CrimsonHex: a Service Oriented Repository of
Specialised L earning Objects

José Paulo Ledhnd Ricardo Queirés

1 CRACS & DCC-FCUP, University of Porto, Portugal

zp@dcec.fc.up.pt
2 CRACS & DI-ESEIG/IPP, Porto, Portugal

ricardo.queiros@eu.ipp.pt

Abstract. The corner stone of the interoperability of eLé&agnsystems is the
standard definition of learning objects. Neverths|efor some domains this
standard is insufficient to fully describe all thgsets, especially when they are
used as input for other eLearning services. Onadtiner hand, a standard
definition of learning objects in not enough to wmsinteroperability among
eLearning systems; they must also use a standatdtcABxchange learning
objects. This paper presents the design and impittien of a service oriented
repository of learning objects called crimsonHexisT repository is fully
compliant with the existing interoperability stand® and supports new
definitions of learning objects for specialized dons. We illustrate this feature
with the definition of programming problems as téag objects and its
validation by the repository. This repository isaprepared to store usage data
on learning objects to tailor the presentation orded adapt it to learner
profiles.

Keywords: eLearning, Repositories, SOA, Interoperability.

1 Introduction

Component oriented systems are predominant in mbséLearning platforms.
Despite their success, they have also been tafgetitwism: their tools are too
general and they are difficult to integrate witthert eLearning systems [1]. These
issues led to a new generation of service oriemtegarning platforms, easier to
integrate with other systems. This paper focusesdisign and implementation of
crimsonHex, a service oriented repository of spizeid learning objects (LO). It
provides standard compliant repository servicesatdoroad range of elearning
systems, exposing its functions using two alteweativeb services flavours. The
definition of LOs can be customized to the requieats of these systems. To
illustrate this customization we document the psscef extending generic LOs to a
specific learning domain — programming exercises.

The extended definition of LOs to programming peoh$ is being used in a
European research project called EduJudge. Thjegiraims to integrate a collection

of problems created for programming contests into effective educational
environment. This project includes three typeseo¥ises:
e Learning Objects Repository (LOR) to store the eisers and to retrieve
those suited to a particular learner profile;
» Evaluation Engine (EE) to automatic evaluate aratigrthe students attempt
to solve the exercises;
* Learning Management System (LMS) to manage the eptason of
exercises to learners.

The remainder of this paper is organized as folldsestion 2 traces the evolution
of eLearning systems with emphasis on the existemgpsitories. In the following
section we extend the generic definition of a LOagsrogramming problem. Then,
we present the architecture of the repository agtlight its components, functions
and communication model. The next section, we fooosthe main facets of its
implementation: storage, validation, interface amdurity. In Section 6 we describe
the tests and evaluation of the repository. Finally conclude with a summary of the
main contributions of this work and a perspectif/éuture research.

2 Stateof Art

The evolution of eLearning systems comprises tls¢ tao decades. In the “first

generation”, eLearning systems had a monolithihitecture and were used on a
specific learning domain [1]. Gradually, these egst evolved and became
independent from a particular domain, incorporatingls that can be effectively

reused in several scenarios. Different kinds of ponent based elLearning systems
targeted to a specific aspect of eLearning, sucktadent or course management.
There are several acronyms trying to differentlzgénveen these types of eLearning
systems. Nevertheless, the trend in eLearning s¥ste integration therefore most of
them evolved to the same set of standard featurdsreany of these acronyms are
used as synonyms. The most usual designation df systems is the LMS (e.g.

Moodle, Sakai, and WebCT).

This “second generation” allows the sharing of @@y objects and learner
information. In this phase, some standards emergmely, IMS Content Packaging
(IMS CP), Sharable Content Object Reference Mo8EIGRM) and IEEE Learning
Object Metadata (IEEE LOM) that brought interopdigband content sharing to
elLearning. Despite the advantages of these systamisstandards, some criticism
arose for several reasons, such as: focus on doiek of support to response to
specific needs and difficult to integrate with atlkéearning systems.

These issues triggered a new generation of eLeapiatforms based on services
that can be integrated in different scenarios. Tiels approach provides the basis for
a Service Oriented Architecture (SOA) [2]. In ttestl few years there have been
initiatives to adapt SOA to elLearning, such aséhearning Framework (ELF) and
the IMS Abstract Framework. These initiatives cilmited with the identification
service usage models and a categorisation of gefresrvices for eLearning [3].
Some of these services are related with a key systean eLearning platform — the
repository.

