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Abstract: The efficiency of agricultural practices depends on the timing of their execution. Envi-
ronmental conditions, such as rainfall, and crop-related traits, such as plant phenology, determine
the success of practices such as irrigation. Moreover, plant phenology, the seasonal timing of bio-
logical events (e.g., cotyledon emergence), is strongly influenced by genetic, environmental, and
management conditions. Therefore, assessing the timing the of crops’ phenological events and their
spatiotemporal variability can improve decision making, allowing the thorough planning and timely
execution of agricultural operations. Conventional techniques for crop phenology monitoring, such
as field observations, can be prone to error, labour-intensive, and inefficient, particularly for crops
with rapid growth and not very defined phenophases, such as vegetable crops. Thus, developing an
accurate phenology monitoring system for vegetable crops is an important step towards sustainable
practices. This paper evaluates the ability of computer vision (CV) techniques coupled with deep
learning (DL) (CV_DL) as tools for the dynamic phenological classification of multiple vegetable crops
at the subfield level, i.e., within the plot. Three DL models from the Single Shot Multibox Detector
(SSD) architecture (SSD Inception v2, SSD MobileNet v2, and SSD ResNet 50) and one from You Only
Look Once (YOLO) architecture (YOLO v4) were benchmarked through a custom dataset containing
images of eight vegetable crops between emergence and harvest. The proposed benchmark includes
the individual pairing of each model with the images of each crop. On average, YOLO v4 performed
better than the SSD models, reaching an F1-Score of 85.5%, a mean average precision of 79.9%, and a
balanced accuracy of 87.0%. In addition, YOLO v4 was tested with all available data approaching a
real mixed cropping system. Hence, the same model can classify multiple vegetable crops across the
growing season, allowing the accurate mapping of phenological dynamics. This study is the first to
evaluate the potential of CV_DL for vegetable crops’ phenological research, a pivotal step towards
automating decision support systems for precision horticulture.

Keywords: agricultural practices; phenology monitoring; phenotyping; precision horticulture; SSD;
YOLO

1. Introduction

Plant phenology comprises the seasonal timing of biological events (e.g., cotyledon
emergence) and the causes of their timing concerning biotic and abiotic interactions (agri-
cultural practices included) [1,2].

The timing of crops’ phenological phases (phenophases) provides valuable information
for monitoring and simulating plant growth and development. Therefore, it allows the
thorough planning and timely execution of agricultural practices, which are usually carried
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out according to specific phenophases (e.g., timing of irrigation and harvest), leading to
higher and more stable crop yields, sustainable practices, and improved food quality [3,4].

Field observation, crop growth models and remote sensing approaches are the most
common methods for phenology monitoring. Field observation involves in situ plant
assessment and the manual recording of phenophases (e.g., leaf unfolding). This observa-
tional approach is laborious and prone to error due to the large spatiotemporal variability of
phenophases among plants [5,6]. Consequently, an increased sampling density is needed to
adequately represent crop phenology at the field scale. Although crop growth models can
simulate the timing of the phenophases of a particular genotype (individual), they cannot
transpose the simulation to different spatial scales, as the heterogeneities in climate and
management conditions are neglected [7–9]. Moreover, near-surface remote sensing tech-
niques, such as digital repeat photography [10,11], and satellite remote sensing linked with
vegetation indices (e.g., leaf area index) provide valuable data about phenology dynamics
at a regional scale [12]. However, the ability of these methods to monitor phenology at the
field or subfield scale is limited, especially in crops with hardly perceivable phenophase
transitions such as vegetable crops [13].

Vegetable crops (see https://www.ishs.org/defining-horticulture, last accessed: 18
September 2022), are characterised by rapid growth, which leads to not very defined
phenophases. Since most of them are fresh food, the timing of sensitive phenological
events, such as cotyledon emergence, is of economic and technical concern to establish
accurate practices, such as weed removal [14,15]. Therefore, it is important to set alternative
methods suitable for reliably and operationally assessing vegetable crops’ phenophases to
support precision horticulture (PH) production systems.

