
A Pose Control Algorithm
for Omnidirectional Robots

Ricardo B. Sousa∗, Paulo G. Costa†, and António Paulo Moreira‡
∗†‡Departamento de Engenharia Eletrotécnica e de Computadores

Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
∗†‡INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência

ORCID: ∗0000-0003-4537-5095, †0000-0002-4846-271X, ‡0000-0001-8573-3147

works. Other more classical approaches are based on the use
of PI, PD, and/or PID controllers [8], [9]. A disadvantage of
only using these controllers is the overshoot depending on the
robot’s dynamics when sudden changes happen in the position
reference. Another disadvantage is the existence of a possible
delay between the reference and actual pose of the robot.

This work is intended for controlling the pose of omnidi-
rectional robots given a set of points in space with timestamps
(position, orientation, and time) associated with each one. The
pose control uses PI controllers for the angular speed of the
wheels, PD for positioning control, and Feed-Forward (FF)
controllers to mitigate the delay between the robot’s reference
and actual pose when using only PD controllers. Also, the
pose control uses a subset of points from the desired trajectory
as future poses of the robot to compute the derivatives for
the FF controllers. The simulation results demonstrate that the
proposed controller leads to not only the robot following the
trajectory on the desired time instants while predicting sudden
changes in the pose’s reference of the robot.

The paper is organized as follows. Section II defines the
considerations assumed in this work when defining a trajectory
for the robot. Section III formulates a classical approach to
pose control using only PI and PD controllers. Section IV pro-
poses the use of FF controllers and defines the formulation of
the controllers’ derivatives. Section V analyses the simulation
results obtained from the experiments made. Finally, Section
VI presents the conclusions and future work.

II. TRAJECTORY DEFINITION

A. Type of trajectory

Normally, a planner of trajectories defines these as a set
of points, parametric splines, or polynomials. In this paper,
we considered a trajectory T as a set of points Pk defined
both in space (position and orientation of the robot) and
in time: T = {P0 (t0) , P1 (t1) , . . . , PN−1 (tN−1)}, where
Pk (tk) = {PX,k, PY,k, Pθ,k} (tk). Note that even if curves
such as parametric splines are used, they can be discretized to
obtain a set of points with timestamps defined for each point.

The set of points in time can be characterized in three dif-
ferent ways. The most general alternative is defining the points
without any restrictions in space or in time. Another approach
is maintaining a certain distance between consecutive points.
The one used in this paper is restricting the time interval as

2021 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 28-29, Santa Maria da Feira, Portugal

Abstract—The pose control (position and orientation) of a
robot is important to control how and when the robot gets
to the desired pose at the desired time in order to perform
some task. Controlling omnidirectional robots is of great interest
due to their complete maneuverability. So, we use Proportional-
Integrative (PI), Proportional-Derivative (PD), and Feed-Forward
(FF) controllers to control the pose of an omnidirectional robot
in space and in time. The proposed controller approximates the
future trajectory (a subset of points) on parametric polynomials
for computing the derivatives needed in the FF. In the simulations
performed, it was analyzed the size of the future trajectory
horizon for the controller depending on the robot’s velocity, and
the proposed controller was compared to PD-only and a generic
GoToXY controller. The results demonstrated that the proposed
controller achieves better results than the other two both in space
and in time.

Index Terms—control, omnidirectional robots, pose control,
motion control

I. INTRODUCTION

In mobile robotics, it is not only important for the robot
to reach the desired pose (position and orientation) but also
how and when the robot gets there. The best case is when
the robot can follow any trajectory through its workspace
of poses. Omnidirectional robots are of great interest for
complete maneuverability. These robots are capable of moving
in all directions at any time being suitable for dynamic
environments. The translation and rotation components of this
steering geometry are independent of each other. One popular
use of omnidirectional robots is in robot soccer games of the
RoboCup competition and, nowadays, these robots are used
more and more in industrial applications [1], [2].

