
Received 11 May 2022, accepted 20 June 2022, date of publication 29 June 2022, date of current version 6 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3187042

Gerber File Parsing for Conversion to Bitmap
Image—The VINCI7D Case Study
RICARDO B. SOUSA 1,2, CLÁUDIA ROCHA 2, HÉLIO SOUSA MENDONÇA 1,2,
ANTÓNIO PAULO MOREIRA 1,2, AND MANUEL F. SILVA 2,3
1Electrical Engineering Department, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
2INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal
3ISEP—School of Engineering of the Porto Polytechnic, 4200-072 Porto, Portugal

Corresponding author: Ricardo B. Sousa (up201503004@fe.up.pt)

This work was supported by the National Funds through the Portuguese Funding Agency, FCT—Fundação para a Ciência e a Tecnologia,
under Project LA/P/0063/2020.

ABSTRACT The technological market is increasingly evolving as evidenced by the innovative and
streamlined manufacturing processes. Printed Circuit Boards (PCB) are widely employed in the electronics
fabrication industry, resorting to the Gerber open standard format to transfer the manufacturing data. The
Gerber format describes not only metadata related to the manufacturing process but also the PCB image.
To be able to map the electronic circuit pattern to be printed, a parser to convert Gerber files into a
bitmap image is required. The current literature as well as available Gerber viewers and libraries showed
limitations mainly in the Gerber format support, focusing only on a subset of commands. In this work, the
development of a recursive descent approach for parsing Gerber files is described, outlining its interpretation
and the renderization of 2D bitmap images. All the defined commands in the specification based on Gerber
X2 generation were successfully rendered, unlike the tested commercial parsers used in the experiments.
Moreover, the obtained results were comparable to those parsers regarding the commands they can execute
as well as the ground-truth, emphasizing the accuracy of the proposed approach. Its top-down and recursive
architecture allows easy integration with other software regardless of the platform, highlighting its potential
inclusion and integration in the production of electronic circuits.

INDEX TERMS Parser, Gerber format, recursive descent, printed circuit boards.

I. INTRODUCTION
Industrial companies are facing a huge global competition
in today’s market, which exacerbates the need to constantly
innovate to stay competitive and ahead of their competitors.
The production of electronic circuits has been typically per-
formed resorting to the development of a Printed Circuit
Board (PCB) in which the electronic components are sol-
dered. In the last couple of years, a new approach has been
considered and studies are under development for its imple-
mentation: the use of functional inks and the direct printing of
the electronic circuit on a substrate, which allows to adapt the
technology to more complex surfaces, increase the versatility
of using electronic circuits in different applications, andmake

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

the process more agile [1]–[3]. The objective of the VINCI7D
project is the development of a robotic printing solution to be
used for printing thin-film devices on 3D polymeric struc-
tures [4]. This solution encompasses multi-ink printheads
(compatible with decorative and functional inks) integrated
into a robotic arm, using the required communication proto-
cols with the printheads, combined with a software solution
for mapping the circuits to print onto the substrate. The end
goal is using this solution for printing electroluminescent and
piezoelectric devices, as well as capacitive sensors, directly
onto 3D polymeric structures (envisioned as parts for the
interior of automobiles), to create structures that are capable
of emitting light, detecting the presence or touch of the user,
and providing haptic feedback [4]. The printing of these
circuits is commonly performed using ink-jet printers and the
circuit schematics can be passed to the printer in different

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 69659

https://orcid.org/0000-0003-4537-5095
https://orcid.org/0000-0001-7254-0346
https://orcid.org/0000-0003-4895-5634
https://orcid.org/0000-0001-8573-3147
https://orcid.org/0000-0002-0593-2865
https://orcid.org/0000-0002-3685-3879

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

formats. In the case of the VINCI7D project, the circuits
to be printed are supplied as Gerber files and transformed
into bitmap images for generating the pattern to be printed
by the inkjet printheads. This approach created the need
to use a parser for converting the Gerber files into bitmap
images.

According to Eurocircuits [5], 95 of 100 PCB designs
transferred, worldwide, from the designer to the manufac-
turer, correspond to Gerber files. Up to now, the Gerber
format holds four generations from X0 to X3. Gerber X0,
also known as Gerber RS274D (specification published in
1980), was revoked most due to the limitation of the physical
aperture wheel that limits the size, shape, and number of
apertures (e.g., a wide variety of mainly rectangular pad
sizes). To overcome this restriction, in 1998, the Gerber X1
(Gerber RS274X, ExtendedGerber or Gerber X)was released
providing information of the fabrication image for each layer,
as well as embedded apertures and their custom definition.
However, there were no standards to define the depiction of
each file/layer or themodel of each pad, being the information
in an additional document or drawing. Therefore, Gerber X2
emerged in 2014, keeping the data fromGerber X1 but adding
new imaging functions such as aperture block, load rotation
and load scaling, and bare board attributes which contributed
to define the file and the function of an object (e.g. a pad).
The added attributes offered new information for fabrication,
without adding image data. To be able to assemble the data,
the Gerber X3 specification emerged in 2020 reusing the
format and attribute syntax of Gerber X2 but adding new
content – new attributes relative to the components [5]–[7].

The goal of this work is to develop a parser compliant
with, at least, the Gerber X2 specification using a recur-
sive descent approach [8]. This parser will be used for ren-
dering 2D bitmaps described in Gerber files equivalent to
electronic circuits within the scope of the VINCI7D project.
The parser must be compatible with the Windows Operating
System (OS) due to later integration of the parser with other
modules to be developed in the project. Even so, the parsing
architecture is this work is independent of the OS or program-
ming language used for its implementation. Given the focus
on the rendered image from a Gerber file, the parser is not
required to be fully compliant with Gerber X3 due to the latter
not adding imaging data to the Gerber file.

A. RELATED WORK
1) GERBER VIEWERS
Currently, there are several Gerber viewers in the market
whose tools allow to visualize, inspect, measure and/or edit
the contents of the file. PCBWay and JLCPCB Gerber View-
ers are online platforms that support theGerber X1 format [9],
[10]. These online platforms are unable to set themm/px (mil-
limeter per pixel) resolution of the viewport. PCBWay does
not allow to export the project into a bitmap format. JLCPCB
requires registration and does not have a mechanism to define
the desired export format. GerbMagic also supports only the

Gerber X1 format [11]. This application allows to define the
DPI (dots per inch), export files such as bitmaps, and it can be
used as a standalone library (GerbLib). While FAB 3000 [12]
and ZofzPCB [13] support Gerber X1, GerbView from Soft-
ware Companions supports the Gerber X2 specification [14].
These three softwares follow the freemium business model.
FAB 3000 allows bitmap format export including the defi-
nition of DPI or DPM (dots per millimeter). ZofzPCB does
not allow to export or to define the resolution of the PNG
format. GerbView exports the workspace to formats such as
TIFF, JPEG, PNG and BMP, and allows to define the DPI
in the file export. CUPRUM supports Gerber X2 format and
is only available for Mac OS X [15]. Finally, the Reference
Gerber Viewer, an online platform created by the company
Ucamco that produced the Gerber specification, supports the
Gerber X3 format [16]. Even though the platform allows
to visualize the project and measure the distance between
elements (in millimeters), the functionality to export to the
image or bitmap format is not enabled and it is not possible
to specify the resolution.

2) GERBER LIBRARIES
Furthermore, there are libraries which hold a collection of
tools to handle the parsing of PCB Gerber files. GerbLib
is a dynamic-link library (DLL) which converts a RS274X
Gerber file format to PDF, Postscript, TIFF, BMP or RID
files, being possible to set the resolution value, and relies
on GerbMagic application [17]. GBR_RIP converts a Gerber
file RS274X format into a raster bitmap (BMP or TIFF).
The library is not open source, and to download it, some
information is required from the Artwork company such as
program license strings or installation password. Moreover,
to modify the program, a charge is considered relying on the
number of licenses, and the rights retain at Artwork [18].
Libpger is a dynamic-link library referenced for the Mac OS
X platform which allows to parse a Gerber RS274X file [19].
GerberParser from Jules Stringer is an open-source C++
library for Gerber and drill files parsing. The parsing of some
commands is not implemented yet, such as aperture block,
step and repeat, and macro apertures [20]. The development
of the Gerber and drill file parser in the repository hosted
at [21] is deprecated, having been moved to the tracespace
one written in the JS language [22]. A viewer based on the
tracespace repository can be found at [23], which exports the
workspace to SVG format. Gerbview from KiCad supports
Gerber RS274X format, even though it does not provide
a standalone library for parsing Gerber files [24]. KiCad
provides a 3D bitmap visualization, being able to change its
size inmm, inches andDPI, which exports the file to PNG and
JPEG format. However, it does not allow to export a Gerber
file to a bitmap format [25].

3) SCIENTIFIC LITERATURE
Looking at the literature, only a couple of related works were
found. Qi et al. present a method for parsing the information
of Gerber files, reading it as an ASCII code format file, and

69660 VOLUME 10, 2022

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

converting it to output images [26]. In their work, the authors
also introduce a solution to solve the problem of data loss
after the conversion fromGerber file data coordinates to pixel
coordinates, but the extension of thework is limited since they
only address the analysis and drawing of five graphic output
primitives (namely, ellipse, arc, sector, regular polygon and
round rectangle). More recently, Fan et al. also developed a
parser for converting Gerber files into bitmap images, with
the purpose of obtaining a standard image to be used in Auto-
matic Optical Inspection machines [27]. However, this work
does not consider the more complex structures of the Gerber
format such as aperture block, step and repeat statements, and
macro apertures.

The current solutions available to the end-user for pars-
ing Gerber files have limitations in supporting at least the
Gerber X2 specification format. PCBWay, JLCPCB, Gerb-
Magic/GerbLib, FAB 3000, ZofzPCB, GBR_RIP, Libpger,
GerberParse, and Gerbview from KiCad only support the
Gerber X1 specification. Even though the GerbView from
Software Companions states that supports Gerber X2 files,
the results presented in this work will demonstrate that it is
incapable of rendering aperture blocks, a specific command
to the Gerber X2 format. The ones that support all the com-
mands of Gerber X2, the CUPRUM and Reference Gerber
Viewer solutions, focus on the viewing capabilities and not on
the export settings. For example, these viewers do not support
exporting the renderization result for an image with a desired
millimeter per pixel resolution. Moreover, to the best of the
authors’ knowledge, the current literature does not have any
work on a parsing architecture for Gerber files compatible
with all commands of the Gerber format that generate image
data.

B. CONTRIBUTIONS
Therefore, this work intends to address the gaps previously
identified for parsing and rendering Gerber files. When com-
paring the proposed parsing architecture with other works
available in the literature, it is concluded that its scope is
larger. This work addresses all Gerber structures, including
Gerber macros, a more complex structure of the Gerber
format and which has not been the focus of other authors,
while also allowing to define the image resolution. Although
the parser developed within the scope of VINCI7D must be
compatible with the Windows OS, the parsing architecture
and methodology in terms of interpreting Gerber files and
rendering the equivalent 2D bitmap images are agnostic of
the OS and programming language. Unlike other existent
applications and libraries, this work is independent of the
implementation technologies facilitating integration with the
remaining modules of the VINCI7D system or even other
systems. Bearing these ideas in mind, this paper presents the
development of a parser able to convert Gerber files [28]
into bitmaps according to a recursive descent approach [8],
using the C++ language for implementing the parser and the
OpenCV [29] library for renderization. The bitmap files will
then be the basis for the printing of the electronic circuits.