The dynamics of crop phenophases result from a set of structural, physiological,
and performance-related phenotypic traits that characterise the given genotype and its in-
teractions with the environment [16]. Computer vision (CV) has attracted growing interest
in the agricultural domain as it comprises techniques that allow systems to automatically
collect images and extract valuable information from them towards accurate and efficient
practices [17]. Usually, CV-based systems include an image acquisition phase and image
analysis techniques that can distinguish the regions of interest to be detected and classi-
fied (e.g., whole plant, leaves) [18,19]. Among the plethora of image analysis techniques
already developed, the one that best performs object detection in agriculture (e.g., disease
detection [20], crop and weed detection [21], and fruit detection [22]) is deep learning
(DL) [23]. DL is based on machine learning and has led to breakthroughs in image analysis,
given its ability to automatically extract features from unstructured data [24]. In particular,
convolutional neural networks (CNNs) are being tested for various tasks to support PH
production systems, including phenology monitoring [25,26]. Thereby, it is hypothesised
that high-throughput plant phenotyping techniques [27] based on CV coupled with DL
(CV_DL) can assess the spatiotemporal dynamics of crop traits related to its phenophases
in the context of PH [28].

Nevertheless, applications of CV and DL in phenology monitoring are mostly focused
on arable crops (e.g., rice, barley, maize) [29–32], orchards [33,34], and forest trees [35–37]
with limited studies into vegetable crops. Additionally, the developed models are crop-
specific and tend to be based on well-defined phenophases, such as flowering [13,33,35],
neglecting the spatiotemporal phenology dynamics. Vegetables usually grow as annual
crops and are harvested during the vegetative phase. Thus, the phenotypic traits for pheno-
logical identification are restricted to leaves (e.g., number, size, and colour). Furthermore,
considering that vegetable crops are often sown as mixed cropping, and the morphological
traits of leaves are very similar between plants, especially in the early growth stages, it is
difficult to identify the specific phenotypic traits in order to classify the phenophases of the
corresponding plant (crops and weeds included) [38–40].

This study primarily aims to develop an automatic approach for the dynamic phe-
nological classification of vegetable crops using CV_DL techniques. Four state-of-the-art
DL models were tested through a custom dataset that consists of RGB and greyscale an-
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notated images corresponding to the main phenophases of eight vegetable crops between
emergence and harvest. Thus, this work contributes to the state-of-the-art introducing a
vegetable crop classification system that can identify multiple crops considering phenology
dynamics throughout the growing season at the subfield scale.

2. Materials and Methods
2.1. Dataset Acquisition and Processing

Eight vegetable crops were selected to build a varied dataset of phenophases (Table 1),
taking into account the length of the growing season, the intensity of agricultural practices
(mainly weed removal), and the resistance to pests and diseases.

Table 1. Vegetable crops selected for the phenophase image dataset construction.

Common Name Binomial Name

Arugula Eruca vesicaria subsp. sativa
Carrot Daucus carota subsp. sativus

Coriander Coriandrum sativum
Lettuce Lactuca sativa
Radish Raphanus sativus
Spinach Spinacia oleracea

Swiss chard Beta vulgaris subsp. vulgaris var. cicla
Turnip Brassica rapa

Each crop was manually sown in a section of a 4.5 m2 plot at a greenhouse in Vairão,
Vila do Conde, Portugal, according to the recommended sowing density. Weeds were
manually removed at an early growth stage (less than four unfolded leaves), and plants
were irrigated twice a day. Image acquisition occurred before the weed removal operation.

Images in the RGB colour space were acquired between March and July 2021 by a
smartphone (Huawei Mate 10 Lite, 16 MP resolution in Pro Mode) in different view angles
and sunlight conditions, both procedures increasing the data representativeness.

Depending on the crop, one or several growing seasons occurred during the image
acquisition operation, and images were collected covering the main vegetative phenophases
of the crops studied. The classification of the phenophases of each crop was based on the
BBCH-scale [41]. In total, there were collected 4123 images with a resolution of 3456 × 4608
px each. Table 2 depicts the dataset: the number of images and plants of each crop and
phenophase, accordingly.