The control of omnidirectional robots is very important to
control the pose of the robot over time. Several works were
proposed characterizing the nonlinearity and uncertain factors
of these robots. These approaches are related to adaptive
control [3], fuzzy control [2], [4], [5], sliding mode control
[3], [6], and neural networks [7]. However, the consideration of
nonlinearities increases the complexity of implementing these

This work is financed by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia, within project
UIDB/50014/2020. Also, this work is co-financed by the ERDF – European
Regional Development Fund through the Operational Programme for Compet-
itiveness and Internationalisation - COMPETE 2020 and the Lisboa2020 under
the PORTUGAL 2020 Partnership Agreement, and through the Portuguese
National Innovation Agency (ANI) as a part of project PRODUTECH-SIF:
POCI-01-0247-FEDER-024541

978-1-6654-3198-9/20/$31.00 ©2021 IEEE 91

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
on

om
ou

s R
ob

ot
 S

ys
te

m
s a

nd
 C

om
pe

tit
io

ns
 (I

C
A

R
SC

) |
 9

78
-1

-6
65

4-
31

98
-9

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
A

R
SC

52
21

2.
20

21
.9

42
98

03

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 04,2023 at 08:16:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Trajectory relative to the world and robot’s coordinate frames

a constant value between consecutive points. However, the
proposed controller works also with the first two approaches.

B. Coordinate frame of the trajectory

A trajectory could be relative to the world’s coordinate
frame ({XW , YW }) or to the robot’s local frame ({XR, Y R}).
These two different alternatives are illustrated in figure 1 for
the point Pk, where PWk represents the point’s desired pose
relative to the world and PRk to the robot. The orientation ma-
trix R−1(θWrb) defined in equation 1 (cos(θWrb) and sin(θWrb) are
represented by cθWrb and sθWrb , respectively) is the orientation
of the world relative to the robot’s frame depending on the
robot’s current orientation (θWrb). Then, the transformation of
the trajectory from the world to the robot’s local frame can be
defined as in equation 2.

R−1(θWrb) =

[
c
θW
rb

s
θW
rb

0

−s
θW
rb

c
θW
rb

0

0 0 1

]
(1)

[
PRX,k

PRY,k

PRθ,k

]
= R−1(θWrb) ·

[[
PWX,k

PWY,k

PWθ,k

]
−
[
XWrb

YWrb

θWrb

]]

=

(PWX,k−XWrb)·cθW
rb

+(PWY,k−YWrb)·s
θW
rb

(−PWX,k+XWrb)·sθW
rb

+(PWY,k−YWrb)·c
θW
rb

PWθ,k−θWrb

(2)

One advantage of the trajectory being relative to the robot’s
local frame is that PkR is the pose error relative to the current
robot’s pose. Moreover, the motion of omnidirectional robots
can be controlled independently in terms of translation and
rotation [1], [2]. The translation part is possible to decouple
in the directions of XR and Y R. Thus, PRX,k, PRY,k, and PRθ,k
represent the error components in the direction of XR, Y R,
and on the orientation of the robot.

III. A CLASSIC APPROACH TO POSE CONTROL

In this section, it is proposed a pose control system for
omnidirectional robots (the three-wheeled robot used in the
simulation is illustrated in figure 2) using PI controllers for
the angular speed of the motors and PD controllers for the
robot’s pose relative to its own frame.

Fig. 2. Three-wheeled omnidirectional robot

A. Inverse differential kinematics

First, it is necessary to characterize the inverse differential
kinematics of omnidirectional robots to control their velocity
through a specific trajectory. Given the linear (v and vn along
the directions of XR and Y R, respectively) and angular (ω)
velocity desired for the robot, equation 3 computes the linear
velocity (vi) of each wheel i (considering also the distance
l between the wheels and the robot’s geometric center) [1].
Then, the angular speed of each motor (ϕ̇i) is computed
depending on the gear’s reduction ratio (n) and on the diameter
of the wheels (Di), as illustrated in equation 4.