A repository of learning objects can be definedadsystem that stores electronic
objects and meta-data about those objects’ [4]. ridexl for this kind of repositories
is growing as more educators are eager to usabaglucational contents and more of
it is available. One of the best examples is thgoséory Merlot (Multimedia
Educational Resource for Learning and Online TaaphiThe repository provides
pointers to online learning materials and includesearch engine. The Jorum Team
made a comprehensive survey [5] of the existingsipries and noticed that most of
these systems do not store actual learning objéldiey just store meta-data
describing LOs, including pointers to their locasoon the Web, and sometimes these
pointers are dangling. Although some of these riépiss list a large number of
pointers to LOs, they have few instances in anggmy, such as programming
problems. Last but not least, the LOs listed irséheepositories must be manually
imported into a LMS. An evaluation engine cannoterguthe repository and
automatically import the LO it needs. In summarypstrof the current repositories are
specialized search engines of LOs and not adedoiateteract with other eLearning
systems, such as, feeding an automatic evaluatigime.

Based in other surveys [4] the users are concemidldl issues that are not
completely addressed by the existing systems, ascimteroperability. Some major
interoperability efforts [6] were made in elLearninguch as, NSDL, POOL,
ELENA/Edutella, EduSource and IMS Digital Reposisr(IMS DRI). The IMS DRI
specification was created by the IMS Global Leaggn@onsortium (IMS GLC) and
provides a functional architecture and referencdehtor repository interoperability.
The IMS DRI provides recommendations for commorosépry functions, namely
the submission, search and download of LOs. Itmenends the use of web services
to expose the repository functions based on theplgindbject Access Protocol
(SOAP) protocaol, defined by W3C. Despite the SO&Bommendation, other web
service interfaces could be used, such as, Repiagiseral State Transfer (REST) [7].

Besides the interoperability features of the refpogiits necessary to look to the
current standards that describes learning objek$¢s.we said before, the actual
standards are quite generic and not adequate toifispdomains, such as the
definition of programming problems. The most widelyed standard for LO is the
IMS CP. This content packaging format uses an XManifest file wrapped with
other resources inside a zip file. The manifestuishes the IEEE LOM standard to
describe the learning resources included in the&kgmge However, LOM was not
specifically designed to accommodate the requirésneh automatic evaluation of
programming problems. For instance, there is no teagssert the role of specific
resources, such as test cases or solutions. FwetynaOM was designed to be
straightforward to extend it. Next, we enumeratdr f@ays that have been used [8] to
extend the LOM model:

e combining the LOM elements with elements from otecifications;

» defining extensions to the LOM elements while preisg its set of
categories;

» simplifying LOM, reducing the number of LOM elemerdind the choices
they present;

» extending and reducing simultaneously the numb&Qdfl elements.

Following this extension philosophy, the IMS GLCgupded the Question & Test
Interoperability (QTI) specification. QTI describaglata model for questions and test

data and, unlike in its previous versions, extetims LOM with its own meta-data
vocabulary. QTI was designed for questions witktao$ pre-defined answers, such as
multiple choice, multiple response, fill-in-the-hlks and short text questions. It
supports also long text answers but the specifinatif their evaluation is outside the
scope of the QTI. Although long text answers cdutdused to write the program's
source code, there is no way to specify how it khdne compiled and executed,
which test data should be used and how it shoulgreded. For these reasons we
consider that QTI is not adequate for automatiduaten of programming exercises,
although it may be supported for sake of compatjpivith some LMS. Recently,
IMS GLC proposed the IMS Common Cartridge that besidthe previous
specifications and its main goal is to organize distfibute digital learning content.

3 Specialised L earning Objects

We defined programming problems as learning objeatsed on the IMS CP. An
IMS CP learning object assembles resources and -aia¢da into a distribution
medium, in our case a file archive in zip formaithwits content described in a file
named imsmanifest.xml in the root level. The mastifntains four sections: meta-
data, organizations, resources and sub-manifesis. fiain sections are meta-data,
which includes a description of the package, argbueces, containing a list of
references to other files in the archive (resoyraed dependency among them.

imsmanifestxml

complies !
- =] manifest

|
metadata
IMS CF schema
lom complies
metadata -4-4- EJ MD schema

resources

camplies
| LOM schema |<——-

resource

S e

metadata

Assets resource

metadata

complies

|- M3 ATl schema

resource

references
metadata —

Fig. 1. Structure of a programming problem as a learnbjgai.