All images were rescaled four times to a resolution of 864 × 1152 px, improving the
processing operations. To evaluate the versatility of the DL models studied, the RGB
images were also transformed into greyscale using OpenCV (see https://opencv.org, last
accessed: 12 September 2022) library. With this transformation, the complexity and the
bias are reduced, as the model is not influenced by the colour in the images, while it is
forced to learn features that are not specific to colour, improving the generalisation ability.
By applying the luminosity method, it is possible to assign a weighted average of the colour
components to each RGB channel (see https://docs.opencv.org/4.x/de/d25/imgproc_
color_conversions.html, last accessed: 12 September 2022) (Equation (1)). An example of
this transformation is presented in Figure 1.

GreyValue = (0.299 × Red) + (0.587 × Green) + (0.114 × Blue) (1)

Since the training and evaluation of DL models involves supervised learning, the im-
ages need to be annotated. Following the BBCH-scale [41] and the phenophases defined
for each crop (Table 2), images were manually annotated using the open source annotation
tool CVAT (see https://www.cvat.ai/, last accessed: 18 September 2022), indicating by
rectangular bounding boxes the position and phenophase of each plant. After annotation,
the images and the corresponding annotations were exported under the Pascal VOC [42]

https://opencv.org
https://docs.opencv.org/4.x/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/4.x/de/d25/imgproc_color_conversions.html
https://www.cvat.ai/
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and YOLO formats [43] to train the SSD and YOLO models, respectively. All annotated im-
ages (RGB and greyscale) are publicly available at the open access digital repository Zenodo
(see https://doi.org/10.5281/zenodo.7433286, last accessed: 5 November 2022) [44].

Table 2. Number of images acquired for each crop and the corresponding number of plants for each
phenophase defined.

Crop Phenophase BBCH 1-Scale
Code

No. of Plants No. of Images

Arugula
coty_arugula 10 281

312minus9_arugula 11–18 631
plus9_arugula 19 2 66

Carrot
coty_carrot 10 774

533smallleaves_carrot 11–13 830
carrot 14–49 955

Coriander
coty_coriander 10 743

321smallleaves_coriander 11–13 382
coriander 14–19 2 654

Lettuce

coty_lettuce 10 856

1426minus9_lettuce 11–18 3878
plus9_lettuce 19–48 428
ready_lettuce 49 625

Radish

coty_radish 10 869

494smallleaves_radish 11–13 904
bigleaves_radish 14–49 314

root_radish 45–49 244

Spinach spinach 10–18 200 270
big_spinach 19 2 93

Swiss chard coty_chard 10 55 454
chard 10–19 2 633

Turnip
coty_turnip 10 283

313smallleaves_turnip 11–13 400
turnip 14–49 550

Total 4123
1 Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie. 2 Leaf harvest during growing season.

Figure 1. Radish image acquired in RGB colour space (a) and after greyscale transformation (b).

https://doi.org/10.5281/zenodo.7433286
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2.2. Deep Learning Approach
2.2.1. Object Detection Models

Object detection models are specialised DL models designed to detect the position and
size of objects in an image. There are different kinds of DL architectures to detect objects,
but the most common ones in the state of the art are based on single-shot CNN, such as
SSD and YOLO.

SSD was first introduced by Liu et al. [45]. This architecture comprises three main
components: the feature extractor, the classifier, and the regressor. The feature extractor
is a CNN frequently designated as the backbone and can be any classification network.
Three state-of-the-art backbones were selected for this work: Inception v2, MobileNet v2,
and ResNet50. These networks were selected due to the good results obtained in previous
works on object detection in agriculture [46,47]. The image was then split into different
sizes and positioned windows during the image processing stage. The classifier element
will predict the object in each window, and the regressor will adjust the window (also called
the bounding box) to the object’s position and size. Combining the three elements (feature
extractor, classifier and regressor) leads to an object detection model.

Inception V2, MobileNet v2, and ResNet 50 are three state-of-the-art CNNs. Inception
v2 [48] is an improvement of GoogLeNet, also named Inception v1 [49]. This network
is made of inception modules and batch normalisation layers. MobileNet v2 is a CNN
classifier designed for mobile and embedded applications [50]. In this network, the au-
thors replaced the full convolutional operators with a factorised version that splits the
convolution into two layers. The first layer is a lightweight filter, while the other layer
is a point-wise operator which creates new features. As such, MobileNet v2 reduced the
number of trainable parameters and training complexity. To improve the results of VGG
DL models, He et al. [51] studied residual neural networks. ResNet is based on plain archi-
tectures with shortcuts for residual learning. This strategy reduced the number of trainable
parameters and the training complexity against VGG. ResNet models allow depths between
18 and 152 layers, but ResNet 50 is the most common in the literature.