[
v1
v2
v3

]
=

[
−
√

3
2 − 1

2 −l√
3

2 − 1
2 −l

0 1 −l

]
·
[
v
vn
ω

]
(3)

ϕ̇i =
2n

Di
· vi (4)

B. Angular speed control of the wheels

Next, the angular speed of the motors (ϕ̇i) can be controlled
using a PI controller to set the motors’ input voltage. This
controller implemented in the simulation was tuned using the
Internal Model Control (IMC) method [10]. Given experiments
performed with a real robot and in simulation, the system can
be considered as a first-order system. So, [10] requires the
output gain (Kp,ϕ̇), the time constant (τϕ̇), and the lag (Lϕ̇) to
be estimated. The PI parameters (the proportional gain Kc,ϕ̇

and integration time TI,ϕ̇) are computed using equation 5,
given a desired time constant for the closed-loop (τcl,ϕ̇).

{
Kc,ϕ̇ = 1

Kp,ϕ̇
· τϕ̇
τcl,ϕ̇+Lϕ̇

TI,ϕ̇ = τϕ̇
(5)

Considering that the motors have a dead zone, a Ham-
merstein nonlinear block (described in the algorithm 1) was
used to compensate for the existence of this zone. If the
wheel/motor (with the robot on the ground) starts to rotate
at a certain voltage V0, Vd would be the new dead zone.

Finally, the windup effect is compensated by limiting the
voltage computed from the PI controllers and the Hammerstein
block to the maximum value supported by the motors. When
the voltage exceeds these limits, the integration part of the PI
controller remains unchanged.

2021 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 28-29, Santa Maria da Feira, Portugal

92

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 04,2023 at 08:16:40 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Hammerstein Nonlinear Block
input : Vin,i,Vd,i,V0,i
output: Vmot,i

1 if Vin,i > Vd,i then
2 Vmot,i = (Vin,i − Vd,i) + V0,i
3 else if Vin,i > −Vd,i then
4 if Vd,i 6= 0 then Vmot,i = Vin,i · V0,i/Vd,i
5 else Vmot,i = 0
6 else
7 Vmot,i = (Vin,i + Vd,i)− V0,i

Fig. 3. PD controllers for the robot’s pose

C. Position control

Similarly to the angular speed control, the evolution of
v/vn/ω relative to their reference (vr/vn,r/ωr) resembles a first-
order system (illustrated in figure 3). The integration of v, vn,
and ω estimates the robot’s pose on a coordinate frame aligned
with the local frame but with the same origin as the world
frame. The error of the reference relative to the actual value of
each component illustrated in figure 3 is the reference for the
robot’s pose on its local frame. So, the control of vr, vn,r, and
ωr with a PD controller is independent from each other.

The parameters of the PD controllers (the proportional
gain Kc,j and the derivative time TD,j , where j = v, vn, ω)
depend on the desired closed-loop poles. These poles can be
chosen considering the roots of normalized Bessel polyno-
mials corresponding to a settling time (Tsett.,j) of 1 second.
Given the consideration of first-order systems and that the
position control is a second-order system, the poles defined
by Bessel polynomials are p = −4.0530 + j2.3400 and
p∗ = −4.0530 − j2.3400. The closed-loop characteristic
polynomial is defined in equation 6 for these two poles (Tsett.,j
should be the lowest value possible considering the limits of
the discrete real system, e.g., the control period), and it is
defined in equation 7 for the PD controller and the systems’
models. Then, equation 8 defines the PD parameters.

s2 − 2 · Re{p}
Tsett.,j

· s+ |p|2

Tsett.,j
2 = 0 (6)

s2 +
Kc,jKp,jTD,j + 1

τj
· s+ Kc,jKp,j

τj
= 0 (7)

Kc,j =

τj
Kp,j
· |p|2
Tsett.,j2

TD,j =
− 2·Re{p}
Tsett.,j

·τj−1
Kc,jKp,j

(8)

However, as it is analyzed in section V, the use of only
PD controllers for pose control lead to a delay between the
reference and the actual value of the controlled variables.