The main contributions of the presented work are the fol-
lowing ones:
• recursive descent parsing approach to render 2D images
from Gerber files that, to the best of the authors’ knowl-
edge, is not used in any other previous works in the
literature or in other Gerber viewers and libraries;

• architecture of a Gerber parser to streamline future inte-
gration in other applications, allowing the replication of
the proposed approach;

• interpretation and renderization methodology compati-
ble with all commands of the Gerber X2 specification
format that output image data;

• theoretical and practical rationale providing specific
experimental results of the comparison between the pro-
posed approach and its relation with other Gerber view-
ers and libraries.

The remainder of this paper is organized as follows.
Section II introduces the Gerber format specification with
practical illustrations of the commands portrayed in the paper.
Section III presents the parsing architecture for processing
files and the methodology to process arithmetic expressions
required for defining macro variables. Section IV details the
renderization approach implemented for each Gerber com-
mand. Section V presents the experimental results obtained
in this work. Finally, Section VI presents the conclusions and
discusses features that may be interesting for future work.

II. GERBER FORMAT SPECIFICATION
The Gerber format is an open standard in the electronics fab-
rication industry of PCB. A Gerber file comprises a sequence
of command instructions to define graphic objects in a vec-
tor format that can be rendered as 2D binary images. The
detailed information of the Gerber commands is documented
in the revision 2021.04 of the format specification [28]. In the
following topics, the Gerber commands applied in this work
are highlighted with a brief explanation of each one of them,
following the syntax applied in the referred revision.

A. COORDINATE COMMANDS (FS AND MO)
Gerber files are modeled by 2D coordinate frames. In this
work, the convention followed makes the X and Y axes
point to the right and upwards, respectively. For interpreting
correctly the parameters and coordinates defined in a file, the
Gerber format defines the following two commands:
• Unit (MO): unit of the coordinates and parameters data
(either millimeters or inches);

• Format Specification (FS): specifies the format of X
and Y coordinate data (defined as integer numbers in a
Gerber file).

Table 1 shows an example in which the file unit chosen is
mm and the coordinate unit is 10−6 mm.

B. APERTURE TRANSFORMATIONS (LP, LM, LR, LS)
In terms of 2D shapes, the Gerber format defines a graphic
object called aperture that can have either simple or complex

VOLUME 10, 2022 69661

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

TABLE 1. Coordinate commands syntax. Cmd stands for Command.

TABLE 2. Aperture Transformations syntax. Cmd stands for Command.

shapes. The commands load polarity (LP), load mirroring
(LM), load rotation (LR) and load scale (LS) can transform
apertures by updating the graphics state – set of parameters
that affect the renderization of graphic objects – of the Gerber
file. LP sets the polarity of graphic objects, which can be clear
or dark. LM, LR and LS affect the shape of the aperture by
mirroring, rotating or scaling the objects, respectively. The
syntax of each referred command can be seen in Table 2.

C. STANDARD APERTURE (C, R, O, P)
The simplest shapes described in the Gerber specification
are the standard apertures, which can have the following
templates and their respective parameters:
• circle (C): its diameter and the hole diameter;
• rectangle (R): X and Y directions’ sizes and the hole
diameter;

• obround (O): the same parameters as R, but it has
rounded corners on the sides with the smaller direction’s
size;

• polygon (P): diameter of its circumscribing circle, num-
ber of vertices, rotation angle, and the hole diameter.

All standard apertures can have a round hole defined by
its diameter. However, the hole diameter is optional when
defining the template’s parameters. Table 3 shows the syntax
of the standard templates as well as examples of the respective
apertures.

D. APERTURE DEFINITION (AD)
Each aperture is created by the AD command defining its
identification number and template, and the parameters that
parameterize the template itself. The syntax of an AD com-
mand can be illustrated as follows:

AD = ‘%’(‘AD’aperture_ident template_call)‘∗%’,

TABLE 3. Standard Aperture Template syntax. Cmd stands for command.

TABLE 4. Opening and closing AB commands syntax. Cmds stands for
Commands.

being the aperture_ident explained in Section II-E and the
template_call comprised by the aperture template (standard
or macro aperture) and the respective parameters.

E. SET CURRENT APERTURE (Dnn)
The Dnn Gerber command determines that the current aper-
ture saved in the graphics state should be updated to the
aperture with the identification number nn (integer greater
than 9, due to the 00-09 numbers being reserved in the Gerber
specification).

F. APERTURE BLOCK (AB)
Another type of apertures defined in the Gerber format speci-
fication is the aperture block declared by an AB statement.
These apertures do not represent an aperture’s template.
An AB statement consists of an ordered set of graphics
objects defined by their respective Gerber commands. Any
aperture transformation can affect block apertures when
flashing them (replication of the aperture at specific coordi-
nates). Indeed, each graphic object of a block aperture has its
own polarity. If the polarity of AB is dark when flashed, the
graphic objects of AB maintain their original polarity. If not,
the objects’ polarities are toggled. The AB statement is com-
prised by the opening and closing operations, as illustrated in
Table 4, which delimit the Gerber commands that compose
the statement.

G. APERTURE MACRO (AM)
Furthermore, the Gerber format defines also macro apertures.
First, their templates are created by the AM command. These
templates can have any shape (composing primitive shapes)
or parametrization (using macro variables to define sizes or
other parameters), and are defined by their name. The AM
command syntax is described by the following expression,

69662 VOLUME 10, 2022

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

where N is the unique name of the macro, C is the primitive
shape code and P its parameters, I is an integer positive, and
E is an arithmetic expression for the macro variable ‘$’I ’:

AM = ‘%AM ’N ‘∗’

|

{
C’, ’{P‘, ’P}∗

‘$’I ‘ = ’E

}
+ ‘∗%’.

The basic primitive shapes defined in the Gerber specifica-
tion, using a primitive code (the C positive integer), and their
required parameters are the following ones:
• circle (1): exposure (0-off/1-on), diameter, center point
coordinates, and rotation angle;

• vector line (20): exposure, width, coordinates of the start
and end points, and rotation angle (same as a rectangle);

• center line (21): exposure, width, height, center point
coordinates, and rotation angle (similar to a vector line);

• outline (4): exposure, number of vertices, vertices coor-
dinates, and rotation angle (same as an irregular poly-
gon);

• polygon (5): exposure, number of vertices, center point
coordinates, diameter, and rotation angle;

• moiré (6): exposure, center point coordinates, diameter,
thickness, gap, maximum number of rings, crosshair
thickness and length, and rotation angle (revision
2020.09 [30]);

• thermal (7): exposure, center point coordinates, outer
and inner diameter, gap, and rotation angle.

The default rotation angle of the macro primitives is 0◦

being this parameter an optional one. A macro template can
be a composition of one or more primitive shapes. After a
template is defined by an AM command, the AD can instan-
tiate it into a macro aperture.

H. OPERATIONS (D01, D02, D03)
A Gerber file can also contain the so-called operations con-
sisting of coordinate data followed by an operation code.
The Gerber format defines three operations, whose syntax is
represented in Table 5:
• interpolate (D01): create linear or circular segment
between the current point (saved in the graphics state)
and the one defined in D01, and updates the current point
to the latter;

• move (D02): update current point saved in the graphics
state to the one defined in the D02’s coordinate data;

• flash (D03): flash of the current aperture (identifiable
by its identification number Dnn and also saved in the
graphics state) at the specified coordinates.

I. INTERPOLATION STATE COMMANDS
(G01,G02,G03,G74,G75)
For the D01 interpolate command, at least the segment’s
type (linear or circular) must be known when processing a
Gerber file. So, the Gerber format defines the G01 command
to enable the linear interpolation mode in the graphics state.

TABLE 5. Operations commands syntax. x_c and y_c stand for X and Y
coordinate, and x_o and y_o for the offset in X and Y axis, respectively.

TABLE 6. SR commands syntax. Cmds, p_int and dec stand for
Commands, positive integer and decimal, respectively.

The G02 and G03 commands enable the clockwise (CW)
and counterclockwise (CCW) circular interpolation modes,
respectively. A circular segment can be restricted to a single
quadrant (the absolute angle of the arc being equal to or
lower than 90◦) or not having any restrictions using the G74
and G75 commands to enable the single and multi quadrant
modes, respectively. However, it should be noted that the
parser must access the current graphics state of the Gerber
file prior to generating the D01’s graphics object. Hence, the
intended modes for a D01 operation should be defined before
D01.

J. REGION STATEMENT (G36/G37)
The region statement command is composed by a stream
of commands defining one or more contour segments
of a graphics object. The initial point of a contour is
set by a D02 and the other points are defined by D01
operations.

K. STEP & REPEAT (SR)
The SR command, defined by a stream of commands, repli-
cates a set of graphics objects without replicating their cor-
responding commands. The command’s parameters are the
number of repeats along the X and Y axes, and the step
distances between elements along each axis. The SR state-
ment is comprised by the opening and closing operations,
as illustrated in Table 6.

III. INTERPRETATION
In terms of processing Gerber files, the format specifica-
tion already defines a block diagram for dealing with this
processing, assuming that there are no attributes (addition

VOLUME 10, 2022 69663

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

FIGURE 1. Gerber file processing schematic. Adapted from [28].

of meta-information to a Gerber file) defined in the file.
An adaptation of this diagram is presented in Figure 1. Given
that Gerber attributes do not add image data to the file ren-
derization, they were not considered in this work.

Analyzing Figure 1, the syntax parser would be responsible
for reading a Gerber file and producing the resulting list of
commands for the commands processor, which transforms it
into a stream of graphics objects. All the created objects are
overlaid on the image plane following the order of their cre-
ation. As already mentioned in Section II, the graphics state
contains information of the current aperture and point (when
processing the commands’ list), in which format and units
the coordinate and parameters data are defined in the file,
and which modes (aperture transformations and interpolation
ones) are enabled. The commands processor is responsible for
updating this state by executing the commands that implic-
itly or explicitly modify the graphics state. Furthermore, the
commands processor generates the macro templates and the
ones required for standard apertures, which are added to the
aperture templates dictionary. This dictionary is a collection
of all the available templates to instantiate an aperture. The
apertures based on templates are created through the execu-
tion of an AD command receiving the values of the template’s
parameters and added into the apertures dictionary afterward.
When the commands processor executes a Dnn command,
the processor updates the current aperture by searching the
aperture that has the same identification number as the one
specified by Dnn. The M02 command defines only the end
of the file, interrupting the syntax parser and, therefore, stop-
ping the graphical objects generation [28]. In the following
subsections, the proposed parser methodology for processing
Gerber files into a bitmap image will be portrayed including
how to interpret and evaluate arithmetic expressions.