You Only Look Once (YOLO) is also a well-known single-shot detector, serving most
of the time as a reference object detector. YOLO v4 is the fourth generation of YOLO
models [52], which delivered multiple features to the original YOLO version, improving
the model’s performance and keeping the inference speed. YOLO uses a backbone of
DarkNet (see https://pjreddie.com/darknet/, last accessed: 14 October 2022). Among the
selected models, YOLO v4 aims to be the one which provides the best balance between
accuracy and inference speed. Therefore, this study covers the most current object detection
architectures in the literature, especially concerning DL applications in agriculture.

2.2.2. Models Training

For training purposes, the dataset was divided into three sets: training, validation, and
test sets. Table 3 depicts the number of images and plants of each crop and phenophase,
respectively, assigned for each set (considering only RGB images). The dataset split
rate was determined by considering the corresponding number of images and plants
in each phenophase.

Data augmentation was used to increase the number of images, improving the over-
all learning procedure and performance by inputting variability into the dataset [23].
The transformations were carefully chosen, applying those that could happen under actual
conditions, as displayed in Figure 2. The data transformations were applied to train-
ing and validation sets. The same transformations were applied to RGB images and the
corresponding greyscale images (Table 4).

https://pjreddie.com/darknet/
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Table 3. Dataset split of each crop and phenophase images and plants for the training and evaluation
of deep learning models (considering only RGB images).

Crop Phenophase Train Validation Test
Plants Images Plants Images Plants Images

Arugula
coty_arugula 172

188
40

62
69

62minus9_arugula 440 93 98
plus9_arugula 45 12 9

Carrot
coty_carrot 486

321
157

106
131

106smallleaves_carrot 492 173 165
carrot 563 180 212

Coriander
coty_coriander 331

163
188

64
224

94smallleaves_coriander 191 73 118
coriander 326 158 170

Lettuce

coty_lettuce 486

665

226

471

144

290minus9_lettuce 2420 889 569
plus9_lettuce 248 99 81
ready_lettuce 348 166 111

Radish

coty_radish 650

347

166

98

53

49smallleaves_radish 664 190 52
bigleaves_radish 218 57 39

root_radish 163 47 34

Spinach spinach 122 162 37 54 41 54big_spinach 53 24 16

Swiss chard coty_chard 32 319 12 90 11 45chard 441 129 63

Turnip
coty_turnip 101

158
66

93
116

62smallleaves_turnip 197 111 92
turnip 246 224 80

Table 4. Training and validation image sets’ composition after the data augmentation step, consider-
ing only RGB images.

Crop Train Validation

Arugula 2750 682
Carrot 2889 954

Coriander 1789 703
Lettuce 9292 3798
Radish 3461 980
Spinach 1620 540

Swiss chard 3190 1800
Turnip 2054 1209

TensorFLow r.1.15.0 (see https://www.tensorflow.org/, last accessed: 13 October
2022) was used for the training and evaluation scripts of SSD models, whereas Darknet
(see https://pjreddie.com/darknet/, last accessed: 14 October 2022) was used for YOLO
v4. A GPU RTX3090 (VRAM of 24 GB) and a CPU Ryzen 9 5900X (12-core 3.7 GHz with a
Turbo 4.8 GHz 70 MB SktAM4 with a RAM of 32 GB) were available to run the scripts.

Through transfer learning, pre-trained models with Microsoft’s COCO dataset (see
https://cocodataset.org/, last accessed: 8 October 2022) were fine-tuned to classify veg-
etable crops’ phenophases. Some changes to the default training pipeline were made to
optimise the training dynamics and generalisation ability, such as adjusting the batch size.
The standard input size for each model was maintained with the addition of a variation of
SSD MobileNet v2 with an input size of 300 × 300 px. This information is shown in Table 5.

https://www.tensorflow.org/
https://pjreddie.com/darknet/
https://cocodataset.org/
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Figure 2. Representation of the transformations applied to the images.