IV. POSE CONTROL WITH FEED-FORWARD

Therefore, we propose the use of Feed-Forward (FF) con-
trollers to eliminate the delay between the reference and the
actual value of the control variables. This controller does
not affect the stability of the system. Also, it has predictive
characteristics due to the requirement of the references’ first
and second derivatives. The proposed control system for the
omnidirectional robot is illustrated in figure 4.

A. Feed-forward definition
Equation 9 defines the transfer function of a FF controller

for the systems shown in figure 3. Note that the output of
each FF controllers adds to the outputs of the PD controllers
to compute the references for the linear (vr and vn,r) and
angular (ωr) velocities of the robot.

Hj (s) =
τj
Kp,j

· s2 + 1

Kp,j
· s (9)

B. Computation of the derivatives
Given that our trajectory T is a set of points (T =
{P0 (t0) , P1 (t1) , . . . , PN−1 (tN−1)}), we already know the
future poses desired for the robot. Consequently, the deriva-
tives could be estimated considering these points in space and
in time by approximating the set of points into parametric
polynomials. Also, as already mentioned in section II, the
time interval between consecutive points is considered to be
constant. In order to normalize this time interval, we assume
that it is 1 on a time domain u. The transformation t→ u is
characterized by equation 10.

u = KT · t (10)

So, first, we define the future trajectory as a subset of
points F (where F = {Pl+0 (u0) , . . . , Pl+M−1 (uM−1)} and
F ⊂ T) with M elements on the time domain u. These
elements represent the future poses of the robot on the world
frame relative to the current one. Next, the second derivative
(f̈h where h = XW

rb,r, Y
W
rb,r, θ

W
rb,r), i.e., the acceleration, is

computed using a second-degree polynomial approximation
of the future trajectory, as illustrated in equation 11. The
approximation is restricted by the initial position and velocity
estimated based on the future trajectory, as defined in equation
12. Finally, equation 13 defines the least-squares solution with
the Monroe-Penrose inverse matrix ([. . .]†) for the coefficients
ah,2 (equivalent to the robot’s acceleration).

fh (u) = ah,0 + ah,1 · u+ (1/2) · ah,2 · u2

ḟh (u) = ah,1 + ·ah,2 · u
f̈h (u) = ah,2

(11)

2021 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 28-29, Santa Maria da Feira, Portugal

93

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 04,2023 at 08:16:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Proposed trajectory controller for omnidirectional robots

{
fh (u0) = ah,0

ḟh (u0) = ah,1

if u = 0, 1, ...,M − 1 then

{
ah,0 = Ph,l+0

ah,1 ≈ Ph,l+1 − Ph,l+0

(12)

Ph,l+0−ah,0−ah,1·1
Ph,l+1−ah,0−ah,1·1

...
Ph,l+M−1−ah,0−ah,1·1

 =

02/2

12/2

...
(M−1)2/2

 · ah,2

⇔ ah,2 =

02/2

12/2

...
(M−1)2/2

†

·

Ph,l+0−ah,0−ah,1·1
Ph,l+1−ah,0−ah,1·1

...
Ph,l+M−1−ah,0−ah,1·1

(13)

Next, we estimate the first derivative (ġh) with a first-
order approximation polynomial illustrated in equation 14. The
coefficients of the first-order are estimated using the least-
squares algorithm, as illustrated in equation 15. An important
note for both first and second-order approximations is that the
orientation of F must be unwrapped to compute the linear
approximations (i.e., without discontinuities).

gh (u) = bh,0 + bh,1 · u
ġh (u) = bh,1

(14)

Ph,l+0

Ph,l+1

...
Ph,l+M−1

 =

1 0
1 1
...