Meta-data information in the manifest file usuditylows the IEEE LOM schema,
although other schemata can be used. These metaldatents can be inserted in any
section of the IMS CP manifest. In our case, thetardata that cannot be
conveniently represented using LOM is encoded é@mehts of a new schema - EJ
MD - and included only in the meta-data sectiorthaf IMS CP. This section is the
proper place to describe relationships among ressugs those needed for automatic
evaluation and lacking in the IEEE LOM. The compdwechema can be viewed as a
new application profile that combines meta-datamelets selected from several
schemata. This approach is similar to the SCORMapgication profile that extends
IMS CP with more sophisticated sequencing and Gast®-LMS communication.
The structure of the archive, acting as distributimedium and containing the
programming problem as a LO, is depicted in Fidure

The archive contains several files representechéndiagram as grey rectangles.
The manifest is an XML file and its elements' stuwe is represented by white
rectangles. Different elements of the manifest dgmpith different schemata
packaged in the same archive, as represented latted arrows: the manifest root
element complies with the IMS CP schema; elemeantthé metadata section may
comply either with IEEE LOM or with EJ MD schemasgtadata elements within
resources may comply either with IEEE LOM or IMS IQResource elements in the
manifest file reference assets packaged in thearchs represented in solid arrows.

4 Architecture

In this section, we present the architecture ofciti@sonHex repository described by
the UML component diagram shown in Figure 2. Usihg APl crimsonHex, the
repository exposes a core set of functions thatbmaefficiently implemented by a
simple and stable component. All other features ezkegated to auxiliary
components, connected to the central componeng ukiis API. Other elLearning
systems can be plugged into the repository usis this API.

4.1 Components

In the design of crimsonHex we set some initialuiegments, in particular, to be
simple and efficient. Simplicity is the best way pwomote the reliability and
efficiency of the repository. In fact, the core ogens of the repository are
uploading and downloading LO - ZIP archives - whiate inherently simple
operations that can be implemented almost direntlr the transport protocol. Other
features may need a more elaborate implementatiwndd not require the same
reliability and efficiency of the core features. eTtarchitecture of crimsonHex
repository is divided in three main components:
» the Core exposes the main features of the repository, botlexternal
services, such as the LMS and the EE, and to iateomponents - the Web
Manager and the Importer;

e the Web Manager allows the creation, revision, versioning,
uploading/downloading of LOs and related meta-detdigrcing compliance
with controlled vocabularies;

» the Importer populates the repository with existing legacy répogs. In
the remainder we focus on the Core component, nmesisely, its
functions, communication model and implementation.

O Legacy Repositaries & |
Admin Query
/N
=«database=> 3 |
exist
Impoter 2
XML:DB
N
I
| I
==infrastructure== E :
Core '
I
I I
I I
kv, |
==interface=» K- -
APl crimsonHex
+ submilfloid URL, fo L) ==GUl== E
+ requestiiold - URL) 10 S WebManager
+ reportiioid | URL, report | LORepor)
+ searchiquenys . KGueny) | XML
+ aler) | RES
™ »
T T
I I
I I
e g] EE 4]

Fig. 2. Components diagram of the repository.

4.2 Functions

The Core component of the crimsonHex repositoryvides a minimal set of
operations exposed as web services and based li$1®RI specification. The main
functions are the following.

The Register/Reserve function requests a unique ID from the repositoe
separated this function from Submit/Store in orndeallow the inclusion of the ID in
the meta-data of the LO itself. This ID is an URlatt must be used for submitting a
LO. The producer may use this URL as an ID withgbarantee of its uniqgueness and
the advantage of being a network location from whbe LO can be downloaded.

