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a b s t r a c t

In different areas of knowledge, phenomena are represented by directional-angular or periodic-data;
from wind direction and geographical coordinates to time references like days of the week or months of
the calendar. These values are usually represented in a linear scale, and restricted to a given range (e.g.
½0;2πÞ), hiding the real nature of this information. Therefore, dealing with directional data requires

on the usage of the von Mises distribution or variants. Since for non-periodic variables state of the art
approaches are based on non-generative methods, it is pertinent to investigate the suitability of other
approaches for periodic variables. We propose a discriminative Directional Logistic Regression model
able to deal with angular data, which does not make any assumption on the data distribution. Also, we
study the expressiveness of this model for any number of features. Finally, we validate our model against
the previously proposed directional naïve Bayes approach and against a Support Vector Machine with a
directional Radial Basis Function kernel with synthetic and real data obtaining competitive results.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Several phenomena and concepts in real life applications are
represented by angular data or, as is referred in the literature,
directional data. Some examples of directional information are the
wind direction as analyzed by meteorologists, magnetic fields in
rocks studied by geologists, geographic coordinates, among others
[1]. Also, some entities are usually referenced in an angular
manner; gynecologists denote the location to perform a biopsy,
when performing a colposcopic screening, using the angle formed
by the vertical axis of the cervix. Another example can be found in
the area of computer vision, where color is often defined in
cylindrical spaces like the Hue-Saturation-Value (HSV) color space.
However, directional information is not constrained to scientific
contexts; on a daily basis we naturally use angular variables. For
example, time is usually represented by hours, days of the week,
day of the month, season, etc. This reference system is cyclic by
nature.

Directional variables are usually encoded as a periodic value in
a given range (e.g. [0, 2π), [0°, 360°)). This work focuses merely in
this representation of directionality, where an angular variable is a
real-value number with periodicity defined by a range. However,
directional data can also be found in other representations, such as
gal.
discrete categorical values ordered by a circular relation [2]. Also,
some literature makes use of histograms which lie in a circular
space instead of the linear one.

Working effectively with directional data requires dealing with
techniques that are aware of the angular nature of the information
[1]. For example, 0 and 2π are indeed the same angle and their
average is not π but 0. In this sense, directional statistics concerns
the problems derived from using traditional linear statistics with
this type of data [1]. Even visualization of this type of data requires
different representations to illustrate its periodic behavior (e.g.
rose diagrams and circular histograms). In order to formalize the
definition of a directional function, consider the predicate dir
defined in Eq. (1), where N is the set of integers and
B¼ ftrue; falseg:

dir : N⟶B

dirðiÞ ¼ true; iff the ith feature is directional ð1Þ

Wewill say that the function f, with domain in Rn, is directional

with period P
!

(i.e. the feature in the position i has period P
!

i), if
and only if Eq. (2) holds, where non-directional features are

assumed to have infinite period (i.e. :dirðiÞ ) P
!

i ¼1þÞ:

f ð θ
!

Þ¼ f ð θ
!

þ k
!

○ P
!Þ; k

!
AZn ð2Þ

Here on, we will restrict the periodicity of the directional
values to Pi¼1, without loss of generality.
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Supervised learning can be understood as the process of
learning a function f based on the so-called training data that
comprises examples of the input vectors and their corresponding
target values [3]. In this work, we are interested in the learning
task known as classification, where the target can take a finite
number of values. These values are usually denoted as classes or
labels and the input vector defines a set of features that describe
objects in the domain of the function. As the result of a supervised
classification task, we obtain a classifier, which is used to assign a
class to an object that has not been seen at the training stage. The
ability to correctly label new instances is known as generalization
[3]. Traditional models that do not take into account directionality
may suffer drop of generalization in areas near to the period of the
function. Furthermore, the function may return different decisions

for different Δþ k
!

○ P
!

, k
!

AZn, and a fixed ΔARn, despite all of
them semantically represent the same angle.

In this work we propose a binary classifier aware of the
directional constraint. The rest of this paper is organized as fol-
lows. Section 2 describes related work in the area of directional
statistics and learning. Sections 3–5 detail the proposed model, its
expressiveness and the optimization strategy, respectively. Section
6 summarizes the performed experiments to assess the relevance
of the proposed model and, finally, Section 7 summarizes some
conclusions and future work.
2. Related work

Most different types of problems and approaches in Machine
Learning can be broadly defined as a classification, regression or
clustering tasks. Classification and Regression are the most com-
mon supervised learning tasks. On the other hand, clustering is
probably the best known unsupervised learning task, where the
objective is to group data into non predefined categories based on
some similarity criterion.

Previous attempts to address learning tasks with directional
data have been carried out in each of the aforementioned areas.
Most of them take advantage of circular distributions (such as von
Mises and von Mises–Fisher). For instance, Banarjee et al. [4]
proposed a generative mixture-model approach for clustering
directional data using the von Mises–Fisher distribution. More-
over, they conclude that the spherical k-means is a special case of
the mixture of von Mises–Fisher model. Fitting mixtures of
angular distributions have been separately studied by Mooney
et al. [5] and Mardia et al. [6].

