the
communication model summarized in Figure 3. The goal of this tool is two folded: to
look for bugs in unpredicted sequences of requests and to stress-test the repository.
The tool generates a random sequence of Core functions’ invocations and records
then in the Core’s log file (through a Java-based logging utility called log4j). Errors
generated by these request sequences are recorded by the Core in the same log files.
After each test the log file is manually inspected looking for function sequences that
originated errors. This approach was essential to discover errors that otherwise would
only be detected in production. Efficiency and scalability are two other main concerns
in the development of crimsonHex. To test performance we used the test tool to
compare execution times of the main functions in the two supported web services
interfaces: SOAP and REST. Each function has been repeated 10 times. Average
function execution times for the set of functions are shown in Table 2.

Table 2. Average function execution times per interface (in seconds).

 submit retrieve Search
SOAP 4,53 1,57 2,23
REST 2,11 0,44 0,93

These figures show that our DRI extension, based on REST, twice as efficient as

the standard SOAP interface. These results were expectable since the REST interface
does not have to marshal request messages. In both interfaces submit times are
significantly higher than the other functions due to weight of the validation process.

The scalability his other important issue. Scalability is bound by the database
limits. The eXist NXD supports a maximum of 231 documents and theoretically,
documents can be arbitrary large depending on file system limits, e.g. the max size of
a file in the file system, which have an influence. To test the scalability of eXist some
queries were made [9] with increasing data volumes. The experiment shows linear
scalability of eXist’s indexing, storage and querying architecture.

7 Conclusions

In this paper we described the architecture, design and implementation of a repository
of specialized learning objects called crimsonHex. The main contribution of this work
is the extension of the existing specifications based on the IMS standard to the
particular requirements of a specialized domain, such as, the automatic evaluation of
programming problems. We focused mainly on two parts:

• the specialization of the definition of LO, where programming problems are
given as a concrete example;

• the design of the repository, more precisely, its components, functions and
details of its implementation.

For the first part we detail the actions needed to define LOs from a domain that is
not covered by the IEEE LOM in a way that can be reproduced in similar contexts.

For the second part we describe the design and implementation of a repository of
specialized LOs. We adopt the IMS DRI and propose extensions to its
recommendations, namely on the web service interfaces and on the standard
functions. The new function to record usage reports of a LO, will be the basis to
support a next generation of LMS with the ability to tailor the presentation order of
programming exercises to the needs of a particular learner.

In its current status crimsonHex Core can be deployed to a service oriented
eLearning platform and is available for test and download at the following URL
http://mooshak.dcc.fc.up.pt:8080/crimsonHex/release s.jsp .
Our future work in this project includes developing a management and authoring tool;
populating the repository with problem sets from existing sources, while classifying
then and controlling their quality.

Acknowledgments. This work is part of the project entitled “Integrating Online
Judge into effective e-learning”, with project number 135221-LLP-1-2007-1-ES-
KA3-KA3MP. This project has been funded with support from the European
Commission. This communication reflects the views only of the author, and the
Commission cannot be held responsible for any use which may be made of the
information contained therein.

References

1. Dagger, D., O'Connor, A., Lawless, S., Walsh, E., Wade, V.: Service Oriented eLearning
Platforms: From Monolithic Systems to Flexible Services (2007)

2. Girardi, R.: Framework para coordenação e mediação de Web Services modelados como
Learning Objects para ambientes de aprendizado na Web (2004)

3. Wilson, S., Blinco, K., Rehak, D.: An e-Learning Framework. Paper prepared on behalf of
DEST (Australia). In: JISC-CETIS (UK) , Canada, (2004)

4. Holden, C.: What We Mean When We Say “Repositories” User Expectations of
Repository Systems. In: Academic ADL Co-Lab, (2004)

5. JORUM team: E-Learning Repository Systems Research Watch. Technical report (2006)
6. Hatala, M., Richards, G., Eap, T., Willms, J.: The EduSource Communication Language:

Implementing Open Network for Learning Repositories and Services. In: ACM
symposium on Applied computing (2004)

7. Fielding, R.: Architectural Styles and the Design of Network-based Software
Architectures - Phd dissertation, (2000)

8. Friesen, N.: Semantic and Syntactic Interoperability for Learning Object Metadata. In:
Hillman, D. (ed.) Metadata in Practice. Chicago, ALA Editions, (2004)

9. Meier, W.: eXist: An Open Source Native XML Database. In: NODe 2002 Web and
Database-Related Workshops, (2002)