Table 5. Input and batch size for the training pipeline of the deep learning (DL) models tested.

DL Model Input Size (px) Batch Size

SSD Inception v2 300 × 300 32
SSD MobileNet v2 300 × 300 24
SSD MobileNet v2 640 × 640 24

SSD ResNet 50 640 × 640 12
YOLO v4 416 × 416 64

Since data augmentation has already taken place, it was removed from the training
pipeline. The SSD models’ training sessions ran for 50 000 steps, while the YOLO v4 training
was conditioned by the number of classes of each crop (see https://github.com/AlexeyAB/
darknet, last accessed: 4 November 2022). For example, YOLO v4 trained with lettuce
(four classes) images ran for 8000 steps. An evaluation session occurred in the validation
set according to the standard value used by the pre-trained models. These evaluation
sessions are useful because they monitored the evolution of the training, i.e., detecting if the
evaluation loss begins to increase while the training loss decreases or stays constant, which
means that the model is excessively complex and cannot be well generalised to new data.

For benchmarking purposes, initially, training was carried out individually only with
the RGB images corresponding to each crop and then replicated with greyscale images.
After the individual performance evaluation of each model, the one that presented the best
performance results was selected to be trained with all available data (RGB and greyscale
images).

https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
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2.2.3. Models Performance Evaluation

The performance of the DL models was evaluated through a comparison between
the predictions made by the DL model and the ground truth data of the position and
phenophase of each plant. The following evaluation metrics were considered: F1-Score,
mean average precision (mAP), and balanced accuracy (BA) [42,43,53].

The cross-validation technique was applied according to Magalhães et al. [46] to
optimise the DL model’s performance by optimising the confidence threshold. In the
validation set, augmentations were removed, and the F1-Score was calculated for all the
confidence thresholds from 0% to 100% into steps of 1%. The confidence threshold with
the best F1-score output was selected for the model’s normal operation. The performance
evaluation procedure considered the test set images and occurred in a GPU RTX3090 with
a VRAM of 24 GB.

3. Results

Table 6 shows the results of the cross-validation technique applied to the validation set
for both the models trained with RGB and greyscale images. The highest F1-score values
are reported by SSD MobileNet v2 (300 × 300 px) and YOLO v4 trained with RGB and
greyscale spinach images, respectively. SSD MobileNet v2 (300 × 300 px) trained with RGB
carrot images and greyscale coriander images presented the lowest F1-scores of 58.4% and
32.0%, respectively. On average, the models with a higher F1-score are SSD ResNet 50 and
YOLO v4, trained with RGB and greyscale images, respectively.

Table 6. Confidence threshold that optimises the F1-score metric for each deep learning (DL) model
tested in the validation set without augmentation.

DL Model Crop

RGB Greyscale
Confidence
Threshold

(%)≥

F1-Score
(%)

Confidence
Threshold

(%)≥

F1-Score
(%)

SSD Inception v2
(300 × 300 px)

Arugula 23 87.8 42 69.6
Carrot 20 58.8 87 48.4

Coriander 22 66.5 18 46.2
Lettuce 41 74.7 57 90.9
Radish 18 86.3 10 67.3
Spinach 35 93.2 13 94.0

Swiss chard 14 92.5 37 96.0
Turnip 17 65.6 10 51.9

Mean 78.2 70.5

SSD MobileNet v2
(300 × 300 px)

Arugula 32 80.3 82 74.9
Carrot 24 58.4 93 43.0

Coriander 38 68.2 33 32.0
Lettuce 85 73.9 39 87.0
Radish 34 82.2 52 56.2
Spinach 7 98.4 75 96.2

Swiss chard 37 92.9 98 93.3
Turnip 28 69.7 38 46.6

Mean 78.0 66.2

SSD MobileNet v2
(640 × 640 px)

Arugula 31 81.6 92 59.7
Carrot 32 62.5 91 40.5

Coriander 36 67.3 55 46.3
Lettuce 75 84.9 53 87.4
Radish 43 81.7 83 67.0
Spinach 89 98.3 70 95.5

Swiss chard 68 92.1 100 92.2
Turnip 53 67.9 11 50.4

Mean 79.5 67.4
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Table 6. Cont.