...
1 (M−1)

 ·
[
bh,0
bh,1

]

⇔
[
bh,0
bh,1

]
=

1 0
1 1
...

...
1 (M−1)

†

·

Ph,l+0

Ph,l+1

...
Ph,l+M−1

(15)

In figure 5, it is possible to visualize the difference be-
tween approximating a future trajectory (M = 7), a square
corner, by a second-order polynomial with and without the
restrictions of initial position and velocity. First, analyzing the
approximations for the first point, it is clear that estimating the
velocity and the acceleration from a second-order approxima-
tion without any restrictions would not predict correctly (at
least, at an initial stage) the future behavior of the trajectory.

1.75 1.8 1.85 1.9 1.95 2

X
W

 (m)

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Y
W

 (
m

)

Analysis of the Future Trajectory (M = 7)

{P
X,k
W ,P

Y,k
W }

no restrictions

2nd-order

1st-order

{a
X,2
W ,a

Y,2
W }

2nd-order

{b
X,1
W ,b

Y,1
W }

1st-order

Fig. 5. Analysis of the future trajectory in XY on a square corner

Second, the velocity and acceleration vectors estimated with
the proposed approach predicts correctly the behavior of the
reference. On the robot’s arrival to the square corner, the
velocity starts to increase perpendicular to the arrival direction,
as intended. On the exit of the corner, the derivatives estimate
a zero acceleration due to the points being equidistant and the
time interval between consecutive points a constant one, just as
expected. Note that higher orders approximations would lead
to oscillations on the approximated curves, and that would
cause unwanted oscillations on the pose control. Also, the
analysis of figure 5 is similar for the robot’s orientation, but
only on one dimension.

Lastly, if KT is different from 1, the derivatives should be
multiplied by this scalar. Note that if we have points with
a distance and a time interval between them of 0.05m and
1s, respectively, the velocity required from the robot is in
average 0.05m/s with KT = 1. For example, with KT = 2, the
velocity is increased by the same factor as KT , i.e., the average
will be 0.10m/s. Also, the derivatives f̈h and ġh are relative
to the world frame. So, these derivatives must be multiplied
by the matrix R−1(θWrb) (equation 1) for the FF controllers
formulated in this section correspond to the ones in figure 4.

V. SIMULATION RESULTS

The experiments were performed in the simulator
SimTwo [11] that implements the ODE physics engine, and it
has available the simulation of omnidirectional robots. The

2021 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 28-29, Santa Maria da Feira, Portugal

94

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 04,2023 at 08:16:40 UTC from IEEE Xplore. Restrictions apply.

robot’s model used in this paper was based on the three-
wheeled omnidirectional robot of the 5DPO Middle Size
League robot soccer team [12]. The parameters of the motors
and the robot retrieved from experiments with the real robot,
and the ones defined for the PI and PD controllers are the
following ones:
• characteristics of the robot:

– n = 12; Ce = 1024 ppr
– l = 0.195m; D = 0.102 m

• motors:
– Kp,ϕ̇ = 2.6181 rad.s−1.V−1 (relative to the wheel),
τϕ̇ = 0.198 s, Lϕ̇ = 0 s

– Kc,ϕ̇ = 0.57293 V.s.rad−1 (relative to the wheel),
TI,ϕ̇ = 0.19831 s

• robot [v, vn, ω]:
– Kp = [1, 1, 1]
– τ = [0.129, 0.128, 0.099] s
– Tsett. = [0.8, 0.8, 0.8] s
– Kc = [4.41721, 4.38288, 3.40473] s−1

– TD = [0.06969, 0.06792, 0.00237] s
In terms of analyzing the results from the simulations

performed, the maximum (max) and the average (avg) of the
following three quality measures are considered:
• εd: distance error over time;
• εθ: absolute orientation error over time;
• εt: trajectory error (distance of the robot’s position to the

closest point of the desired trajectory).
Next, three different analyses are presented: size’s definition

of the future trajectory’s size (M), comparison of only using
PD controllers to the proposed controller in this paper, and
a comparison between the proposed controller and a generic
velocity controller GoToXY (follows the trajectory with a
nominal velocity).