A. PARSER ARCHITECTURE
The methodology for processing Gerber files illustrated in
Figure 1 is the basis for the parser implemented in this work.
The parser implements the architecture defined by a simpli-
fied class diagram illustrated in Figure 2. This architecture
follows a recursive descent parsing approach that uses the
grammar of the Gerber format to decide the parsing steps. The
recursive approach allows to process and rendering Gerber
commands depending on their context [8]. An example is

rendering a standard aperture inside an aperture block state-
ment versus in the root level of the Gerber file. The former
renderization depends not only on the graphics state before
initiating the AB statement but also on the one changed inside
the statement itself. In contrast, rendering the single standard
aperture only depends on the current graphics state. So, it is
logical to use a recursive descent approach for parsing Gerber
files due to its top-down and recursive characteristics. Even
though the parser was implemented in C++ for the Windows
OS, the architecture for parsing Gerber files into a bitmap
image proposed in this work is agnostic to code language and
operating system.

In the diagram of classes shown in Figure 2, it is clear that
the central class is the Parser itself. This class is responsible
for executing the interpretation and renderization of eachGer-
ber file. Consequently, the Syntax Parser class was defined,
which is responsible for retrieving the commands from the
file as strings. The commands are retrieved when the method
of the Parser for interpretation of a Gerber file is called. This
method is responsible for creating all objects that represent
Gerber commands, interpreting the strings given by the Syn-
tax Parser, and defining the parameters of each command. For
generalization purposes, an abstract class was defined, the
Command class, to represent a generic Gerber command. The
Parser class must have a list of Commands’ objects for calling
the render method to generate graphics objects and add them
to the image. This approach resembles the interpreter design
pattern, where the abstract class works as an interface and the
child classes are the ones that implement the renderization
and creation of graphics objects, being specific for each type
of Gerber command. The commands’ parameters are passed
by the interpretation method to the constructor of each class
specific to a Gerber command.

Furthermore, the Gerber commands that define a stream of
graphics objects (AB, SR, and Region Statement) are a com-
position of Command ones. This composition is processed
recursively due to the graphic objects being dependent on the
context in which they are defined and also on the order of
the commands presented in the Gerber file. In the specific
case of region statements, it is considered that a contour is
a set of Gerber commands, even though this class will only
contain Move and Interpolate objects. This approach was
implemented for generalizing the contours processing. How-
ever, the Move and Interpolate classes have specific render
methods that, instead of generating graphics objects, only
retrieve the points that define a contour. For simplification
purposes of the diagram, the primitives of macro templates
(Macro Define) are not represented. However, it was created
a specific class for each one of these. Given that macro
templates have a specific format not used by any other Gerber
command, it was defined that macro apertures are a compo-
sition of macro objects. The latter are the abstract class that
represents all the macro primitives defined in the format.

Overall, in this work, the Gerber file processing was sep-
arated into two phases: interpretation and renderization. The
former phase processes each Gerber command and retrieves

69664 VOLUME 10, 2022

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

FIGURE 2. Architecture of the implemented parser.

all the information given by it. The latter adds a graphic object
resulting from interpreting each command of the Gerber file
to the image. Since the interpretation phase is only processing
strings and retrieving the information given by the command
accordingly to the Gerber format specification [28], this work
focus on the renderization phase. Even so, next, it is given
details on how to interpret arithmetic expressions required
for processing definitions of macro templates. These details
are important due to the renderization of macro apertures
depending on the correct parameterization of the correspond-
ing templates.

B. ARITHMETIC EXPRESSIONS
In Gerber files, arithmetic expressions are used not only to
define macro variables but also to define parameters of macro
primitives. These expressions follow a infix-based notation
where the operator is between the related operands, being eas-
ily readable and understandable for a human. It can comprise
brackets and arithmetic operators such as addition, subtrac-
tion, multiplication and division, and unary plus and minus
(+u and −u, respectively), which requires the machine to
know how to process each command and the respective order.
For that purpose, the postfix expression formatwas adopted in
this work. Thus, brackets are not required to process a postfix
expression, and the operators follow the operands, being the
sequence of operations held [31].

An example of a notation commonly used by humans to
express an arithmetic operation is the following:

(−A+ B)/(C ∗ D− E)− (F − G)

whose infix equivalent comes as:

(((−A)+ B)/((C ∗ D)− E))− (F − G)

and the postfix representation1 is expressed as:

A−u B+ CD ∗ E − /FG−−.

1An explanation of the differences between infix, prefix and
postfix notations can be found in https://runestone.academy/ns/books/
published/pythonds/BasicDS/InfixPrefixandPostfixExpressions.html

Given the possibility of havingmacro variables (defined by
its ID and arithmetic expression that could depend on other
macro variables) and/or arithmetic expressions for the macro
primitives’ parameters, the developed parser implements a
class for interpreting arithmetic expressions (even if the vari-
ables/parameters are only scalars). Due to the infix notation
(the one used in a Gerber file) being ambiguous [31], the
class converts all arithmetic expressions to a postfix notation.
Algorithm 1 defines the interpretation steps implemented in
the parser for converting an infix into a postfix notation.

Algorithm 2 formulates the evaluation algorithm of postfix
arithmetic expressions. These expressions will be only eval-
uated upon rendering macro apertures. When instantiating
a macro aperture from an existent template, the parameters
defined in the AD Gerber command are equivalent to macro
variables. These variables can formulate arithmetic expres-
sions to parameterize the primitives of a macro template.
So, the arithmetic expressions inside an AM statement that
represents a macro template need to be evaluated in every
instantiation of the template due to the possibility of having
different values for each aperture of the same template.

IV. RENDERIZATION
This section focuses on the Gerber files renderization phase.
First, the management of graphic objects is discussed (e.g.,
automatic resize of the image when rendering these objects)
by the class responsible for rendering a bitmap image. Then,
all the Gerber commands that add a graphic object to the
bitmap image, or define transformations affected to other
commands, are analyzed in terms of their renderization
implementation. Commands such as updating the graphics
state (FS, MO) or the move operation (D02) are not analyzed
since they do not add any graphic object to the image plane,
even though they were implemented in the parser.

A. MANAGEMENT OF GRAPHIC OBJECTS
The class GerberImage (equivalent to the class Image in
Figure 2) is responsible for adding and managing the graphic
objects rendered from a Gerber file. This class has the follow-
ing members:

VOLUME 10, 2022 69665

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

Algorithm 1: ConvertInfix2PostfixExpression
input : InfixExp
output: PostfixExp

1 OperatorStack = []
2 PostfixExp = []
3 foreach element ek (operand or operator) of InfixExp do
4 if ek is an operand then
5 PostfixExp.push(ek)
6 else
7 if k = 0 or ek−1 = (or ek−1 = ∗ or ek−1 = /

then
8 if ek = + then ek = kUnaryAdd
9 else if ek = − then ek = kUnarySub
10 if ek = (then OperatorStack .push(ek)
11 else if ek =) then
12 while OperatorStack.size > 0 do
13 if OperatorStack.back = (then break
14 PostfixExp.push(OperatorStack .back)
15 OperatorStack .pop()
16 OperatorStack .pop()
17 else
18 while OperatorStack.size > 0 do
19 if Precedence level of ek greater than

OperatorStack.back then break
20 PostfixExp.push(OperatorStack .back)
21 OperatorStack .pop()
22 OperatorStack .push(ek)
23 while OperatorStack.size > 0 do
24 PostfixExp.push(OperatorStack .back)
25 OperatorStack .pop()

• image:cv::Mat object from the OpenCV [29] library
that represents a 2D binary (bitmap) image;

• origin (mm): 2D decimal point equivalent to the ori-
gin of the image (pixel point with coordinates (0, 0))
relative to the Gerber file coordinate frame;

• res (mm/px): image resolution set for rendering the
stream of graphic objects from a Gerber file.

In terms of generating the graphic objects, theOpenCV [29]
library offers drawing methods,2 such as adding circles,
ellipses, or polygons, useful for rendering the objects defined
in the Gerber file. Also, note that the bitmap image (repre-
sented by the image member variable of GerberImage)
is a cv::Mat object from the OpenCV library. Further-
more, the parser must consider two coordinate frames: the
one in which all Gerber commands are defined relative to
({XGmm/in,Y

G
mm/in}, in millimeters or inches) and the image

one ({X Ipx,Y
I
px}, in pixels). The parser needs to transform

coordinates data from the Gerber to the image frames in order
to render the graphic objects correctly. First, a parameter or
a point defined in a Gerber file can be in millimeters or in
inches (see MO Gerber command explained in Section II-A).

2https://docs.opencv.org/4.5.3/d6/d6e/group__imgproc__draw.html

Algorithm 2: EvaluatePostfixExpression
input : PostfixExp,MacroVariables
return: computed value of the arithmetic expression

1 OperandStack = []
2 foreach element ek (operand or operator) of PostfixExp

do
3 if ek is an operand then
4 if ek is a macro variable then
5 OperandStack .push(
6 MacroVariables.GetValue(ek))
7 else
8 OperandStack .push(ek)
9 else
10 if ek is an kUnarySub then
11 nop= −OperandStack .back
12 OperandStack .pop()
13 OperandStack .push_back(nop)
14 else
15 op2= OperandStack .back
16 OperandStack .pop()
17 op1= OperandStack .back
18 OperandStack .pop()
19 if ek = + then nop = op1 + op2
20 else if ek = − then nop = op1 − op2
21 else if ek = ∗ then nop = op1 · op2
22 else if ek = / then nop = op1 / op2
23 OperandStack .push_back(nop)
24 return OperandStack .back

Given the mm/in conversion ratio, all parameters and coor-
dinates defined in inches are multiplied by 25.4 mm/in to
only consider the millimeter metric in the GerberImage
class. Next, origin represents the translation transforma-
tion between the image and the Gerber coordinate frames
but still in millimeters. Finally, the decimal point defined
in the image frame is converted into a pixel point. This
conversion, represented by the member variable res, defines
the resolution of the rendered bitmap image set by the user.
Equation (1) defines the transformation of a pointPmm/in from
the Gerber to the image frame.

PIpx =

{
(Pmm − origin) /res if MO = MM

(25.4 · Pin − origin) /res if MO = IN
(1)

The raw cv::Mat object defines the X and the Y axes as
the column (0..width − 1) and row indexes (0..height − 1),
respectively. Also, the origin of the cv::Mat is on the
top-left corner of its image. Even though the parser did not
change the way of accessing a cv::Mat object when render-
ing the Gerber file, the image was flipped around the x-axis
(without changing the image variable of the GerberImage
class) using cv::flip when saving the image in the file
system. Figure 3 illustrates the raw image of a cv::Mat
object and the flip operation used when saving it. The flip

69666 VOLUME 10, 2022

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

FIGURE 3. Vertical flip operation on the cv::Mat object: (a) raw image;
(b) flipped image around the x-axis.

operation is only performed after the Gerber file’s renderiza-
tion is finished.