The Submit/Stor e function copies a LO to a repository and makewdilable for
future access. This operation receives as argumentMS CP with the EJ MD
extension and an URL generated by the RegisterflRedanction with a location/
identification in the repository. This operatiorlidates the LO conformity to the IMS
Package Conformance and stores the package intdreal database;

The Sear ch/Expose function enables the eLearning systems to queryepesitory
using the XQuery language, as recommended by tt& DRI. This approach gives
more flexibility to the client systems to perfornmyaqueries supported by the
repository's data. To write queries in XQuery thegoammers of the client systems
need to know the repository's database schemaeThesies are based on both the
content of the LO manifest and the LOs’ usage msp@nd can combine the two
document types. The client developer needs als&ntow that the database is
structured in collections. A collection is a kind a folder containing several
resources and also other folders. From the XQueigtf view the database is a
collection of manifest files. For each manifeste fithere is a nested collection
containing the usage reports. As an example ofmplsi search, suppose we want to
find all title elements in the LO collection witim &asy difficulty level.

decl ar e namespace imsmd = “http://...”;
for $p in /imsmd:lom

wher e contains($p//imsmd:difficulty,easy)
return $p/imsmd:title//text()

The previous example displays a FLWOR (“For, Letyahe, Order by, Return”)
expression based in XQuery language to locateual ®€lements. This approach is
used in SOAP requests. For REST requests we caplesiwrite in a browser the
URL: http://host/crimsonHex?difficulty=easy . In both approaches
the result is a set of strings; alternatively,ahde a XML document. In this case it is
possible to format the result using an XSLT (Exieles Stylesheet Language
Transformation) file. For frequent queries it's pibde to compile and cache them as
XQuery procedures.

The Report/Store function associates a usage report to an existi@®g This
function is invoked by the LMS to submit a finapoet, summarizing the use of a LO
by a single student. This report includes both gdrdata on the student's attempt to
solve the programming exercise (e.g. data, numlbeevaluations, success) and
particular data on the student’s characteristicg. (gender, age, instructional level).
With this data, the LMS will be able to dynamicaljgnerate presentation orders
based on previous uses of LO, instead of usingdfipeesentation orders. This
function is an extension of the IMS DRI.

The Alert/Expose function notifies users of changes in the statéhefrepository
using a Really Simple Syndication (RSS) feed. \hik option a user can have up-to-
date information through a feed reader.

4.3 Communication Model

The communication model of the repository defines interaction between the
repository and the other eLearning systems. Theelngedcomposed by a set of core
functions, most of them, exposed in the previousi@e. The figure 3 shows an UML

diagram to illustrate the sequence of core funstionocations from these eLearning
systems to repositories.

:Proﬁcer {LOR

gethextid()| 1
search (XOuery!query} T XML I

|
.. LstoT O URLs ond mete-data |
| |

retrieve(URY loid) : LO -
T

|rg asset) : File

4; addReportu’URLpuid, LOReport repurt}_'i

T | b

I | I
Fig. 3. Communication between the repository and the athearning systems.

|
| submt(URL|ioid, LO o)
|

| -

|

|

|

|

|

1

|

|

|

|

|

|

|

|

|

The life cycle of a LO starts with the reserve of mlentification and the
submission of a LO to the repository. Next, the IsCavailable for searching and
delivering to other eLearning systems. Then, tlaener in the LMS could use the LO
and submit it sending an attempt of the problenutsmi to the EE. Based in the
feedback the learner could repeat the proceshieremnd, the LMS sends a report of
the LO usage data back to the repository. This &®&tnsion will be, in our view, the
basis for a next generation of LMS with the capgbito adjust the order of
presentation of the programming exercises in aewe with the needs of a
particular student.

5 Implementation

In this section we detail the design and implent@ntaof the Core component of
crimsonHex on the Tomcat servlet container.

Reliability and efficiency were our main concernemhdesigning the Core. The
best way to achieve them is through the simplicltgese are the main design goal
that guided us in the development of the four nfaicets of the Core - storage,
validation, interface and security - analysed mfibllowing subsections.

5.1 Storage

Searching LOs in the repository is based on quenetheir XML manifests. Since
manifests are XML documents with complex schematguid particular attention to
databases systems with XML support: XML enabledtiehal databases and Native
XML Databases (NXD).

XML enabled relational databases are traditionaltals@ses with XML
import/export features. They do not store integndita in XML format hence they
do not support querying using XQuery. Since quenieshis standard are a DRI
recommendation this type of storage is not a vafition. In contrast, NXD uses the
XML document as fundamental unit of (logical) stggamaking it more suitable for
data schemata difficult to fit in the relational deb Moreover, using XML
documents as storage units enables the followangdstrds:

e XPath for simple queries on document or collectiohdocuments;

e XQuery for queries requiring transformational sohfing;

e SOAP, REST, WebDAV, XmIRpc and Atom for applicatioterface;

* XML:DB API (or XAPI) as a standard interface to ass XML datastores.
* XSLT to transform documents or query-results rg&tefrom the database.