Regression scenarios with directional data have been studied in
several contexts [7–9]. Xu and Schoenberg [9] proposed a kernel
regression method based on the von Mises distribution. Their
method was used to discover the relationship between a single
directional explanatory variable (wind direction) and a real-valued
linear response variable (total area burned per day in wildfires).
Fisher and Lee [7] studied the regression problem where the
predictive variables are linear and the model outcome is direc-
tional. Their work also assumes that angular observations follow
von Mises distributions and focuses on the estimation of the dis-
tribution parameters. Finally, Kato et al. [8] addressed the circular–
circular problem, wherein both, predictive and target observations,
have a circular nature.

Circular ordinal regression is an intermediate problem in this
area, which lies between regression and classification. It considers
a discrete number of labels which preserve a certain circular order.
Devlaminck et al. [2] proposed two methods to solve this problem.
The first one is an SVM variation, and the second method trans-
forms the circular ordinal regression problem into multiclass
classification. However, the directionality concerns in [2] are
focused on the model outcome rather than on the feature space.

In the area of directional classification, different approaches
have been considered: from Discriminant Analysis [10,11] to gen-
erative models [1,12,13]. SenGupta and Roy [14] proposed a
distance-based classification rule using the chord-length between
two points on the circle to classify unidimensional data. In more
recent work, SenGupta and Ugwuowo [15] developed a multi-
dimensional method for binary classification using directional
data; they studied data on torus (two directional variables) and
cylinder (one linear variable and one directional variable). Their
approach has the limitation that it assumes as known the prob-
abilities of misclassification [15].

Kirby and Miranda [16] proposed a variation on the classic
feed-forward neural network by including the notion of a circular
node, able to store and transmit angular information. In fact, their
node is an abstraction for the combination of a pair of coupled
nodes, whose combined values are constrained to lie on the unit
circle. However, their solution is not invariant to the same inputs
at different periods, namely, a pair of coupled nodes may return
different responses to the same angular input. Furthermore, their
model requires to manually define the hybrid architecture.

Finally, adaptions to generative models were studied in the
past. First, Zemel et al. [13] extended the Boltzmann machine to
consider cyclic units. On the other hand, López et al. proposed a
directional naïve Bayes formulation [1,12]. Their contribution
involves using the von Mises and von Mises–Fisher distributions
for the directional variables instead of the classic Gaussian dis-
tribution. The effectiveness of this method relies on the indepen-
dence assumption of the features and the adequacy of the von
Mises distribution to model the behavior of the directional
features.

In this work, we propose a Directional Logistic Regression, the
discriminative counterpart to the Naïve Bayes model, which does
not make assumptions on the distribution of the input data.
3. Directional logistic regression

Generative classifiers aim to model the joint probability pðx; yÞ,
where x and y respectively denote the input and output variables.
Traditional generative models would then make their predictions
by choosing the label y that maximizes pðx; yÞ, computed using
Bayes rules [17]. Instead, discriminative classifiers model the
posterior probability pðyjxÞ. This computation is done in a direct
manner or by learning a map from inputs x to the class labels [17].

As we have shown in Section 2, previous attempts to design
classifiers for periodic data adopted a generative approach based
on the von Mises distribution or variants [1]. Since state of the art
approaches are based on non-generative methods for non-periodic
variables [18], in this work we propose a discriminant approach to
classify directional data. Our contribution stands as a directional-
aware version of the Logistic Regression [19], which is the dis-
criminant counterpart of the naïve Bayes classifier, previously used
to address this problem. This relation is known as a Generative-
Discriminative pair [17].

Eq. (3) defines the Directional Logistic Regression (dLR) model.
This model can be understood as a Logistic Regression with a
mapping from the original angular space to a linear one. As we
show in Section 5, this mapping is learned simultaneously with
the feature coefficients. Hereinafter, the two possible labels belong
to f0;1g, and n is the number of features:

f ðθÞ ¼ 1
1þe�k�hðθÞ
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hðθÞ ¼ω0þ
Xn
i ¼ 1

ωigiðθiÞ

giðθiÞ ¼
sin ð2πðθiþφiÞÞ; if dirðiÞ
θi; otherwise:

(
ð3Þ

This model is a hybrid approach to Logistic Regression for
modeling linear and directional data, whereby a mapping from
angular variables to linear space is learned. The number of para-
meters involved in the proposed model is

nþ1þð#iANþ j irn : dirðiÞÞ
If all the variables are linear, the model is reduced to the tra-

ditional Logistic Regression with nþ1 parameters. Also, we have
included an extra k parameter that defines the slope of the sig-
moid function, which does not change the predicted label but
softens the decision boundary. Given the properties of the sine
function, the model holds the directional condition.
4. Expressiveness of the model

In this section we analyze the model's expressiveness by
studying the induced boundaries, as was done by López et al. [1]
for the von Mises naïve Bayes model. We start with the scenario
where the feature space is constrained to one directional feature
(Section 4.1). Section 4.2 presents the most general scenario with
an unconstrained number of directional and linear features. As
previously mentioned, when all variables are linear, the model
becomes a classical Logistic Regression and the subsequent deci-
sion surface is a hyperplane in the Rn space. Therefore, we are
interested in settings where at least one variable is directional.