Finally, the class GerberImage is also responsible for
changing the image’s size over rendering each Gerber com-
mand. When adding the k graphic object to the image Ik−1
(where k = 1, . . . ,N assuming that a Gerber file defines N
graphic objects), the image’s bottom-left and top-right limits
(points blIk−1Ik−1

= (0, 0) and trIk−1Ik−1
= (widthk−1, heightk−1−1)

relative to Ik−1, respectively) are compared to the ones of
the object (points blIk−1Ok and trIk−1Ok). Note that the limits blIk−1Ok
and trIk−1Ok coordinates can have negative values, as illustrated
in Figure 4. Next, the expected limits of the image when
adding the k object (points blIk−1Ik and trIk−1Ik , respectively)
are computed as in (2). After saving the image Ik−1 in
a temporary variable for not losing data, the limits blIk−1Ik
and trIk−1Ik are converted into width and height for increas-
ing the image’s size. Also, if the X and/or Y coordinates
of blIk−1Ik are negative, it means that the same coordinate
of origin must be subtracted the same negative value
in millimeters (to correct the origin of the image with
new size) as formulated in (3). Finally, the temporary image
is added to the image (not to lose any data) considering
the new origin translation transformation, and then, the
graphic object is added to the image. The proposed approach
avoids using unnecessary memory (in terms of unused
pixels).

blIk−1Ik = min
(
blIk−1Ik−1

, blIk−1Ok

)
trIk−1Ik = max

(
trIk−1Ik−1

, trIk−1Ok

) (2)

origink = origink−1 +min
(
blIk−1Ik , [0 0]T

)
· res (3)

B. APERTURE TRANSFORMATIONS (LP, LM, LR, LS)
The GerberImage class defines dark polarity by white
pixels (intensity = 255) and clear polarity as black ones
(intensity = 0). These definitions allow the use of addition
and multiplication pixel-wise operations to add a dark and
a clear object to an image, respectively. Considering that
the area of a clear object Ok is defined by pixels with an
intensity of 0 and the other pixels as 255, the multiplication
(in OpenCV, cv::multiply) of the object Ok with the
corresponding area in the image Ik−1 (using its updated size)
will be the following one: maintain the image’s pixel values

FIGURE 4. Dynamic resize of a image Ik−1 when adding the graphic
object Ok .

unless the corresponding ones on the object are 0 setting the
later ones also as 0. Consequently, the clear graphic object
Ok clears the underlying objects present in the image as
intended and defined in the Gerber specification. For adding
(function cv::add) a dark graphic object Ok (its pixels
set as 255 while the other ones as 0), the object’s area on
the image Ik−1 is set as 255 while the other image’s pixels
maintain their value. Note that OpenCV [29] saturates the
pixel’s intensity at 255, just as intended for the addition
operation (e.g., if both pixels in the image and object were
255, the arithmetic addition would be 510).

As for the LM command, the mirroring transformation
mirrors the aperture around its origin (which may not be its
geometric center) along the X (LMX), Y (LMY), or along both
axes (LMXY). In the case of an interest point P of an aperture
(e.g., a vertex of a polygon), the transformations LMX , LMY ,
and LMXY are defined as in (4), (5), and (6), respectively.

PLMX = LMX (P) = [−PX PY]T (4)

PLMY = LMY (P) = [PX − PY]T (5)

PLMXY = LMXY (P) = [−PX − PY]T (6)

Moreover, the LR transformation defines the rotation angle
of the aperture when flashing it on the image. Similar to the
mirroring transformation, the aperture is rotated around its
origin. Given an interest point P of an aperture, (7) formu-
lates the LRα transformation that rotates the point P by a
certain angle α (rad). Also, the LR transformation is always
performed after the mirroring one when flashing an aperture.

PLRα = LRα (P) = R (α) · P =
[
cos (α) sin (α)
− sin (α) cos (α)

]
· P (7)

Lastly, the LS command defines the scale factor used when
flashing an aperture. Similar to both LM and LR transfor-
mations, the aperture is scaled centered on its origin. Equa-
tion (8) defines the scaling transformation for an aperture’s
interest point P by a scale factor of s (decimal greater than 0).

PLSs = LSs (P) = P · s (8)

C. STANDARD APERTURES (C, O, P, R)
Figure 5 illustrates the renderization of the four shapes that
represent the standard apertures: C, O, P and R, respectively.
When a standard aperture is flashed, the respective shape

VOLUME 10, 2022 69667

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

FIGURE 5. Renderization examples of standard apertures with a hole:
(a) C; (b) O; (c) P; (d) R.

creates a temporary image containing only the aperture. If the
current polarity is dark, the aperture’s pixel area is set as
255 and the other pixels as 0, and vice versa if the current
polarity is clear. This approach was implemented for render-
ing every single graphic object of a Gerber file allowing the
use of the addition and multiplication pixel-wise operations
for adding the graphic objects to the image (see Section IV-
A). The graphic object is only added after all the renderization
operations required for rendering the aperture are finished
(e.g., the possibility of a standard aperture to have a trans-
parent hole).

In terms of how to render the shapes, the circle and poly-
gon standard apertures were rendered using the functions
cv::circle and cv::fillPoly from OpenCV, respec-
tively. In the case of the regular polygon shape, its vertices
(V A

P,i, in pixels, relative to the aperture’s local coordinate
frame {XA,Y A} centered on the aperture’s center) depend
on the specified outer diameter (dP,outer , in pixels) and the
number of vertices (#VP, where i = 0, . . . , #VP − 1). These
vertices are defined in (9). The rectangle was considered
in the implementation as an irregular polygon of 4 vertices
(top-left V A

R,tl, top-right V
A
R,tr, bottom-left V A

R,bl, and bottom-
right V A

R,br vertices, in pixels). Equation (10) defines these
4 vertices depending on the rectangle’s width (wR, in pixels)
and height (hR, in pixels). As for the obround aperture, it can
be viewed as a composition of three different primitive shapes
(but consider as a single graphic object): two circles and one
rectangle. The diameter (dO, in pixels) of the circle equals
the minimum of the specified width (wO, in pixels) and height
(hO, in pixels) for the obround. The rectangle’s vertices (VA

O,tl,
V A
O,tr, V

A
O,bl, and V

A
O,br) change depending on if the obround’s

width (or height) is equal to the circles’ radius or not. Consid-
ering that, (11) defines the vertices of the obround’s rectangle.

V A
P,i=

[
dP,outer

2
·cos

(
2π i
#VP

)
dP,outer

2
·sin

(
2π i
#VP

)]T
(9)

V A
R,tl

T

V A
R,tr

T

V A
R,bl

T

V A
R,br

T

 = 1
2
·


[
−wR hR

][
wR hR

][
−wR −hR

][
−wR hR

]

 (10)


V A
O,tl

T

V A
O,tr

T

V A
O,bl

T

V A
O,br

T

 = 1
2
·


[
−wO hO − dO

][
wO hO − dO

][
−wO −hO + dO

][
wO −hO + dO

]

 , if dO = wO


V A
O,tl

T

V A
O,tr

T

V A
O,bl

T

V A
O,br

T

 = 1
2
·


[
−wO + dO hO

][
wO − dO hO

][
−wO + dO −hO

][
wO − dO −hO

]

 , if dO = hO

(11)

When rendering a standard aperture outside a block aper-
ture, the mirroring transformation (LM) can be performed
on the polygon standard aperture. This transformation only
has a difference in the renderization output when mirroring
along the Y-axis on polygons with odd numbers of ver-
tices. Mirroring circles, obrounds, or rectangles does not
produce any difference because these shapes are symmet-
ric along both X and Y axes. In contrast, LM can have
renderization differences on the standard apertures if these
are defined inside a block aperture. For instance, the stan-
dard aperture inside the block has non zero rotation and
the respective block aperture has a 0◦ rotation. If the block
aperture is mirrored, the condition of the primitive apertures
being symmetric along the X and/or Y axes is no longer
valid.

As for rotating the apertures, the parser rotates their points
of interest (e.g., the vertices of a rectangle and/or the center
points of the circle that can compose an obround aperture) to
avoid the deformation of the rendered image (see (7)). This
method of rotation is illustrated in Figure 6a comparing it to
rotating the temporary image using the cv::warpAffine
OpenCV function (with the nearest interpolation for the
image to remain binary) illustrated in Figure 6b in which the
aperture is first rendered. The former leads to no deformation,
while the latter has convexity defects when the the aperture
was rotated in 30◦ or 60◦ (red circles on the bottom-right and
top-left obrounds in Figure 6b, respectively). If the primitive
is inside a block aperture, the desired rotation for the primitive
must be the addition of the rotation defined in the local
graphics state of the block aperture with the rotation set on
the current graphics state.

D. APERTURE BLOCKS (AB)
The renderization of a block aperture is accomplished by
calling the render method of each Gerber command defined
in the block’s command stream. An example is presented
in Figure 7 illustrating the renderization of a block aperture
affected by the LM, LR and LS transformations. Similar to
the standard apertures, if a mirror or a rotation transformation
affects an AB command, all points of interest of the com-
mands are mirrored or rotated, respectively. Figure 7 shows
that the implemented method does not deform the block
aperture (when affected by aperture transformations).

69668 VOLUME 10, 2022

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

FIGURE 6. Example of rotating obround apertures: (a) rotation of the
points of interest; (b) cv::warpAffine for rotating each aperture’s
temporary image (deformation appeared on the top-left and bottom-right
apertures).

FIGURE 7. Renderization example of a block aperture (top-left: LMY and
LR30◦ ; top-right: LMXY, LR45◦ , and LS0.8; bottom-left: original block
aperture; bottom-right: LMX).

E. MACRO APERTURES (AM)
In terms of renderization, the definition of macro templates
using the AM Gerber command does not generate any
graphic object. However, this command defines a template
that parametrizes a macro aperture and also implements a
render method given the value of the macro aperture’s param-
eters. Indeed, when flashing a macro aperture, the parser
first accesses the dictionary of macro templates to find the
respective template. This dictionary was formulated upon
the interpretation phase of a Gerber file. Next, it is created
a temporary image for rendering the macro aperture. The
renderization is executed by the render method of the macro’s
template taking as input the parameters defined by the AD
command. As for macro primitives, the render method adds
the respective graphic object to the temporary image. After
rendering all the commands defined in the macro template,
the temporary image is added to the image member variable
of the GerberImage class.

Examples for rendered macro primitives are illustrated in
Figure 8. The implementation in the parser for rendering
macro apertures defined these primitives by one or more
primitive shapes, as follows:

• circle (1): a single circle (cv::circle);
• vector line (20): a line defined by its width and start
and end points, rendered exactly as a rectangle standard

FIGURE 8. Renderization of macro primitives: (a) circle; (b) vector line or
center line (different parameterization, same renderization output);
(c) outline (irregular polygon); (d) polygon; (e) moiré; (f) thermal.

aperture (a single rectangle after converting it to a line
defined by its center, width, height and rotation);

• center line (21): rendered exactly as a rectangle standard
aperture (the line is already defined by its center, width,
height and rotation);

• outline (4): a single irregular polygon
(cv::fillPoly);

• polygon (5): rendered exactly as a polygon standard
aperture;

• moiré (6): one or more circles with holes and two rect-
angles (cv::fillPoly);

• thermal (7): one circle with an hole and two rectangles
with opposite polarity to create the 4 gaps.