DL Model Crop

RGB Greyscale
Confidence
Threshold

(%)≥
F1-Score (%)

Confidence
Threshold

(%)≥
F1-Score (%)

SSD ResNet 50
(640 × 640 px)

Arugula 60 88.6 53 83.2
Carrot 42 69.7 41 64.5

Coriander 52 75.7 61 67.7
Lettuce 66 78.0 55 95.2
Radish 52 91.6 56 84.8
Spinach 85 98.3 90 98.2

Swiss chard 78 94.2 85 94.5
Turnip 55 70.3 43 64.0

Mean 83.3 81.5

YOLO v4
(416 × 416 px)

Arugula 34 92.0 27 92.4
Carrot 39 72.0 64 78.3

Coriander 53 78.3 49 83.0
Lettuce 75 64.9 75 93.2
Radish 60 82.7 79 92.8
Spinach 92 97.2 37 100

Swiss chard 49 94.4 51 95.4
Turnip 49 78.1 66 80.8

Mean 82.4 89.5

Overall Mean 80.3 75.0

Figure 3 reports the mAP results for the best-computed confidence threshold. On aver-
age, this metric presents a value close to 70%, and the models trained with RGB images are
slightly above (71.6%). Indeed, 25 of the 40 models trained with RGB images (solid black
bars, Figure 3) present an mAP equal to or higher than the corresponding model trained
with greyscale images (dashed bars, Figure 3).

Figure 3. Mean average precision (mAP) for all models trained with RGB (solid black bars) and
greyscale (dashed bars) images in the test set without augmentation.
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The models trained with carrot images present a lower mAP: close to 53% (RGB
images) and 38% (greyscale images). Figure 4 shows the low performance of the SSD
MobileNet v2 model (300 × 300 px) applied to carrot classification phenophases. This crop
generally has erect and compound leaves (low soil cover), which facilitates weed growth
and makes it more difficult to distinguish between the soil and plants (crop and weeds
included).

Figure 4. Carrot phenophase predictions made by SSD MobileNet v2 (300 × 300 px) using RGB
(a) and the corresponding greyscale (b) image. Carrot phenophases are described as: coty (opened
cotyledons), smallleaves (one to three unfolded leaves), and carrot (more than three unfolded leaves).

The confusion matrix (Figure 5) for SSD MobileNet v2 (300 × 300 px) shows low
performance. The model had considerable difficulty locating the carrot plants, especially
when trained with greyscale images, given the number of undetected ground truths (false
negatives).

On the other hand, the models trained with spinach images are those with higher mAP
(98.3% for RGB and 98.1% for greyscale images). The phenotypic traits of this crop test set
may contribute to explaining the results. Figure 6 represents the spinach test set: images
containing only one plant, with little weed or other plant presence and a clear distinction
between the soil and the plant. Figure 6 is an example performed by ResNet 50, which was
able to correctly classify all 57 ground truths of the test set.

The BA metric presented in Figure 7 is close to 77% (RGB images) and 79.2% (greyscale
images), which are similar to the results of mAP (Figure 3).

The importance of BA relies on two aspects: it allows one to overcome biased conclu-
sions due to unbalanced datasets [53] and it enables the analysis of correctly located objects,
regardless of whether they are accurately classified. The latter is of particular interest in this
work, as it is difficult, even for a skilled observer, to identify plants as small as cotyledons
(Figure 8a) or to distinguish whether a plant has less (Figure 8b) or more (Figure 8c) than
nine leaves.
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Figure 5. Confusion matrix for carrots’ phenophases based on SSD MobileNet v2 (300 × 300 px)
trained with RGB (a) and greyscale (b) images. False positives and false negatives include improperly
predicted plants and undetected plants, respectively.
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Figure 6. Spinach phenophase prediction made by SSD ResNet 50 based on RGB images. The spinach
phenophase describes a spinach plant with less than nine unfolded leaves.