4.1. One-dimensional feature space with one angular variable

In this section we show the expressiveness of the Directional
Logistic Regression (dLR) for the trivial case of unidimensional
problems with a single angular variable. As we show below, it is
easier to reason about the expressiveness of the model in the
equivalent space where each variable is transformed into a pair of
coordinates in a (0, 0)-centered unit 2-sphere, where xi ¼ cos ð2πθiÞ
and yi ¼ sin ð2πθiÞ. This space will hereafter be referred to as the
transformed space or extended space, while the original data repre-
sentation will be denoted as the original space.

Without loss of generality, we assume that the model classifies
an instance as positive if its outcome is larger than 0.5, thus
leaving the final decision to the sign of the h function.
Fig. 1. Decision boundary for a problem with one directional variable. Left: decision bou
boundary in the extended space represented by the 2-dimensional line.
Theorem 1. The dLR classifier with one predictive directional vari-
able induces a separation boundary equivalent to a two dimensional
line in the transformed space. Moreover, the set of induced decision
lines is complete in the space of two dimensional lines.

Proof.

hðθÞ ¼ 0
� 〈Definition of h〉
ω0þω1 sin 2πðθ1þφ1Þ

� �¼ 0

� 〈Sum of two angles〉
ω0þω1 sin ð2πθ1Þ cos ð2πφ1Þþ cos ð2πθ1Þ sin ð2πφ1Þ

� �¼ 0

� 〈x1 ¼ cos ð2πθ1Þ; y1 ¼ sin ð2πθ1Þ〉
ω0þω1 y1 cos ð2πφ1Þþx1 sin ð2πφ1Þ

� �¼ 0
� 〈Arithmetic〉
ω1 cos ð2πφ1Þy1 ¼ �ω1 sin ð2πφ1Þx1�ω0

� 〈Arithmetic〉

y1 ¼ � tan ð2πφ1Þx1�
ω0

ω1 cos ð2πφ1Þ

Then, given that the range of the tangent function is R, the
decision boundary can be rewritten as the two dimensional line
equation y¼mxþb, with any possible slope m¼ � tan ð2πφ1Þ and
y-intercept b¼ ω0

ω1 cos ð2πφ1Þ. □

Theorem 1 shows that the expressiveness of the dLR for uni-
dimensional problems with one predictive directional variable in
the transformed space is defined by the entire set of two dimen-
sional lines. However, the decision boundary in the original space
is not linear; it is translated as two decision angular-thresholds, ϕ
and ϕ0, such that, if the angular distance between them is Δ, one of
the possible induced models in the original space is represented
by the parameter configuration:

φ1 ¼ 7
1
2π

arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos ð2πΔÞ

2

r !
�ϕ

ω0 ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cos ð2πΔÞÞ

2

r
ω1 ¼ 1

where ω0 takes the positive version of the equation if the distance
between both thresholds is greater than half of the period (ϕ1 the
negative side) and vice versa. Notice that there is an infinite
number of models with the same decision boundary, since we can
scale ω by any non-zero factor and obtain the same predictions.
ndary in the original space represented by two decision thresholds. Right: decision
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This property is also true for the standard logistic regression. An
example of the model expressiveness for this trivial case is illu-
strated in Fig. 1.

4.2. N-dimensional feature space with K angular variables

We now analyze the general scenario where the feature space
has an unrestricted number of directional and non-directional
variables. For the sake of simplicity, we assume that the first K
features are directional and the remaining linear (referred to as
hypothesis H0 in the proof of the Theorem 2). This assumption
does not suppose a loss of generality given that the model is
invariant to the arrangement of the features. As we did before, we
analyze the expressiveness of the model in the transformed space.

Theorem 2. The dLR classifier with N predictive variables, being K
rN of them directional, induces a separation boundary equivalent to
a (NþK)-dimensional hyperplane in the transformed space.

Proof.