Note that the vector and the center lines define a line
resorting to different parameters. A vector line requires its
width (wvl), and the start (Svl) and end (Evl) points, whereas
the center line needs its height andwidth, and the center point.
In this work, both primitives were considered equivalent to a
solid rectangle standard aperture. Even though renderization
of a center line is straightforward (has the same parameters
as R apertures), (12) is needed for converting a vector line
parameterization into a center line one, where wvl→cl, hvl→cl,
and αvl→cl are the width, height, and rotation angle of the
vector line’s equivalent rectangle, respectively. The vector
line’s center point is the average of its start and end points.

wvl→cl = dist (Svl,Evl)

hvl→cl = wvl

αvl→cl = atan2
(
Evl,Y − Svl,Y ,Evl,X − Svl,X

)
(12)

F. OPERATIONS (D01, D03)
1) INTERPOLATION (D01)
The linear interpolation (D01 with G01 enabled) operation
has the same parameters as a vector line (20):
• start (SD01) and end (ED01) points of the linear segment;

VOLUME 10, 2022 69669

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

FIGURE 9. Circular interpolation operation: (a) deviation (εD01);
(b) solutions to the corrected arc’s center (C̃D01).

• width equivalent to the diameter of the current circle
standard aperture (only type of aperture allowed in the
specification [28] to stroke a linear draw, i.e., the line
has rounded endpoints defined by the circle).

Consequently, the same approach for rendering vector lines
can be used for the D01 linear interpolation converting the
D01 parameters to linear segment’s center, width, height, and
rotation (see (12)). Next, the same rendering procedure as for
rectangle standard apertures and the macro primitive center
lines is used to render the linear straight segment defined by
D01 with G01 enabled.

In the case of the circular interpolation (D01with G02/G03
enabled), this interpolation can have two orientations: clock-
wise (G02) or counterclockwise (G03). Also, the D01 oper-
ation defines not only the arc’s start (SD01) and end (ED01)
points but also two variables: iD01 and jD01 (parallel to the
X and Y axes, respectively). These two variables define the
arc’s center (CD01) and are interpreted as distances or offsets
relative to SD01 depending on the quadrant mode enabled,
as follows:

• single quadrant mode enabled (G74):

– arc angle βD01 not allowed to extend more than 90◦

(i.e., 0◦ < βD01 ≤ 90◦);
– iD01 and jD01 interpreted as distances defining

4 possible candidates to the arc’s center CD01:
SD01 + [±iD01 ± jD01]T ;

• multi quadrant mode enabled (G75):

– arc can have an angle of 0◦ < βD01 ≤ 360◦;
– if SD01 = ED01, the arc is a full circle of 360◦;
– iD01 and jD01 interpreted as offsets defining only

1 possible candidate to the arc’s centerCD01: SD01+
[iD01 jD01]T .

Ideally, the distance from CD01 to SD01 is exactly equal to
the distance to ED01. However, it could not be possible to
place CD01 exactly on the desired point, and also the Gerber
file has a finite resolution. Figure 9a illustrates an example
in which the CD01’s definition leads to different start and
end radius (RSD01 and RED01 , respectively). This difference
is called the arc deviation (εD01) shown in Figure 9a and
formulated in (13).

εD01 = |dist (CD01,ED01)− dist (CD01, SD01)| (13)

Given that the Gerber specification accepts the existence
of deviation (the specification does not specify a way to deal
with this problem), the arc radius was defined as the average
(R̃D01) ofRSD01 andRED01 (see (14)). Then, the arc is restricted
in terms of passing through SD01 and ED01, as shown in
Figure 9a and formulated in (15). The system of equations
computes the unknown arc’s center (C̃D01). Note that, even
though C̃D01 can be shifted relative to CD01 (see Figure 9a),
the proposed approach guarantees the arc’s endpoints defined
by the D01 command and reduces the deviation ideally to 0
(not considering rounding errors or the Gerber file’s finite
resolution).

R̃D01 =
(
RSD01 + RED01

)
/2 (14)

∣∣∣SD01 − C̃D01∣∣∣2 = R̃D01∣∣∣ED01 − C̃D01∣∣∣2 = R̃D01
(15)

Assuming that D01 has already only 1 possible candi-
date to the arc’s center (e.g., when multi quadrant mode
is enabled), Figure 9b illustrates that (15) has 2 possible
solutions for C̃D01. These two solutions are formulated for
different cases in (16) (where a1, a2, and a3 are defined
in (17), (18), and (19)) and (20) (for b2 and b3 formulated as
in (21) and (22), and considering b1 = 1) if SD01,Y 6= ED01,Y
or SD01,Y = ED01,Y , respectively. Parameters a1, a2, and a3,
and b1, b2, and b3 are relative to two 2nd-order equations
formulated from solving (15). The final value of C̃D01 is
formulated as the closest center to the original one (CD01),
as formulated in (23).

C̃D01,i =


(
−a2 ±

√
a22 − 4 a1a3

)
/ (2 a1)

|SD01|2−|ED01|2+2C̃D01,i,X (E−S)D01,X
2·(SD01,Y−ED01,Y)


if SD01,Y 6= ED01,Y , with i = 1(+), 2(−) (16)

a1 = 1+

(
ED01,X − SD01,X

)2(
SD01,Y − ED01,Y

)2 (17)

a2 = −2SD01,X − 2 SD01,Y ·
ED01,X − SD01,X
SD01,Y − ED01,Y

+
(|SD01|2 − |ED01|2)(ED01,X − SD01,X)

(SD01,Y − ED01,Y)2
(18)

a3 = S2D01,X + S
2
D01,Y

− SD01,Y ·
|SD01|2 − |ED01|2

SD01,Y − ED01,Y

+
(|SD01|2 − |ED01|2)2

4 ·
(
SD01,Y − ED01,Y

)2 − R̃2D01 (19)

C̃D01,i =


(
S2D01,X − E

2
D01,X

)
/
(
2 ·
(
SD01,X − ED01,X

))(
−b2 ±

√
b22 − 4 b1b3

)
/ (2 b1)


if SD01,Y = ED01,Y , with i = 1(+), 2(−) (20)

b2 = −2 · SD01,Y (21)

b3 = S2D01,X + S
2
D01,Y

69670 VOLUME 10, 2022

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

− SD01,X ·
S2D01,X − E

2
D01,X

SD01,X − ED01,X

+
(S2D01,X − E

2
D01,X)

2

4 ·
(
SD01,X − ED01,X

)2 − R̃2D01 (22)

C̃D01 = arg min
x∈{C̃D01,1,C̃D01,2}

{dist (x,CD01)} (23)

For single quadrant mode, it is required to select a center
for the arc from the 4 possible candidates. First, after obtain-
ing the parameters (C̃D01, start angle – βD01,S , and end angle –
βD01,E) of the arcs for each candidate, it is checked if the arc’s
angle (as in (24), where βD01,CW = −βD01,CCW) is between
0◦ and 90◦ depending if it is enabled the CCW or the CW
directions. βD01,S and βD01,E are formulated in (25) and (27),
respectively. From the remaining candidates, it is chosen the
one that leads to a minimum deviation (εD01) relative to the
original center (CD01).

βD01,CCW = WrapToPi
(
βD01,E − βD01,S

)
(24)

βD01,S = atan2
(
SD01,Y − C̃D01,Y , (25)

SD01,X − C̃D01,X
)

(26)

βD01,E = atan2
(
ED01,Y − C̃D01,Y , (27)

ED01,X − C̃D01,X
)

(28)

The renderization of circular interpolations considers both
orientation (G02/03) and quadrant (G74/75) modes. After
obtaining the parameters of the respective arc, the func-
tion cv::ellipse from the OpenCV [29] library was
used to render the arc. Both axes of the ellipse were set
as the diameter of the arc (2 · R̃D01) for rendering the
circular segment. Similar to the linear interpolation, the
diameter of the current circle standard aperture defines
the thickness of the ellipse’s boundary. Normally, the start
(βD01,S,cv::ellipse) and end (βD01,E,cv::ellipse) angles
required for the function cv::ellipse are equal to the
arc angles (βD01,S and βD01,E , respectively). The latter ones
are wrapped to the interval [−π, π[rad. However, there is an
exception when the arc passes through the angle’s discontinu-
ity (−π). This exception is due to cv::ellipse assuming
that βD01,E,cv::ellipse > βD01,S,cv::ellipse. If not, the
OpenCV function swaps the start angle with the end one,
always rendering the arc in the CCW direction (from the start
to the end). Thus, the following check was implemented:
• clockwise orientation enabled (G02):

– if (min{βD01,S , βD01,E } 6= βD01,E OR βD01,S =

βD01,E)
then βD01,S,cv::ellipse = βD01,S + 2π ;

• counterclockwise orientation enabled (G03):
– if (min{βD01,S , βD01,E } 6= βD01,S OR βD01,S =

βD01,E)
then βD01,E,cv::ellipse = βD01,E + 2π .

The example shown for block apertures (Figure 7) has both
linear and circular interpolation operations defined inside the

FIGURE 10. Renderization example of region statements.

aperture block. The parser was able to compute the correct
linear and arc parameters, even when these graphic objects
were defined inside a command stream such as the block aper-
ture (and also subject to different aperture transformations).
Furthermore, it is clear in Figure 7 that the rendered arcs pass
exactly through one of the linear segments endpoints, just
as defined in the respective Gerber file. So, this result also
validates the approach of restricting the arc by (15).

2) FLASH (D03)
When rendering the flash (D03) operation, first, the parser
accesses the graphics state to get the current aperture. Next,
the render method of the respective aperture is called to add
the respective graphic object(s) to the rendered image (see
sections IV-C, IV-D, and IV-E for further details on how
to render apertures defined in the Gerber format specifica-
tion [28]) at the point defined by the D03 operation. Finally,
the current point saved in the graphics state is updated setting
it to the D03’s flashing point.

G. REGION STATEMENTS (G36/G37)
Figure 10 presents an example of rendering two region state-
ments. First, it was added a region with a rectangular shape
and dark polarity (white intensity). The contour of this region
is defined by 4 linear segments delimited by their endpoints.
Then, the other region (with some rounded corners using D01
command with G02/G03 enabled) was added to the image
with clear polarity.

The renderization of a region statement calls (G36/37)
the render methods of each contour defined in its statement.
For generalization purposes, the developed parser consid-
ers each contour as an irregular polygon (see Section IV-E
for details on rendering the macro primitive outline also
equivalent to an irregular polygon). In the case of linear
segments, only its end point is added to the list of vertices
of the irregular polygon (assuming that the initial point of
the contour is already on this list). As for circular segments,
these are discretized (angular discretization resolution is set
by the user) and converted from an arc into a polygon
(using cv::ellipse2Poly of OpenCV [29]) to obtain
the respective vertices. Similar to the linear segment, the
first/starting point is ignored and the others are added to the
contour’s vertex list.