We analysed several open source NXD, including SEDBZONE, XlIndice and
eXist, Only eXist implements the complete list betfeatures enumerated above,
which led us to select it as the storage componémtrimsonHex. It has also two
important features [9] worth mentioning: support fmllections, to structure the
database in groups of related documents and autonmatexes to speed up the
database access

5.2 Validation

The crimsonHex is a repository of specialized legyrobjects. To support this multi
typed content the repository must have a flexib@ Validation feature. The eXist
NXD supports implicit validation on insertion of XMdocuments in the database but
this feature could not be used for several reasoBsare not XML documents (are
ZIP files containing an XML manifest); manifest igkdtion may involve many XML
Schema Definition (XSD) files that are not effidigrhandled by eXist; and manifest
validation may combine XSD and Schematron valigdatmd this last is not fully
supported by eXist.

All LOs stored in crimsonHex must comply with tHd$ Package Conformance
that specifies it structure and content. This stathdchlso requires the XSD validation
of their manifests. For particular domains it issgible to configure specialized
validations in crimsonHex by supplying a Java clasgplementing a specific
interface. These validations extend those of th8 IRackage Conformance and may
introduce new schemata, even using different typéniion languages, such as
Schematron.

Validations are configured per collection of documtse Thus, different types of
specialized LO may coexist in a single instancermhsonHex. As mentioned before,
IMS CP main schema imports many other schematag(than 30) that according to
the IMS Package Conformance must be downloaded ftben Internet. This

requirement has a huge impact on the performanc¢éhefsubmit function. To
accelerate this function we implemented a cacheeWly stored schema has a time to
live of 1 hour. Outdated schemata are reloaded fito#ir original Internet location
using a conditional HTTP request that downloadmiy if it has effectively changed.

5.3 Interface

To comply with standards, the IMS DRI recommends ifmplementation of core
functions as web services. We chose to implemeuwt digtinct flavours of web
services: SOAP and REST. SOAP web services ardlysdion oriented, mainly
when used in Remote Procedure Call (RPC) mode mptemented by an off the
shelf SOAP engine such as Axis.

Tablel. Core functions of the repository.

Functioo SOAP REST

Reserve URL getNextld() GET /nextld > URL

Submit submit(URL loid, LO lo) PUT URL < LO

Request LO retrieve(URL loid) GETURL >LO

Search XML search(XQuery query) POST /que¥QUERY > XML
Report Report(URL loid,LOReport rep) PWRL/report <LOREPORT
Alert RSS getUpdates() GET /rss > RSS

The web services based on the REST style are olijesturce) oriented and
implemented directly over the HTTP protocol, usifigy example, Java servlets,
mostly to put and get resources, such as LOs aagkudata. The reason to implement
two distinct web service flavours is to promote tlse of the repository by adjusting
to different architectural styles. The repositompdtions are summarized in Table 1.
Each function is associated with the correspondipgrations in both SOAP and
REST web services interfaces.

5.4 Security

Following the design principles of simplicity anffigency we decided to avoid the
management of users and access control in the Thig decision does not preclude
the security of this component since we can conttedse features in the
communication layer. Since both web services flasouse HTTP as transport
protocol we secure the channel using Secure Sotkger (SSL) (i.e. HTTPS). This
ensures the integrity and confidentiality of asset$ O. To achieve authentication
and authorization we rely on the verification agénot certificates provided by SSL. In
practice, to implement this approach we just neg¢daxbnfigure the servlet container
(e.g. Tomcat) to support HTTPS requests with aighdrcertificates. Nevertheless,
managing certificates is a comparatively compleoxcpdure thus we provide a set of
auxiliary functions in the core that act as a n@rtificate Authority (CA). These
functions are used for managing and signing cliesttificates and their
implementation is based on the Java Security APIs.

6 Testsand Evaluation

Reliability is one of our main concerns regardihg €Core component of crimsonHex.
We adopted JUnit as our automated unit testing dmonk since crimsonHex is
implemented in Java and this tool is support bypsel, the Integrated Development
Environment (IDE) used in this project. Apart frahe unit tests, we created a tool
for automatic generation of random requests to tépository, following the
communication model summarized in Figure 3. Thd gb#his tool is two folded: to
look for bugs in unpredicted sequences of requastisto stress-test the repository.
The tool generates a random sequence of Core @umsttinvocations and records
then in the Core’s log file (through a Java-basmghing utility called log4j). Errors
generated by these request sequences are recordiee Gore in the same log files.
After each test the log file is manually inspeckeoking for function sequences that
originated errors. This approach was essentiaisttogler errors that otherwise would
only be detected in production. Efficiency and abdity are two other main concerns
in the development of crimsonHex. To test perforceame used the test tool to
compare execution times of the main functions i@ tho supported web services
interfaces: SOAP and REST. Each function has bepeated 10 times. Average
function execution times for the set of functions shown in Table 2.