ω0þ
XN
i ¼ 1

ωigiðθiÞ ¼ 0

� 〈Range Split〉

ω0þ
XK
i ¼ 1

ωigiðθiÞþ
XN

i ¼ Kþ1

ωigiðθiÞ ¼ 0

� 〈H0; Definition of g〉

ω0þ
XK
i ¼ 1

ωi sin ð2πðθiþφiÞÞþ
XN

i ¼ Kþ1

ωiθi ¼ 0

� 〈Sum of two angles; Arithmetic〉

ω0þ
XN

i ¼ Kþ1

ωiθiþ

XK
i ¼ 1

ωi sin ð2πθiÞ cos ð2πφiÞþ cos ð2πθiÞ sin ð2πφiÞ
� �¼ 0

� 〈xi ¼ cos ð2πθiÞ; yi ¼ sin ð2πθiÞ; Arithmetic〉

ω0þ
XN

i ¼ Kþ1

ωiθiþ
XK
i ¼ 1

ωi sin ð2πφiÞxiþωi cos ð2πφiÞyi
� �¼ 0 □

An interesting and usual two dimensional scenario arises when
angular measurements are accompanied by a scale factor or
magnitude (e.g. wind direction and speed, forces, etc.), thereby
inducing a cylinder as the geometric space where input vectors lie.
Fig. 2 shows an example of the decision region in both, the original
Fig. 2. Decision boundary for a mixed problem in R2. Left: non-linear decision boundary
a three dimensional plane.
R2 space and the transformed R3 space, where one variable is
directional.
5. Optimization strategy

For the purpose of this work, the traditional gradient descent
learning strategy from the Logistic Regression was adapted to the
proposed directional version. Let us assume we have a set of
labelled input data S, where each instance 〈θ; y〉ASDRn � f0;1g, is
a pair of an input vector θ and its corresponding label y.

From this scenario, we consider the traditional regularized
Logistic loss function (Log loss) used in (multinomial) Logistic
Regression (cf. Eq. (4)):

Jðω;φÞ ¼ � 1
jSj

X
〈θ;y〉A S

costðy;θÞþ λ
2n

Xn
i ¼ 1

ω2
i ð4Þ

costðy;θÞ ¼ ylog ðf ðθÞÞþð1�yÞlog ð1� f ðθÞÞ ð5Þ
This function can be enhanced in order to include different

misclassification costs by considering the weighted sum of the
errors. In order to fit the model, the goal of our optimization task is
to find the best parameter configuration ω;φ such that:

arg min
ω;φ

Jðω;φÞ

Using a gradient descent strategy requires the computation of
the partial derivatives of the goal function J with respect to each
model parameter. The corresponding derivatives are shown below
in Eqs. (6a)–(6d). A more detailed explanation about the deduction
steps involved in the computation of these derivatives is presented
in Appendix B:

∂
∂ω0

Jðω;φÞ ¼ k
jSj

X
〈θ;y〉A S

ðf ðθÞ�yÞ ð6aÞ

∂
∂ωi40

Jðω;φÞ ¼ k
jSj

X
〈θ;y〉AS

ðf ðθÞ�yÞ � giðθiÞþ
λ
n
ωi ð6bÞ

∂
∂φi

Jðω;φÞ ¼ k �ωi

jSj
X

〈θ;y〉A S

ðf ðθÞ�yÞ ∂
∂φi

giðθiÞ ð6cÞ

∂
∂φi

giðθiÞ ¼
2π cos ð2πðθiþφiÞÞ; if dirðiÞ
0; otherwise

(
ð6dÞ

Then, we can use a gradient-based optimization strategy to fit
the model. In our case, we have used a Gradient Descent variation
in the original space. Right: decision boundary in the extended space represented by



K. Fernandes, J.S. Cardoso / Neurocomputing 207 (2016) 141–149 145
with decaying learning rate and increasing slope of the sigmoid
function to boost the algorithm's convergence (see Algorithm 1).
In order to avoid having to change the learning rate as the slope of
the sigmoid function changes, we removed the constant k from the
derivatives, which preserves the direction of the gradient but
simplifies parameter tuning. In gradient descent optimization
techniques, monotonously decreasing the learning rate towards
zero guarantees the convergence of the iterative process. In our
setting, given that the search space is not convex, the process may
converge to a local minimum. However, as will be shown in the
experimental evaluation, the proposed algorithm is able to reach
competitive results.

Algorithm 1. Gradient descent with variable sigmoid's slope.
1:
2:
3:
4:
5:
6:
7:

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Table
Avera

Dis

Uni
Tria
von
function GRADIENT DESCENT (samples, labels)
ω;φ’initialize_model()
ωn;φn’ω;φ
Jn’Jðω;φÞ
k; ε’1; εinit

for i’1 to max_iterations do

ω;φ’ω�α � ∂
∂ω

Jðω;φÞ; φ�α � ∂
∂φ

Jðω;φÞ
Jnext’Jðω;φÞ
if kokmax4 j Jnext� Jn joε then
k; ε’kþ1; ε � εΔ

end if
if Jnexto Jn then
ωn;φn’ω;φ
Jn’Jnext

else
α’α � decaying_rate

end if
end for

return ωn;φn

end function
22:

6. Experiments

In this section we detail the experimental evaluation of the
proposed directional Logistic Regression (dLR) classifier and its
non-directional version Logistic Regression (LR) against their
generative counterparts von Mises naïve Bayes and Gaussian naïve
Bayes classifiers [1]. These methods can be summarized as follows:

1. GNB: Gaussian NB classifier that models continuous variables
using Gaussian distributions.

2. vMNB: NB classifier that models linear variables using Gaussian
distributions and directional variables using von Mises
distributions.