H. STEP & REPEAT (SR)
Lastly, given the number of repeats along the X and Y
axes (NSR,X and NSR,Y , respectively) and the step distances

VOLUME 10, 2022 69671

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

FIGURE 11. Renderization example of a step & repeat.

between elements (iSR and jSR along the X and Y axes,
respectively), the parser executes the render method of each
command of the SR command stream NSR,X · NSR,Y times.
An offsetOSR is addedwhen rendering all the graphic objects.
For the u (where u = 0, . . . ,NSR,X − 1) and v (where
v = 0, . . . ,NSR,Y − 1) replications along the X and Y axes,
respectively, the offset to add when rendering each command
of SR is formulated in (29). Figure 11 presents a renderization
example of a step & repeat block that replicates a block of
graphic objects 2 times along each X and Y axes.

OSR = [iSR · u jSR · v]T (29)

V. RESULTS AND DISCUSSION
All the experimental results presented in this work are ren-
derization of Gerber files into Tag Image Files (TIF). The
latter is used instead of bitmaps (BMP) due to using lossless
compression algorithms that allows reduced file sizes and
preserved quality. For the results of the proposed parser, the
Lempel–Ziv–Welch [32] (LZW) compression is used to save
the TIF files. These reduced files facilitate sharing the results
presented in this work. Indeed, all the examples shown in
Section IV and the experimental results presented in this
section are publicly available in a GitHub repository.3 The
repository contains the rendered images and the correspond-
ing Gerber files. Additional documentation of the experimen-
tal methodology is provided in the repository.

Next, the Gerber viewers and libraries considered for the
experiments in this work are introduced to the reader. After,
two types of results are presented: accuracy evaluation of the
renderized images and execution time of the parsing process.
The former is relative to qualitative (visual inspection) and
quantitative results (distance errors considering the desired
millimeters per pixel resolution) retrieved from the render-
ized images. The latter evaluates the evolution of the execu-
tion time depending on the number of image objects present
in the Gerber file of the proposed parsing architecture versus
another parser.

A. TESTED GERBER VIEWERS AND LIBRARIES
According to the related Gerber information found in the
literature as well as commercial online libraries and viewers,
only a few fully support the Gerber X2 format specification,

3https://github.com/sousarbarb/V7DParser/

being able to handle additional Gerber commands compared
to the previous X1 format, such as macro apertures, aperture
blocks, and load rotation. As a result, the GerbView [14]
(Software Companions) application is selected as an alter-
native to compare with the achieved results in terms of
renderization accuracy due to stating that it is capable of
interpreting Gerber X2 files. The standalone GerbLib [17]
library available as a DLL file is assessed to evaluate the
proposed approach’s computational performance by having
a processing time reference, while also being evaluated in
terms of accuracy for Gerber X1 compatible files. In terms
of ground-truth for the accuracy evaluation, the Reference
Gerber Viewer [16] (Ucamco) will be used to retrieve the
positions of certain image objects on the Gerber coordinate
frame in millimeters. The distance between these known
positions will be compared to the estimated ones based on
the pixel distances and the desired resolution set for the
renderization process.

1) GERBVIEW (SOFTWARE COMPANIONS)
The GerbView application supports the Gerber X2 format
specification including interpreting the pad attributes. This
application allows exporting theGerber file into the following
image formats: BMP, TIF, JPG, PNG, PDF, Cals Type 1
(CAL), HP-RTL (PLT), or WebP Image (WEBP). In terms
of TIF files, the compression options available are the LZW,
PackBits, or no compression. The LZW lossless compres-
sion algorithm was the one used to retrieve the renderization
results with GerbView in this work. Although the resolu-
tion of the image file is set in DPI, the desired resolution
in millimeters per pixel can be converted to DPI by (30).
Furthermore, the option of selecting only the Gerber file and
not the whole workspace fits the renderized image to only the
image data contained in theGerber file. This option is used for
all the experiments with GerbView given that allows a direct
comparison of the image size versus the Gerber file size given
by the Reference Gerber Viewer, considering the resolution
set on the renderization process. Lastly, the software has
a free trial license of 30 days that allowed retrieving the
experimental results presented in this work.

resDPI =
25.4

resmm/px
(30)

2) GERBLIB (GERBMAGIC)
As for GerbLib, this standalone DLL library supports the
Gerber X1 format, exporting Gerber files to the following
formats: PDF, Postscript, TIF, BMP, or RID files. The render-
ization resolution in the case of outputting image files is set in
DPI. Similarly to GerbView, the resolution units considered
in this work, millimeters per pixel, are converted to DPI
as in (30). Although margins can be added to the rendered
image, all experimental results retrieved with GerbLib use
zero margins and bottom-left alignment. The former allows
a direct comparison between the image and the Gerber file
size depending on the desired resolution. The latter is to avoid

69672 VOLUME 10, 2022

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

cutting the renderized image when there is image data outside
the first quadrant of the Gerber coordinate frame. In terms
of licensing, the GerbLib library allows 20 free renderization
executions.

3) REFERENCE GERBER VIEWER (UCAMCO)
The developer of the Gerber format specification Ucamco has
available the free online Reference Gerber Viewer to visu-
alize Gerber files, among other formats. This viewer allows
reliable visualization of Gerber files due to being compatible
with the Gerber X3 specification and being developed by
the creator of the Gerber format. Although the platform does
not allow exporting the renderization output or defining the
desired resolution, the Reference Gerber Viewer has useful
tools to retrieve ground-truth data relative to the Gerber coor-
dinate frame in millimeters. Some of these features are mea-
suring distances and clearances, showing the attributes of the
Gerber commands when hovering over objects (e.g., diameter
of apertures or the flash center position), and computing the
size of the file in millimeters.

B. ACCURACY EVALUATION
First, the renderization accuracy was evaluated for the parsers
tested in this work. Two different types of evaluations are
analyzed here. The first is visual inspection of the render-
ization output. Given the vectorized renderization from a
Gerber file generated on the Reference Gerber Viewer online
platform, this renderization is compared to the ones generated
by the developed parser, the GerbLib, and the GerbView. The
other type of evaluation is a quantitative one. The size of
the rendered image is compared to the real size computed
by the Reference Gerber Viewer, when considering a certain
resolution set upon the renderization process. The real size
in millimeters can be retrieved from the characteristics upon
the importation of the Gerber file computed on the Reference
Gerber Viewer fromUcamco. Similarly, the distance between
known points, such as centers of circle standard apertures
upon their flash, are selected to compute a distance error.
Equations (31) and (32) represent the sum of size and distance
errors, respectively.

εsize = |εsize,width| + |εsize,height| (31)

εdist =
∑
i

∑
j

|εdist,ij| (32)

Two different Gerber files from a PCB board are used
for the first tests. These files only contain Gerber com-
mands compatible with the Gerber X1 format specification.
Therefore, it is possible to compare three different parsers:
the one proposed in this article represented by V7DParser
in the results, GerbView from Software Companions, and
the GerbLib dynamic library. Three resolutions are consid-
ered for the discussion: 0.050 mm/px, 0.010 mm/px, and
0.005 mm/px (equivalent to 508dpi, 2540dpi, and 5080dpi,
respectively). The first resolution was chosen as half of the
smaller element in the Gerber files. In both files, the smallest

FIGURE 12. Front view of the PCB: (a) ground-truth; (b) V7DParser;
(c) photo.

FIGURE 13. Back view of the PCB: (a) ground-truth; (b) V7DParser;
(c) flipped photo.

Gerber element is a circle standard aperture with a 0.1 mm
diameter (aperture D46 in the first file, and D22 and D30
in the case of the second file). The other resolutions were
selected as 5 times and 25 times greater than 0.050 mm/px
(0.010 mm/px and 0.005 mm/px, respectively). Figures 12
and 13 illustrate the renderization results of the V7DParser
compared to the ground-truth and a photo of the front and
back views of the PCB, respectively. Figures 12a and 13a
outline the circle apertures of which their center points (A,
B, C, and D) will be used to retrieve distance data. Table 7
presents the quantitative results computed from the sizes of
the renderized images and error distance data between points
A, B, C, and D represented in the Figures for the two PCB
Gerber files.

In terms of visual inspection, there was not noted any sig-
nificant difference between the rendered images using either
V7DParser, GerbView, GerbLib, or relative to the one given
by the Reference Gerber Viewer. This observation is the main
reason for not showing the three renderizations generated by

VOLUME 10, 2022 69673

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

TABLE 7. Size, distances, error size and error distance sums, in mm, of the GerbView, GerbLib and V7DParser software regarding PCB front and back.
Taking into consideration the ground-truth values given by the Reference Gerber Viewer, the lowest values of the absolute error module for the measured
size and distance are shown in blue and bold.

the three parsers, even though all rendered images are present
in the public repository referred in this section.

Analyzing the quantitative error results shown in Table 7,
and taking the Reference Gerber Viewer as the reference,
the quantitive errors indicate that the V7DParser accuracy
is comparable to the other considered software highlight-
ing its potential in the production of the electronic circuit.
Assessing the sum of distance errors of the parsers regarding
the distance between four points, GerbView and GerbLib
have the highest error when compared with zero error from
V7DParser. However, the values are not significant and are
mostly due to pixelization, i.e., no more than 1 pixel due to
resolution issues. This observation depends on the way the
parsers deal with the pixelization of graphic objects. In the
case of a circular aperture, its diameter is always an odd
number of pixels for the V7DParser rendered images due to
the implementation of cv::circle. This approach allows
centering the circle in the closest pixel using (1). For GerbLib
and GerbView, it was noted that they usually render circle
aperture with an even number of pixels. The main disad-
vantage is the center of the circle not being a specific pixel
but instead between four pixels. Even though the results for
GerbView and GerbLib considered the 0.5 px values of the
image coordinates to estimate the distance errors (expected
to decrease them, instead of using the integer pixel values),
the V7DParser accomplished the lower distance error. Con-
cerning size errors, GerbLib has the highest value, on average
for most of the considered cases, but once again the values are

not considered significant given that some issues such as the
pixelization or rounding measures play a role in this matter.

Next, to evaluate and compare the V7DParser software
regarding the support of the Gerber X2 format specification,
an experiment was performed using a Gerber file containing
an aperture block. To the best of authors knowledge, theGerb-
View application is the only one that fulfills the requirements
for this experiment, mainly, the support of the Gerber X2
format. Figure 14 presents the rendered images from the Ref-
erence Gerber Viewer (ground-truth), the proposed parsing
approach (V7DParser), and the GerbView. Table 8 presents
the quantitative error results for the 0.05 mm/px resolution.
This resolution is equivalent to 10× greater than the smaller
Gerber element in the file (i.e., the D11 circle aperture with a
0.5 mm diameter).

For this second experiment, GerbView did not render cor-
rectly the Gerber file, as shown in Figure 14. Although Ger-
bView was able to render part of the first flashed aperture,
the other ones that suffer rotations, mirroring and/or scaling
transformations were not successfully rendered. In contrast,
the proposed V7DParser was able to deal not only with the
aperture block but also with all geometric transformations set
on the graphics state. Furthermore, GerbLib was also tested,
and, as was expected since it only supports Gerber X1, the
standalone library was not able to produce the aperture block
results. Consequently, Table 8 only presents the quantitative
errors for the V7DParser considering the ground-truth data
given by the Reference Gerber Viewer. Similar to the first

69674 VOLUME 10, 2022

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

TABLE 8. Size, distances, error size and error distance sums, in mm, of the V7DParser software compared with the Reference Gerber Viewer regarding an
aperture block case.