A. Size of the future trajectory (M)

The size M was studied putting the robot through a 2mx2m
square with θWrb = 0º. The analysis focused on evaluating the
maximum and average of the quality measures on the first
corner (the interval between 0.5m before and after the corner).
Another quality measure defined for this specific path is the
overshoot (o.s.) for the trajectory outwards. As for deciding
the best value for M , it is evaluated the sum of all quality
measures (

∑m,rad
all εe, and the ones related to the orientation

are converted to radians, due to order of magnitude purposes)
and the sum of the maximum of these quality measures
(
∑m,rad

max εe). Table I presents the results of the analysis.
Analyzing table I, the first observation is that higher M

leads to a lower o.s. because the robot can predict the corner
earlier. With an average of 1 m/s, εmax,t increases with M
because the prediction of the corner causes a cut inside. In
the cases of 0.5 and 0.75 m/s with M = 3 and 4 respectively,
it noted a shift in the previous claim because o.s. becomes the
maximum trajectory error with smaller values of M .

As for choosing the appropriate M depending on the robot’s
velocity, we can analyze

∑m,rad
all εe and

∑m,rad
max εe. The analysis

0 2 4 6 8

time (s)

0

0.5

1

1.5

2

{X
,Y

}W
 (

m
)

Square Trajectory (PD-only): X,Y

X
rb,r
W

X
rb
W

Y
rb,r
W

Y
rb
W

0 2 4 6 8

time (s)

-20

0

20

W
 (

º)

Square Trajectory (PD-only):

rb,r
W

rb
W

(a)

0 2 4 6 8 10

time (s)

0

0.5

1

1.5

2

{X
,Y

}W
 (

m
)

Square Trajectory (proposed controller): X,Y

X
rb,r
W

X
rb
W

Y
rb,r
W

Y
rb
W

0 2 4 6 8 10

time (s)

-20

0

20

W
 (

º)

Square Trajectory (proposed controller):

rb,r
W

rb
W

(b)

Fig. 6. Comparison of the proposed controller with a PD-only control

of these two quality measures (selecting the value of M that
leads to the minimum value of these two measures) lead to
a middle ground between predicting the corner and εd and
εt. For 0.5 m/s, M = 5 results in the minimum value of
εd (0.0339 m) and εt (0.0239 m) while decreasing 64.1% o.s.
relative to M = 3. For 0.75 m/s, M = 7 leads to the minimum
value of εd (0.0552 m) and decreases o.s. by 78% relative to
M = 4. Finally, even though for 1 m/s M = 10 does not lead
to the lowest values of εd and εt, the difference is less than
0.01 m to the minimum value (0.01m in a 2m x 2m square
is 0.05%) while decreasing o.s. in 38% relative to M = 8.
So, we propose setting M as 5, 7, and 10 for 0.5, 0.75, and 1
m/s, respectively, for the simulated robot based on the results
presented in table I.

B. Comparison with PD-only position control

Figure 6 illustrated the comparison of the proposed con-
troller to only using PD controllers for the robot’s pose on a
square trajectory with a changing orientation over time for the
robot. The main disadvantage of using only PD controllers is
observable in 6a as the actual pose of the robot is delayed
relative to the desired one. Indeed, the delay of approximately
0.23 s for {X,Y }W and 0.3 s for θW leads to a εmax,d and
a εmax,θ of 0.2247 m and 12.677º, respectively (compared to
0.0583 m and 8.497º for the proposed controller). However,
εmax,t is still similar to the proposed controller: 0.0360 m
versus 0.0460 m, respectively.