Furthermore, López et al. [1] validated a feature selection
strategy proposed by Langley and Sage [20] as a wrapper of their
NB approach. Also, they evaluated the performance of the NB
1
ge classification error per model with unidimensional synthetic datasets.

tr. GNB vMNB

form 91.2574.85 92.5676.15
ngular 93.5674.14 94.8272.62
Mises 95.2572.56 96.2572.42
classifier by discretizing all the continuous variables. However,
given that the goal of this section is to validate the performance of
the proposed discriminative method against its generative coun-
terpart, we considered the plain GNB and vMNB methods. The
study of feature selection and discretization strategies are out of
the scope of this work and might improve the results shown
below. In the following experiments, the κ parameter of the von
Mises distribution was approximated by 100 iterations (a much
larger number of iterations than required to have good con-
vergence values) of Newton's method proposed by Sra [21].

Also, we compare our model with a Support Vector Machine
(SVM) [22] using a directional squared exponential (i.e. Gaussian
Radial Basis Function – RBF) kernel [23]. This kernel considers the
distance between a given pair of points, wherein the distance
between two directional variables is considered in an angular
manner instead of the traditional Euclidean distance. The reg-
ularization parameter (C) and the γ parameter of the squared
exponential kernel were chosen by cross-validation among seven
different values in the logarithmic scale between 10�2 and 102.

On the other hand, both Logistic Regression variants had an
initial learning rate value (α) of 0.1 and a maximum number of
20,000 iterations for the synthetic data and 10,000 iterations for
real data, but most datasets required much less iterations to con-
verge. The model was initialized using small random values
(ωiA ½�0:05;0:05� and φiA ½�0:05;0:05�). The regularization con-
stant C ¼ λ�1 was chosen following the same strategy used in the
training of the SVM.

6.1. Experiments with synthetic data

We evaluated the performance of the classifiers using one
directional predictive variable and two possible responses (binary
classification), under three different statistical distributions (e.g.
uniform, triangular and von Mises). Then, for each possible dis-
tribution we randomly generated 75 synthetic binary datasets
with 100 samples (50 samples per class). Afterwards, we validated
the accuracy of each model using a training and test validation
assessment using the classic 70–30 partition. We compared the
two aforementioned naïve Bayes versions with the two versions of
the Logistic Regression. Also, we assessed the proposed strategy by
comparing the results with a brute force search that compares
each possible pair of thresholds (by maximizing the margin
between two observations belonging to different classes) and
minimizes the training error (g-dLR), which represents the best
value that could be achieved by optimizing the model according to
its training classification error. It should be clear that the brute
force optimization is not an option in practice when several fea-
tures are used.

Table 1 summarizes the accuracy results for these experiments.
In general, the Grid Search strategy obtained the best results for
each possible distribution. As expected, the dLR classifier trained
with the gradient descent algorithm outperforms both generative
models for all the distribution but the von Mises distribution.
Furthermore, the difference between the gradient-based and the
grid strategy suggests that there is still room for improving the
optimization stage, although the optimization is doing a good job.
The worst results were obtained by the Logistic Regression as it
LR dLR g-dLR

82.9977.63 93.4473.02 96.0772.00
86.9978.53 95.3472.43 96.7871.89
87.3479.46 95.5672.52 96.4772.25
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does not have enough expressiveness to discriminate these
directional datasets.

6.2. Experiments with real data

Then, we validated the advantages of the proposed approach
using thirteen real datasets. For this purpose, we compared the
two naïve Bayes variations and the SVM with directional RBF
kernel against the classic Logistic Regression and the directional
version proposed in this work. For computational reasons we only
validated the gradient-based optimization strategy, given that the
Grid-Search approach, used in the previous experiments, would be
computationally intractable. Table 2 summarizes the dimension-
ality of the evaluated datasets (e.g. number of variables, class
values and instances). Also, Appendix A details some aspects
regarding the data acquisition and preprocessing that was carried
in order to turn these datasets feasible for these models.

Multiclass instances were handled using a one-versus-one
approach for both versions of the Logistic Regression. All the
experiments detailed below were executed with a stratified 5-fold
cross-validation technique (by preserving the percentage of sam-
ples for each class) and results of 40 different runs were averaged.
Results of these experiments are summarized in Table 3, exhibiting
average accuracy and standard deviation for 40 independent runs.
The best model for each dataset is represented bold.

When comparing generative models, we obtained similar
results to those obtained by López et al., namely vMNB achieves
similar or better results than the GNB in most datasets [1]. The
directional version of the Logistic Regression classifier reports a
Table 2
Summary of the main characteristics of the datasets used in this work. Including
number of features per type (i.e. Directional – Dir, Linear – Lin, Discrete – Disc) and
number of samples per dataset (#).