FIGURE 14. Aperture Block: (a) ground-truth; (b) V7DParser; (c) GerbView.

experiment for accuracy evaluation, the errors are mostly due
to pixelization. All the single distance errors are lower than
the renderization resolution. For the size measures, only the
height measure has an error higher than the desired reso-
lution, i.e., 0.07 mm. These results demonstrate, again, the
high renderization accuracy of the proposed parsing approach
while being compatible with the graphic objects defined in
the Gerber X2 format specification.

C. COMPUTATIONAL PERFORMANCE
Although the focus of this work was not on the time perfor-
mance of rendering Gerber files but on its accuracy, an exe-
cution time evaluation was performed by flashing a different
number of circle standard apertures. These apertures have
a diameter of 1 mm, and the renderization resolution was
0.002 mm/px. The latter is due to decreasing the influence
of the application execution timing in the results by increas-
ing the renderization time (higher resolutions require more
execution time). The circle apertures are flashed along the
line x = y equally distant in both axes by 2 mm. Given
that standard circle apertures are compatible with the Gerber
X1 format specification, the execution time results of the
proposed V7DParser are compared to the ones obtained using
the GerbLib library. The number of experiments per Gerber
file was 20 samples. Both parsers were tested in the same
Windows virtual machine that had allocated 4 GB of memory

and 1 virtual CPU. This virtual machine was run using Oracle
VM VirtualBox on a laptop with Windows 10, an Intel Core
i7-9750H CPU @ 2.60 GHz, and 12 GB of memory.

Two execution time experiments presented in this work
are relative to flashing a different number of circle aper-
tures: 1 to 40. The first experiment is based on flashing the
apertures consecutively along the x = y line starting on
(x, y) = (0, 0) mm spaced out evenly between each other
by 2 mm. The second experiment differs from the first one
by flashing firstly the most bottom-left and top-right aper-
tures ((x, y) = (0, 0) mm and (78, 78) mm, respectively)
of the 40 circle apertures considered in these experiments,
and then flashing the other ones. This way the files from
2 up to 40 apertures have the same image area. Only the
first file contains a single circle aperture having the image
area occupied by its single aperture. The results of first
and second experiments are presented in Figures 15 and 16,
respectively.

Analyzing the results of the first experiment, both parsers
have a polynomial complexity. This computational com-
plexity can be due to increasing size of the image area
or increasing the number of flashed apertures. Given the
polynomial order of at least 2, it seems to indicate that the
computational complexity of both parsers is dependent on
increasing size of the image area due to increases in both
X and Y directions between consecutive Gerber files. This
indication will be cleared out in the second experiment. Even
so, up to 11 circle apertures, the proposed parsing architec-
ture has lower execution times than GerbLib, in terms of
median values for the execution time. For files with more
than 11 apertures, the GerbLib outperformed the V7DParser.
One possible reason for the results obtainedwith the proposed
parsing process is due to dynamically changing the size of
the rendered image when rendering each object of the Gerber
file, in contrast to GerbLib. The latter has a specific function,
GbxGetPageSize, to compute the image size in inches
before the image is rendered and saved. As seen in the results,
the advantage of the GerbLib approach is a faster render-
ization process mostly due to preallocating the image size.
However, a disadvantage of preallocation is the renderization
process dependency on the interpretation of the Gerber file.
For example, the proposed dynamic resize approach allows
to interpret the Gerber files, change parameters on specific
pads if necessary in runtime, and then rendering after these
modifications. In the case of GerbLib, the modifications must
be made directly in the file. Also, when using GerbLib, the
parser must always interpret the file again.

VOLUME 10, 2022 69675

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

FIGURE 15. Execution time performance of V7DParser versus GerbLib
parsers when rendering a Gerber file composed by an increasing number
of C standard apertures (1–40) and increasing board area. (a) V7DParser;
(b) GerbLib.

The goal of the second experiment is to clarify if the
complexity is dependent on the image area or the number
of graphic objects represented in the Gerber file. By having
the same image area for the files with 2 up to 40 apertures,
the image size remains constant and dynamic resizing is only
executed between the first and second apertures (the latter
when using V7DParser). Analyzing Figure 16, the execution
time remains approximately constant over all files except for
the first one, which the latter has a single circle aperture.
These results indicate that the main factor for the execution
time is the area of the rendered image. In the case of GerbLib,
the image for #D03 = 2..40 has 39500 x 39500 px, exactly
the same size as for #D03 = 40 in the first experiment.
Indeed, themedian execution time is approximately the same:
4820.87 ms versus 4758.34 ms. These results supports the
statement of the executing time being highly dependent on
the image size.

In the case of the proposed approach, the image size
remains the same when rendering the Gerber files equivalent

FIGURE 16. Execution time performance of V7DParser versus GerbLib
parsers when rendering a Gerber file composed by an increasing number
of C standard apertures (1–40) and static board area. (a) V7DParser;
(b) GerbLib.

to #D03 = 2..40 in the second compared to #D03 =
40 in the first experiment (39501 x 39501 px). However,
the median execution time decreased between the second
and first experiments for #D03 = 40: 9747.98 ms versus
25954.02 ms, respectively. The main reason for this opti-
mization is that dynamically resizing the image requires a
reallocation of memory and the subsequent copy of the cur-
rent image before rendering the next graphic object in the
resized image. Indeed, the first experiment leads to resizing
the image 40 times, given that the 40 flash operations increase
the image by the same amount of times. The results obtained
with the proposed parsing approach in the two experiments
show that pre-allocating the image size before rendering
Gerber commands improves the parser’s computational per-
formance. Even though the focus of this work was not on
the computational performance, and dynamic resizing makes
the interpretation phase independent of the renderization one,
pre-allocating the image size should be the approach used,
especially for higher resolutions and/or bigger image areas.

69676 VOLUME 10, 2022

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

D. DISCUSSION
Overall, the proposed parsing architecture achieved similar
accuracy results to the current solutions compared to the
ground-truth data given by the Reference Gerber Viewer.
The renderization errors obtained in the experiments for
all parsers tested decrease with the increase of resolution.
In addition to the errors being in most of the cases no more
than 1 pixel, these results indicate that the main accuracy
errors shown in Table 7 are due to the resolution itself, i.e.,
the limited millimeter per pixel resolution that results in
pixelization of the vector data described in the Gerber file.
Furthermore, this work addresses the ambiguities of the Ger-
ber specification for rendering rotated apertures and circular
interpolation arcs. The first ambiguity was addressed by first
rotating the aperture’s points of interest, and then rendering
it. The second one was handled by rendering the circular arc
to always pass through its initial endpoints defined in the
Gerber file. These proposed approaches led to no deformation
as illustrated in the renderization of the aperture block.

A limitation of the proposed approach is the computational
performance. The main cause is the dynamic resize affecting
the computational performance, even though it facilitates
the implementation of the interpretation and renderization
processes while also making these two processes indepen-
dent of each other. A possibility identified in the results
discussed is estimating the rendered image size upon the file’s
interpretation, for allocating the image size a priori to the
renderization process. This modification not only improves
the computational time but also its complexity relative to
the image size. Even so, the computational performance was
not the main focus of this work but instead the renderization
accuracy; so, the a priori estimation of the image size will be
a future improvement on the current parsing architecture.

Finally, it should be highlighted the full support for all
commands defined in the Gerber X2 specification that gen-
erate renderization data, unlike existing solutions. These
commands include renderization of aperture blocks, macro
apertures, interpretation of arithmetic expressions defined
within a macro template definition, and load rotation. The
support of the Gerber X3 format was not required for this
work. The additional structures defined in this format are
focused on defining new attributes for the fabrication pro-
cess of a PCB, not on structures that add image data to the
renderization output. Along with rendering Gerber X2 files,
the proposed approach allows exporting in multiple formats
including bitmaps due to the use of OpenCV for this purpose
while defining a desired millimeter per pixel resolution.

VI. CONCLUSION AND FUTURE WORK
Nowadays, the electronics fabrication industry resorts to the
Gerber open standard format to exchange PCBmanufacturing
specifications. The industry is also facing a global compe-
tition and new production methods are being devised day
by day. Regarding the automotive industry, it is looking for
innovations in its production processes and also in the design

of automobile interiors. One possibility being developed is
the printing, using functional and decorative inks, of sensors
and actuators directly on automobile interior parts. Given this
environment, the objective of the VINCI7D project consists
of the development of a solution based on a fixed inkjet print-
head and an industrial robot arm that manipulates a part with
a 3D surface. This solution must be able to print electrical
circuits directly on the surface. For this purpose, a parser for
the Gerber language was developed, accepting Gerber files
as input and bitmap images as outputs, to be supplied to the
printhead.

To be best of the authors’ knowledge, and according to the
related Gerber information founded in the literature as well as
into the commercial online libraries and viewers data, only a
few fully support theGerber X2 generation, being able to han-
dle with Gerber commands such as macro apertures, aperture
blocks and load rotation. The proposed work contemplates
the Gerber X2 generation, taken into consideration the Gerber
specification from Ucamco, and follows a recursive descent
approach for parsing all the reviewed Gerber commands. The
distinction between this parser and others already described
in the literature resides in the fact that this one is able
to convert all Gerber commands, including Gerber macros
(a complex structure of the format not considered in other
works), contrary to the others which are only able to support
a subset of this format. GerbView (Software Companions)
application was assessed as an alternative to compare with the
V7DParser accuracy results. GerbLib, a standalone library
which provides a DLL and that only supports Gerber X1,
was assessed to evaluate the proposed approach’s accuracy
and computational performance by having a processing time
reference. Regarding the accuracy evaluation, the obtained
results from V7Parser were comparable with GerbViewer
and GerbLib software, and with the used ground-truth (Ref-
erence Gerber Viewer – Ucamco). Concerning the aperture
block analysis, only handled by the Gerber X2 generation,
the results achieved from V7DParser were aligned with the
reference; however, GerbView was not able to render the
Gerber command, even though the application states that
it is compatible with the Gerber X2 format. Regarding the
time performance evaluation, the performed tests based on
dynamic size and preallocating the image size led to the con-
clusion that pre-allocating the image size improves substan-
tially the computational performance of the parser. Finally,
given the accuracy evaluation results of the proposed parsing
architecture, the V7DParser is a real option to the electronics
fabrication industry. Furthermore, due to V7DParser top-
down and recursive characteristics, its architecture allows
an easy integration with other software regardless of the
platform.

Nonetheless, further development is currently being car-
ried out to improve the functionalities of the parser, includ-
ing to improve the computational performance based on the
current experimental results and to integrate this parser for
projecting 2DGerber image data onto 3D surfaces.Moreover,
the work will be directed to the projection of the bitmap

VOLUME 10, 2022 69677

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

images over 3D surfaces, and its printing over solid parts with
complex geometries.

ACKNOWLEDGMENT
The authors would like to thank Rui Azevedo—Soluções de
Acabamentos e Tampografia in the scope of the VINCI7D
Project for its support and assistance in the development of
this work.