C. Comparison with GoToXY

Lastly, a comparison of the proposed controller with a
generic GoToXY is illustrated in figure 7 on a S-type trajectory
with an average velocity set by the reference of 0.75 m/s.
With the same velocity set for the GoToXY, the controller
cannot “catch” the reference. The main reason is that GoToXY
does not compensate for the initial delay created by the robot
starting from a standstill resulting in a 0.9697 m, 2.444º, and
0.1584 m for εmax,d, εmax,θ, and εmax,t, respectively. With
the nominal velocity at 1.0 m/s, GoToXY achieves a εmax,d,
εmax,θ, and εmax,t of 0.2028 m, 9.739º, and 0.036 m. In

2021 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 28-29, Santa Maria da Feira, Portugal

95

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 04,2023 at 08:16:40 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXPERIMENTAL RESULTS OF DIFFERENT SIZES FOR THE FUTURE TRAJECTORY ON A SQUARE CORNER

vavg εavg,d εavg,θ εavg,t εmax,d εmax,θ εmax,t o.s.

KT (m/s) M (m) (º) (m) (m) (º) (m) (m)
∑m,rad

all εe
∑m,rad

max εe
10 0.50 3 0.0224 0.822 0.0126 0.0776 2.548 0.0418 0.0418 0.2550 0.2057

4 0.0130 0.503 0.0093 0.0405 1.655 0.0271 0.0271 0.1547 0.1236
5 0.0108 0.532 0.0084 0.0339 1.316 0.0239 0.0150 0.1243 0.0958
6 0.0112 0.627 0.0088 0.0485 1.628 0.0329 0.0111 0.1519 0.1209
8 0.0173 0.628 0.0128 0.0812 1.472 0.0561 0.0092 0.2133 0.1722

15 0.75 4 0.0556 2.516 0.0292 0.1467 10.281 0.0682 0.0682 0.5913 0.4625
6 0.0281 3.062 0.0140 0.0749 7.865 0.0314 0.0250 0.3641 0.2686
7 0.0188 0.914 0.0138 0.0552 2.257 0.0444 0.0150 0.2025 0.1540
8 0.0206 0.725 0.0156 0.0730 1.439 0.0567 0.0108 0.2145 0.1656
9 0.0257 0.573 0.0188 0.0914 1.477 0.0714 0.0095 0.2526 0.1981

20 1.00 8 0.0549 3.646 0.0241 0.1311 11.785 0.0543 0.0500 0.5837 0.4411
9 0.0478 2.038 0.0235 0.0924 5.264 0.0568 0.0393 0.3872 0.2804

10 0.0442 0.978 0.0244 0.1004 1.977 0.0693 0.0310 0.3209 0.2352
11 0.0445 2.193 0.0254 0.1106 3.712 0.0764 0.0223 0.3823 0.2741
12 0.0460 1.847 0.0280 0.1253 2.878 0.0878 0.0180 0.3876 0.2813

2 3 4 5 6 7 8

X
W

 (m)

-3

-2

-1

0

1

Y
W

 (
m

)

S Trajectory: X,Y

Ref

PD+FF

G2XY,0.75m/s

G2XY,1.0m/s

(a)

0 2 4 6 8 10 12

time (s)

0

5

10

{X
,Y

}W
 (

m
)

S Trajectory: X,Y

Ref

PD+FF

G2XY,0.75m/s

G2XY,1.0m/s

0 2 4 6 8 10 12

time (s)

-10

0

10

W
 (

º)

S Trajectory:

Ref

PD+FF

G2XY,0.75m/s

G2XY,1.0m/s

(b)