Dataset Number of variables Class #

Dir Lin Disc values

Colposcopy 3 6 0 3 150
Behavior 140 426 20 4 261
Arrhythmia 4 191 66 2 430
eBay 1 2 0 11 528
Megaspores 1 0 0 2 960
Characters 5 31 0 10 1000
OnlineNews 1 12 0 2 1000
Continents 2 0 0 5 3481
Wall 6 6 0 4 5456
Temperature0 1 1 1 3 8764
Temperature1 2 1 0 3 8764
Temperature2 5 1 0 3 8764
MAGIC 1 10 0 2 19,020

Table 3
Average accuracy per model using 5-fold cross-validation.

Dataset GNB vMNB

Colposcopy 74.7177.08 70.9377.83
Behavior 47.2179.43 49.2679.20
Arrhythmia 67.0674.03 67.0574.07
eBay 77.4573.37 83.8873.75
Megaspores 76.7272.54 76.6172.71
Characters 70.9472.62 73.4072.99
OnlineNews 55.3772.12 55.2972.03
Continents 94.6670.72 94.9071.08
Wall 45.6972.01 51.0772.79
Temperature0 68.5670.83 69.9971.80
Temperature1 64.4470.83 65.0471.49
Temperature2 12.8470.09 67.7071.66
MAGIC 72.6870.53 73.0170.52
broad and significant advantage when compared with the non-
directional approach, achieving up to 22% more percentage points
in the eBay dataset than the traditional LR.

In general, the best results in the entire set of problems were
achieved either by the dLR (6 datasets) or by the SVM model (7
datasets). As can be seen in Table 3, dLR obtained better results
than the SVM model mainly in the datasets with fewer instances.
Given that the RBF kernel can be understood as a projection on a
feature space with infinite number of dimensions, the SVM model
can generate highly nonlinear decision regions in contrast with the
NþK-hyperplanes generated by dLR. Thereby, dLR offers a much
more succinct representation to reason about directional data
without compromising accuracy. Also, in some contexts it is pre-
ferred to use simpler (linear) models, specially when computa-
tional resources are limited or when there are interpretability
requirements.

Moreover, dLR achieved better results than its non-directional
and generative counterparts in almost all datasets, being only
surpassed in the Temperature0 dataset. Furthermore, when
combining the best descriptors for the basic Temperature data-
set, considering the season as a nominal value encoded as an
integer for the vMNB and, as a directional variable for the dLR, the
dLR classifier achieves the best performance. On average, the
proposed model achieved accuracy values 8.15% higher than
the vMNB.

The main disadvantage of the proposed model, when compared
with its generative counterpart, is the computational time
required in the training stage. While naïve Bayes approaches
require basic fitting of statistical distributions, dLR is learned by
means of an iterative procedure, with asymptotic complexity
OðI � jSj � NÞ, where I is the maximum number of iterations, j Sj
is the number of samples in the training set and N is the number of
features. However, once trained, dLR is computationally competi-
tive as it has linear complexity on the number of features–OðNÞ.
7. Conclusions

Different concepts in real life applications are represented by
directional variables. These concepts are not restricted to the sci-
entific domain, but can be easily found in daily routines, such as
representing of time in a periodic repetitive calendar (e.g. hour,
day of the week, month, etc.). Traditional classifiers, which are
unaware of the angular nature of these variables, might not
properly model the data. Thereby, some directional classifiers have
been proposed in the past, most of them using generative
approaches [1,13] and the directional von Mises distribution
[10,1].
LR dLR SVM

73.6676.97 80.6176.49 80.3977.51
82.4673.48 82.6873.56 82.6373.71
78.3173.99 78.3874.04 78.6673.87
62.3374.42 84.8673.21 84.1173.21
62.5070.00 76.7872.58 76.3272.72
94.9971.59 95.7771.35 95.7571.27
56.2572.94 56.2672.95 52.8070.10
94.7970.74 95.8770.72 97.7270.48
58.0671.39 66.5371.29 86.4170.94
59.1570.78 56.1470.92 72.7670.82
59.1570.90 70.2870.89 71.2170.91
59.6570.70 79.2170.87 82.2870.79
79.0870.50 80.7770.49 87.3570.46
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In this work, we proposed a discriminative binary classifier that
is able to receive mixed data (directional and linear). This classifier
adds to the classic Logistic Regression (LR) awareness about the
angular nature of the data. As we demonstrated in the experi-
mental assessment of the proposed model with both synthetic and
real data, it can achieve competitive results when compared
against traditional non-directional LR, against previous generative
approaches and against Support Vector Machines using a direc-
tional Radial Basis Function kernel. Other advantages of the dLR
model accruing from retaining the access to the posterior prob-
abilities include risk minimization, reject option, compensating for
class priors, combining models, etc. Non-probabilistic methods,
like the SVM, need to involve an intermediate step where a map
from the decision regions to the actual probability is estimated [3].