REFERENCES
[1] A. Mohapatra, B. I. Morshed, S. Shamsir, and S. K. Islam, ‘‘Inkjet printed

thin film electronic traces on paper for low-cost body-worn electronic patch
sensors,’’ in Proc. IEEE 15th Int. Conf. Wearable Implant. Body Sensor
Netw. (BSN), Mar. 2018, pp. 169–172, doi: 10.1109/BSN.2018.8329685.

[2] X. Feng, A. Scholz, M. B. Tahoori, and J. Aghassi-Hagmann,
‘‘An inkjet-printed full-wave rectifier for low-voltage operation using
electrolyte-gated indium-oxide thin-film transistors,’’ IEEE Trans.
Electron Devices, vol. 67, no. 11, pp. 4918–4923, Nov. 2020, doi:
10.1109/TED.2020.3020288.

[3] T. Tilford, S. Stoyanov, J. Braun, J. C. Janhsen, M. K. Patel, and C. Bailey,
‘‘Comparative reliability of inkjet-printed electronics packaging,’’ IEEE
Trans. Compon., Packag., Manuf. Technol., vol. 11, no. 2, pp. 351–362,
Feb. 2021, doi: 10.1109/TCPMT.2021.3049952.

[4] Centre for Nanotechnology and Smart Materials (CeNTI), ‘‘Highly flex-
ible displays for automotive interior applications,’’ OPE J., vol. 11,
no. 36, pp. 12–13, Sep. 2021. [Online]. Available: https://www.coating-
converting.com/epaper/c2com/193/epaper/9405/12/index.html

[5] Eurocircuits.Gerber Formats. Accessed: Oct. 7, 2021. [Online]. Available:
https://www.eurocircuits.com/gerber-format/

[6] Ucamco. Gerber Format. Accessed: Sep. 8, 2021. [Online]. Available:
https://www.ucamco.com/en/gerber

[7] I. R. Sinclair and J. Dunton, Practical Electronics Handbook,
6th ed. Amsterdam, The Netherlands: Elsevier, 2007. [Online].
Available: http://www.aeroelectric.com/Reference_Docs/Books/
Practical_Electronics_%Handbook_6th_ed.pdf

[8] D. Grune and C. J. Jacobs, Parsing Techniques (Monographs in Computer
Science), 2nd ed. New York, NY, USA: Springer, 2008, doi: 10.1007/978-
0-387-68954-8.

[9] PCBWay. Online Gerber Viewer PCB Prototype the Easy Way.
Accessed: Aug. 23, 2021. [Online]. Available: https://www.pcbway.com/
project/OnlineGerberViewer.html

[10] JLCPCB. PCB Order & Online PCB Quote & SMT Assembly
Quote. Accessed: Aug. 23, 2021. [Online]. Available: https://cart.
jlcpcb.com/quote

[11] Bronzware. Gerbmagic. Accessed: Mar. 24, 2022. [Online]. Available:
https://www.bronzware.com/GerbMagic/index.htm

[12] Numerical Innovations. FAB 3000 Gerber Viewing, Editing, Panelization,
DRC, DFM, Compare Nets, Build Centroids, SMT Stencil Pads, Convert
DXF, Odb++ and More. Accessed: Aug. 23, 2021. [Online]. Available:
https://www.numericalinnovations.com/collections/fab-3000-gerber-cam

[13] R. Powierski. ZofzPCB: Free 3D Gerber Viewer + Premium Step Export.
Accessed: Aug. 23, 2021. [Online]. Available: https://www.zofzpcb.com/

[14] S. Companions. Gerbview. Accessed: Aug. 24, 2021. [Online]. Available:
https://www.gerbview.com/

[15] R. Poelstra. Cuprum—The Gerber Viewer Built Exclusively for
MAC. Accessed: Aug. 23, 2021. [Online]. Available: https://www.
wortum.com/cuprum/

[16] Ucamco. Reference Gerber Viewer. Accessed: Aug. 23, 2021. [Online].
Available: https://gerber-viewer.ucamco.com/

[17] GerbMagic.Gerblib Functions. Accessed: Aug. 23, 2021. [Online]. Avail-
able: https://www.bronzware.com/GerbMagic/functions.htm

[18] Artwork Conversion Software. Gbr_Rip High Speed Multi-Threaded
Gerber Rasterizer. Accessed: Aug. 23, 2021. [Online]. Available:
https://www.artwork.com/gerber/gbr_rip/index.htm

[19] P. Prokofyev. Libpger. Accessed: Aug. 23, 2021. [Online]. Available:
https://github.com/integralpro/libpger.git

[20] J. Stringer. Gerberparser. Accessed: Aug. 23, 2021. [Online]. Available:
https://github.com/JulesStringer/GerberParser.git

[21] M. Cousins.Gerber-Parser. Accessed: Aug. 23, 2021. [Online]. Available:
https://github.com/mcous/gerber-parser.git

[22] Mike Cousins. Tracespace. Accessed: Aug. 23, 2021. [Online]. Available:
https://github.com/tracespace/tracespace.git

[23] M. Cousins and Contributors. Tracespace View. Accessed: Aug. 23, 2021.
[Online]. Available: https://tracespace.io/view/

[24] KiCad. Gerbview. Accessed: Aug. 23, 2021. [Online]. Available:
https://gitlab.com/kicad/code/kicad/-/tree/master/gerbview

[25] KiCad. KiCad EDA: A Cross Platform and Open Source Electronics
Design Automation Suite. Accessed: Aug. 23, 2021. [Online]. Available:
https://www.kicad.org/

[26] M. Qi, Z. Wang, X. Wei, and A. Wang, ‘‘Efficient gerber file parsing and
drawing,’’ in Proc. Int. Conf. Mach. Learn. Mach. Intell. (MLMI), 2018,
pp. 13–17, doi: 10.1145/3278312.3278327.

[27] Y. Fan, S. Wu, X. Wu, and J. Yang, ‘‘Gerber file parsing and the imple-
mentation method of its conversion to bitmap image,’’ J. Phys., Conf.
Ser., vol. 1820, no. 1, Mar. 2021, Art. no. 012160, doi: 10.1088/1742-
6596/1820/1/012160.

[28] Ucamco. (Apr. 2021). The Gerber Layer Format Specification.
Ucamco. [Online]. Available: https://www.ucamco.com/files/downloads/
file_en/436/gerber-layer-format-%specification-revision-2021-04_en.pdf

[29] OpenCV. Open Source Computer Vision Library (OpenCV). Accessed:
Oct. 10, 2021. [Online]. Available: https://opencv.org/

[30] Ucamco. (Sep. 2020). The Gerber Layer Format Specification.
Ucamco. [Online]. Available: https://www.ucamco.com/files/downloads/
file_en/399/the-gerber-file-form%at-specification-revision-2020-
09_en.pdf?df3a1d29deffdbc28f2712cb5a613ae6

[31] B. N. Miller and D. L. Ranum, Problem Solving With Algorithms and Data
Structures using Python, 2nd ed. Portland, OR, USA: Franklin Beedle
& Associates, 2013. [Online]. Available: https://runestone.academy/
runestone/books/published/pythonds/BasicDS/
In%fixPrefixandPostfixExpressions.html

[32] T. A.Welch, ‘‘A technique for high-performance data compression,’’Com-
puter, vol. 17, no. 6, pp. 8–19, Jun. 1984.

RICARDO B. SOUSA received the Master of Sci-
ence (M.Sc.) degree in electrical and computers
engineering (ECE) from the Faculty of Engineer-
ing, University of Porto (FEUP), in 2020, where
he is currently pursuing the Ph.D. degree in elec-
trical and computer engineering. He has a Grad-
uate Research Scholarship from FCT—Fundação
para a Ciência e a Tecnologia, Centre for Robotics
in Industry and Intelligent Systems, INESC TEC.
Also, he is currently an Invited Assistant lecturing

the courses software design and industrial informatics from theM.Sc. degree
in ECE at FEUP. His research interests include robotics, sensor fusion, and
localization and mapping for autonomous robots.

CLÁUDIA ROCHA received the M.Sc. degree in
bioengineering in biomedical engineering from the
Faculty of Engineering, University of Porto, Por-
tugal, in 2016. She joined the Centre for Robotics
in Industry and Intelligent Systems, INESC TEC,
in 2016, as a Researcher, participating in various
projects. Her research interests include robotics,
automation, 3D modeling, and healthcare.

69678 VOLUME 10, 2022

http://dx.doi.org/10.1109/BSN.2018.8329685
http://dx.doi.org/10.1109/TED.2020.3020288
http://dx.doi.org/10.1109/TCPMT.2021.3049952
http://dx.doi.org/10.1007/978-0-387-68954-8
http://dx.doi.org/10.1007/978-0-387-68954-8
http://dx.doi.org/10.1145/3278312.3278327
http://dx.doi.org/10.1088/1742-6596/1820/1/012160
http://dx.doi.org/10.1088/1742-6596/1820/1/012160

R. B. Sousa et al.: Gerber File Parsing for Conversion to Bitmap Image—The VINCI7D Case Study

HÉLIO SOUSA MENDONÇA was born in Porto,
Portugal, in 1968. He received the Graduate and
M.Sc. degrees in electrical and computer engineer-
ing from the Faculty of Engineering, University
of Porto (FEUP), in 1991 and 1994, respectively,
and the Ph.D. degree, in 2004. Currently, he is an
Assistant Professor at FEUP and a Researcher at
the Centre for Robotics in Industry and Intelligent
Systems (CRIIS), INESC TEC. His research inter-
ests include embedded systems, wireless sensor

networks, and robotics.

ANTÓNIO PAULO MOREIRA received the
Graduate degree in electrical engineering from the
University of Oporto, in 1986, the M.Sc. degree
in electrical engineering—systems from the Uni-
versity of Porto, in 1991, and the Ph.D. degree in
electrical engineering, in 1998. He is currently an
Associate Professor with tenure at the Faculty of
Engineering, University of Porto and a Researcher
and the Head of the Centre for Robotics in Industry
and Intelligent Systems, INESCTEC. His research

interests include process control and robotics.

MANUEL F. SILVA was born in April 1970.
He received the B.Sc., M.Sc., and Ph.D. degrees in
electrical and computer engineering from the Fac-
ulty of Engineering, University of Porto, in 1993,
1997, and 2005, respectively. He is currently a
Coordinating Professor at the Department of Elec-
trical Engineering, Instituto Superior de Engen-
haria do Porto (having supervised or co-supervised
more than 60 M.Sc. theses and 80 graduation
projects/internships) and a Senior Researcher at

the Centre for Robotics in Industry and Intelligent Systems, INESC TEC.
He is the author of more than 100 publications in international journals
and conferences (https://www.researchgate.net/profile/Manuel-Silva-8) and
has been involved in several research and development projects. He has
also been actively involved in the organization of several international con-
ferences, integrating the Management Team of the CLAWAR Association
(https://clawar.org/) and the General Assembly Board of the Portuguese
Robotics Society (of which he has been the President of the Steering Com-
mittee). His research interests include modeling, simulation, robotics, bio-
inspired robotics, control and education in robotics, and control.

VOLUME 10, 2022 69679