Table2. Average function execution times per interfaces@conds).

submit retrieve Search
SOAP 4,53 1,57 2,23
REST 2,11 0,44 0,93

These figures show that our DRI extension, base®BST, twice as efficient as
the standard SOAP interface. These results werectxple since the REST interface
does not have to marshal request messages. Inihtettiaces submit times are
significantly higher than the other functions daenveight of the validation process.

The scalability his other important issue. Scaigbils bound by the database
limits. The eXist NXD supports a maximum of'*Zocuments and theoretically,
documents can be arbitrary large depending orsyjisgem limits, e.g. the max size of
a file in the file system, which have an influente.test the scalability of eXist some
qgueries were made [9] with increasing data volunfd® experiment shows linear
scalability of eXist's indexing, storage and quagyarchitecture.

7 Conclusions

In this paper we described the architecture, desighimplementation of a repository
of specialized learning objects called crimsonHehe main contribution of this work
is the extension of the existing specificationseasn the IMS standard to the
particular requirements of a specialized domaichsas, the automatic evaluation of
programming problems. We focused mainly on twoart

» the specialization of the definition of LO, whemmgramming problems are
given as a concrete example;

» the design of the repository, more precisely, amponents, functions and
details of its implementation.

For the first part we detail the actions neededefine LOs from a domain that is
not covered by the IEEE LOM in a way that can haduced in similar contexts.

For the second part we describe the design anceimgaitation of a repository of
specialized LOs. We adopt the IMS DRI and proposdersions to its
recommendations, namely on the web service intesfaand on the standard
functions. The new function to record usage repofta LO, will be the basis to
support a next generation of LMS with the abilitytailor the presentation order of
programming exercises to the needs of a parti¢edaner.

In its current status crimsonHex Core can be demoto a service oriented
eLearning platform and is available for test andveload at the following URL
http://mooshak.dcc.fc.up.pt:8080/crimsonHex/release s.jsp
Our future work in this project includes developmgnanagement and authoring tool;
populating the repository with problem sets fronisi®g sources, while classifying
then and controlling their quality.

Acknowledgments. This work is part of the project entitled “Intetirg Online
Judge into effective e-learning”, with project nuenbl35221-LLP-1-2007-1-ES-
KA3-KA3MP. This project has been funded with sugpfnom the European
Commission. This communication reflects the viewsyoof the author, and the
Commission cannot be held responsible for any ueeEhvmay be made of the
information contained therein.

References

1. Dagger, D., O'Connor, A., Lawless, S., Walsh, E.d&/a/.: Service Oriented eLearning
Platforms: From Monolithic Systems to Flexible Seeg (2007)

2. Girardi, R.: Framework para coordenacgdo e mediagdd/eb Services modelados como
Learning Objects para ambientes de aprendizadoata(2004)

3. Wilson, S., Blinco, K., Rehak, D.: An e-Learning fework. Paper prepared on behalf of
DEST (Australia). In: JISC-CETIS (UK) , Canada, (2p04

4. Holden, C.: What We Mean When We Say “Repositorie/ser Expectations of
Repository Systems. In: Academic ADL Co-Lab, (2004)

5. JORUM team: E-Learning Repository Systems ReseardbhN&echnical report (2006)

6. Hatala, M., Richards, G., Eap, T., Willms, J.: ThduBource Communication Language:
Implementing Open Network for Learning Repositoriead Services In: ACM
symposium on Applied computing (2004)

7. Fielding, R.: Architectural Styles and the Design bfetwork-based Software
Architectures Phd dissertation, (2000)

8. Friesen, N.: Semantic and Syntactic Interopergbftit Learning Object Metadatdn:
Hillman, D. (ed.) Metadata in Practice. Chicago, AEAitions, (2004)

9. Meier, W.: eXist: An Open Source Native XML Databasn: NODe 2002 Web and
Database-Related Workshops, (2002)