Therefore, the directional Logistic Regression (dLR) classifier
offers promising results when dealing with directional data, and
there is room for future improvement. For instance, in the near
future we plan to introduce the concept of functional margin from
Support Vector Machines into this model. This analysis is relevant
since the decision region obtained in the extended space does not
correspond to the right margin that maximizes the distance
between the support vectors and the decision boundary in the
original space. Fig. 3 shows the different regions obtained by
maximizing the margin in the extended space (dashed line) and in
the original space (solid line). For visualization purposes, the
decision boundary computed in the original space is transformed
into its equivalent line in the extended space. This artifact is a
result of comparing the distance between the support vector and
the decision boundary in the two dimensional Euclidean space
instead of using the angular distance between the support vector
and the boundary-sphere intersection points.

Also, we plan to adapt our dLR model to be intended as a
directional perceptron within an Artificial Neural Network. The
opportunity of studying the effect of dynamic frequency regimes
in this classifier is an open problem, as the dLR classifier was
defined in a way that it is able to encode only a single period of the
directional variables. Finally, there is room for exploring more
advanced optimization techniques that may improve the perfor-
mance of this model.
Fig. 3. Decision boundary for a linear SVM in the extended space (dashed line) and
in the original space (solid line).
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Appendix A. Datasets

This section describes the datasets used in this work. Although
all these datasets are publicly available, some of them required
preprocessing. Datasets Arrhythmia, Characters, OnlineNews,MAGIC
and Wall can be found in the Machine Learning repository UCI
(https://archive.ics.uci.edu/ml/) [24]. The following list is ordered
by the number of samples in the data.

A.1. Colposcopy

Digital colposcopy is a widely used technology to detect cer-
vical intraepithelial neoplasia. This dataset explores the classifi-
cation of colposcopic images according to their acquisition mod-
ality (i.e. Hinselmann, Green and Schiller) [25]. From each image,
the average value of each channel from the HSV color space was
extracted (μH ;μS;μV ). Also, we included the points at one standard
deviation from the mean (μH7σH ;μS7σS;μV 7σV ). The HSV
space is represented by a cylinder, wherein the Hue channel has a
directional nature.

A.1.1. Behavior
Human Behavior Analysis is explored in this dataset from a

group perspective. Pereira et al. [26,27] proposed a set of features
and an encoding to describe group trajectories. These features
include directional values (e.g. orientation, gaze, etc.), which
represent individual information and relational information
between the individuals and their group to describe four behaviors
(e.g. equally interested, unbalance interest, balance interest and
chatting). As directional information is masked by using a bag-of-
words method over the trajectories and encoding the final features
as a frequency histogram, we preprocessed this dataset by
encoding each trajectory by its most representative 5 words and
their frequency, thereby including the original directional infor-
mation. Also, we included the number of words with non-zero
frequency as a feature.

A.2. Arrhythmia

This dataset focuses on the presence (and its type) or absence
of cardiac arrhythmia from electrocardiograms [28]. As done by
López et al. [1], we transformed the problem into a binary classi-
fication task (e.g. presence, absence), removed unclassified sam-
ples and removed the variable 14 (483% missing values). The
remaining missing values were filled using the median. López et al.
also removed some variables that they define as non-informative
(87 variables). Given that the criteria used to determine these
variables was unspecified, we decided to keep the dataset
unchanged.

A.3. eBay

This dataset was collected by van de Weijer et al. [29]. The main
purpose of this dataset is to learn the color name of a given real-
world object. Objects are represented by an image from the eBay

https://archive.ics.uci.edu/ml/
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auction site (www.ebay.com) and are labelled according to their
main color (11 colors considered). We extracted the average Hue,
Saturation and Value (HSV color space) from the hand-segmented
image as the image descriptor.

A.4. Megaspores

Classification of megaspores according to their group in the
biological taxonomy (binary classification task) using, as predictive
variable, the angle of their wall elements [30].

A.5. Characters

This dataset results from a modification of the “Artificial Char-
acters” dataset from UCI [24]. Originally, each sample in the
dataset described an artificially generated capital letter of the
English alphabet (i.e. A, C, D, E, F, G, H, L, P, R) by a set of segments
which resemble an automatic image segmentation algorithm. Each
segment is encoded by the two dimensional starting and ending
points, its length and its angle. Given that the number of segments
is not fixed, we clustered the segments of each sample using the k-
means [31] clustering algorithm (with k¼5). Then, each character
is represented by the sequence of cluster centroids together with
the frequency of the original segments assigned to each cluster.
The sequence is ordered by the frequency values. Also, we inclu-
ded the number of original segments in the sample.

A.6. OnlineNews

This dataset comprises several features that describe online
news published by the website Mashable (www.mashable.com).
These features are used as predictive variables of the article
popularity [32], which has been modelled as a binary variable
according to its number of shares in social networks. We reduced
the dataset to maintain only the 1000 first articles. Also, we con-
sider only the features related to the date of the week when the
article was published, the number of shares of previous articles
with the same keywords and the number of shares of articles
referenced in the content.

A.7. Continents

This dataset proposes the problem of predicting the continent
where a given geographic coordinate (latitude and longitude)
belongs. The dataset contains 3481 points from 178 countries
using the LatLong service (http://www.latlong.net/).