Fig. 7. Comparison of the proposed controller with GoToXY

contrast, the proposed controller have a εmax,d, εmax,θ, and
εmax,t of 0.0359 m, 1.574º, and 0.0233 m, respectively. While
the proposed controller led to the robot’s pose be similar to
the desired one, GoToXY introduces a spacial and time delay
with the same velocity.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, the proposed controller achieved its main
purpose of following a trajectory composed of a set of points
(each point sets with a desired position and orientation for
the robot at a certain time instant) in both space and time.
Furthermore, it has predictive characteristics that avoid over-
shoots with sudden changes in the robot’s motion direction.
As for comparisons with a PD-only controlling system and
a generic GoToXY (sets a nominal velocity), the proposed
controller led to improvements for following the trajectory
in space and time. As future work, the proposed controller
could be adapted to consider possible limitations in terms of
maximum angular speed of the wheels, parameterization of the
PI and PD controllers could be optimized, a comparison with

Model Predictive Controllers (MPC) in terms of performance
and computational requirements could be performed, and tests
with real robots should also be conducted.

REFERENCES

[1] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
autonomous mobile robots, 2nd ed. Cambridge, Massachusetts: The
MIT Press, 2011.

[2] R. H. Abiyev, I. S. Günsel, N. Akkaya, E. Aytac, A. Çağman, and
S. Abizada, “Fuzzy control of omnidirectional robot,” Procedia Com-
puter Science, vol. 120, pp. 608–616, Dec. 2017.

[3] W. Jianbin and C. Jianping, “An adaptive sliding mode controller for
four-wheeled omnidirectional mobile robot with input constraints,” in
2019 Chinese Control And Decision Conference (CCDC), June 2019,
pp. 5591–5596.

[4] M. S. Masmoudi, N. Krichen, M. Masmoudi, and N. Derbel, “Fuzzy
logic controllers design for omnidirectional mobile robot navigation,”
Applied Soft Computing, vol. 49, pp. 901–919, Dec. 2016.

[5] R. H. Abiyev, N. Akkaya, and I. Gunsel, “Control of omnidirectional
robot using z-number-based fuzzy system,” IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, vol. 49, no. 1, pp. 238–252, Jan.
2019.

[6] J. Mu, X. Yan, B. Jiang, S. K. Spurgeon, and Z. Mao, “Sliding mode
control for a class of nonlinear systems with application to a wheeled
mobile robot,” in 2015 54th IEEE Conference on Decision and Control
(CDC), Dec. 2015, pp. 4746–4751.

[7] Z. Li, Y. Wang, X. Song, and Z. Liu, “Neural adaptive tracking control
for wheeled mobile robots,” in 2015 International Conference on Fluid
Power and Mechatronics (FPM), Aug. 2015, pp. 610–617.

[8] K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, and T. Fukuda,
“Feedback control of an omnidirectional autonomous platform for mo-
bile service robots,” Journal of Intelligent and Robotic Systems, vol. 22,
no. 3, pp. 315–330, July 1998.

[9] F. G. Rossomando and C. M. Soria, “Identification and control of
nonlinear dynamics of a mobile robot in discrete time using an adaptive
technique based on neural PID,” Neural Computing and Applications,
vol. 26, no. 5, pp. 1179–1191, July 2015.

[10] I.-L. Chien, “IMC-PID controller design - an extension,” IFAC Proceed-
ings Volumes, vol. 21, no. 7, pp. 147–152, Aug. 1988.

[11] P. Costa, J. Gonçalves, J. Lima, and P. Malheiros, “Simtwo realistic
simulator: A tool for the development and validation of robot software,”
Theory and Applications of Mathematics & Computer Science, vol. 1,
no. 1, pp. 17–, Apr. 2011.

[12] T. P. Nascimento, M. A. Pinto, H. M. Sobreira, F. Guedes, A. Castro,
P. Malheiros, A. Pinto, H. P. Alves, M. Ferreira, P. Costa, P. G. Costa,
A. Souza, L. Almeida, L. P. Reis, and A. P. Moreira, “5DPO’2011: Team
description paper,” in no. Robocup, Jan. 2011.

2021 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 28-29, Santa Maria da Feira, Portugal

96

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 04,2023 at 08:16:40 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T11:42:07-0400
	Preflight Ticket Signature