A.8. Wall

This dataset faces the problem of Robot Navigation using the
classic wall-following strategy in a clockwise fashion [33]. The
robot senses the space by using 24 ultrasound sensors arranged
equispaced around its “waist” [33]. In order to model this problem
using directional data, we preprocessed the input vectors and
extracted the three angles with minimum and maximum sensed
value along their observations. The four possible decisions are:
Slight-Right-Turn, Sharp-Right-Turn, Slight-Left-

Turn and Move-Forward.

A.9. Temperature (0, 1 and 2)

Data was obtained by the Texas Commission on Environmental
Quality website (www.tceq.state.tx.us) from a weather station
located in the city of Houston in an hourly basis during 2012. The
prediction task is defined as forecasting the outdoor temperature
as low (Tr501F), medium (501oTo701 and high (TZ701). A
previous version of this dataset (2010) was used by López et al. [1]
in their work by considering as predictive variables the season
(nominal), wind direction (angle) and wind speed. This version of
the dataset is denoted in the results as Temperature0. Given that
weather seasons are periodic, we modified this dataset (Tem-
perature1) by considering the season as a directional variable.
Finally, we studied the extended dataset (Temperature2) that also
considers the month, day and hour of the acquisition.
A.10. MAGIC

Binary prediction class to distinguish images of hadronic
showers initiated by primary gammas from those caused by cos-
mic rays in the upper atmosphere [34]. These images are modeled
using ellipses. The parameters that describe these ellipses are
considered as predictive variables, wherein one of them has
directional nature, representing the angle of the major axis in the
ellipse with the vector that connects its center with the camera
center.
Appendix B. Partial derivatives

This section illustrates the calculations of the partial derivatives
of the cost function involved in the gradient descent optimization
method. The following deduction is similar to the one used in the
calculus of the non-directional logistic regression derivatives.

In order to simplify the analysis, we compute below the deri-
vative of the sigmoid function f with slope k,

f 0ðzÞ
¼ 〈Definition of f ; Eq: ðð3ÞÞ〉

1
1þe�khðzÞ

� �0

¼ 〈Power; exponential and chain rule〉

e�khðzÞ

ð1þe�khðzÞÞ2
kh0ðzÞ

¼ 〈Zero property of þ ; Additive inverse; Arithmetic〉

1þe�khðzÞ

ð1þe�khðzÞÞ2
� 1
ð1þe�khðzÞÞ2

 !
kh0ðzÞ

¼ 〈Factorization; Arithmetic〉
1

1þe�khðzÞ 1� 1
1þe�khðzÞ

� �
kh0ðzÞ

¼ 〈Definition of f 〉
f ðzÞð1� f ðzÞÞkh0ðzÞ

In the following analysis a dummy variable z will be introduced
to denote any model parameter (i.e. ωi;φi). Now, we can proceed
to compute the derivative of the cost function (defined in Eq. (5))
as follows:

∂
∂z

costðy;θÞ
¼ 〈Definition of cost〉

∂
∂z

ylog ðf ðθÞÞþð1�yÞlog ð1� f ðθÞÞ� �
¼ 〈Derivative of log and f ; chain rule〉

y
1
f ðzÞ f ðzÞð1� f ðzÞÞk ∂

∂z
hðθÞ�

ð1�yÞ 1
1� f ðzÞ f ðzÞð1� f ðzÞÞk ∂

∂z
hðθÞ

¼ 〈Arithmetic; Factorization〉

ðyð1� f ðzÞÞ�ð1�yÞf ðzÞÞk ∂
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http://www.ebay.com
http://www.mashable.com
http://www.latlong.net/
http://www.tceq.state.tx.us
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¼ 〈Arithmetic〉

ðy� f ðzÞÞk ∂
∂z

hðθÞ

The partial derivatives of J (cf. Eq. (4)) with respect to each
model parameter can be easily computed from this point:
∂
∂z

Jðω;φÞ
¼ 〈Definition of J〉

∂
∂z

� 1
jSj

X
〈θ;y〉AS

costðy;θÞþ λ
2n

Xn
i ¼ 1

ω2
i

0
@

1
A

¼ 〈Derivative of cost〉

k
jSj

X
〈θ;y〉AS

ðf ðθÞ�yÞ ∂
∂z

hðθÞþ ∂
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λ
2n

Xn
i ¼ 1

ω2
i

 !

Then, given that the partial derivatives of hwith respect to each
model parameter are defined as follows:

∂
∂ω0

hðθÞ ¼ 1 ðB:1Þ

∂
∂ωi40

hðθÞ ¼ giðθÞ ðB:2Þ

∂
∂φi

hðθÞ ¼ωi
∂
∂φi

giðθÞ ðB:3Þ

∂
∂φi

giðθÞ ¼
2π cos ð2πðθiþφiÞÞ; if dirðiÞ
0; otherwise;

(
ðB:4Þ

the final derivatives are the expressions aforementioned in Eqs.
(6a)–(6d).
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