Figure 7. Balanced accuracy (BA) for all models trained with RGB (solid black bars) and greyscale
(dashed bars) images in the test set without augmentation.
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Figure 8. Lettuce phenophases: (a) coty (opened cotyledons); (b) minus9 (less than nine unfolded
leaves); (c) plus9 (nine or more unfolded leaves).

SSD ResNet 50 was the best-performing SSD model for both image groups, which is
reflected not only in mAP results (76.0% for RGB and 73.3% for greyscale images) but also
in BA results (81.4% for RGB and 79.8% for greyscale images).

However, SSD models have been outperformed by YOLO v4. This DL model presents,
for both groups of images, not only a better performance when the analysis is based on
mAP (76.2% for RGB and 83.5% for greyscale images) but also when the evaluation relies
on BA (85.2% for RGB and 88.8% for greyscale images). Supported by these results, it was
decided to train the YOLO v4 (416 × 416 px) model with all the images of the 24 defined
phenophases, representing the growing season of the eight vegetable crops selected for the
dataset construction. The dataset split resulted in 54,090 images for training, 19,532 images
for validation, and 1524 images for test sets. The training and validation sets include the
images resulting from the augmentation procedure.

As previously mentioned, Darknet was used for the training and evaluation scripts,
and the model training session ran for 48,000 steps. Furthermore, cross-validation (Figure 9)
was applied with the model achieving an F1-Score of 83.6% for a confidence threshold
higher than 53%.

The following performance analysis, summarised in Table 7, was conducted on the
test set, considering the best-computed confidence rate (53%). The overall performance
remained consistent, except for the slight differences compared with the average values of
the YOLO v4 variations trained with the independent image groups.

The confusion matrix in Figure 10 shows YOLO v4 performance. This DL model could
discretise the phenotypic traits of the different phenophases for successful classification.
The model was able to correctly classify 4123 plants out of a total of 5396 ground truths
(Table 2).

Table 7. Different evaluation metrics results for YOLO v4 model variations.

Model F1-Score (%) mAP (%) BA (%)

RGB 82.8 76.2 85.2
Greyscale 88.1 83.5 88.8

RGB + greyscale 83.0 76.6 81.7
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Figure 9. Evolution of the F1-score with the variation of the confidence threshold for YOLO v4 in the
validation set without augmentation.

Figure 10. Confusion matrix for YOLO v4 trained with all available data. False positives and false
negatives include improperly predicted plants and undetected plants, respectively.
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Nevertheless, some phenophases have similar phenotypic traits, leading to misclassifi-
cations. For instance, the coty class is present in all crops except spinach, which presents
similar morphological traits as those seen in Figure 11. Nevertheless, the number of false
positives only between predictions in this class is relatively low, yet the respective number
of false negatives cannot be neglected. Hence, the resulting mAP for coty is approximately
67%.

Figure 11. Examples of coty class images from the dataset under study.

4. Discussion

Overall, both architectures were generic enough to successfully classify the vegeta-
bles’ phenophases. SSD ResNet 50 was the best-performing SSD model for both image
groups individually, and SSD MobileNet v2 (640 × 640 px) performed slightly better than
the variation SSD MobileNet v2 (300 × 300 px), suggesting that the performance of this
architecture is favoured by increasing the input size. The proposed SSD MobileNet v2
models outperformed the one presented by d’Andrimont et al. [31], which obtained an
mAP close to 55%.

The results presented by the SSD ResNet 50 model align with those shown by Ofori
et al. [39], where this model performed better than other DL models, including SSD In-
ception v2. Pearse et al. [35] and Samiei et al. [40] presented the ResNet model variations
that performed slightly better than that proposed in this study (98% and 90%, respec-
tively). However, the former application was for the well-defined Metrosideros excelsa
flowering phenophase classification, and the latter used a dataset that did not represent
actual conditions since the soil background was removed from the images.

YOLO v4 was the model that presented a more consistent performance in both image
groups. Hence, it was trained with all the images available in the dataset. The model
performance was not significantly impacted, remaining close to 77% and 82% for mAP
and BA, respectively. To the best of our knowledge, no work has tested a YOLO model for
phenology monitoring. Correia et al. [36] is the only study where an object detector was
developed, with lower performance when compared with the proposed YOLO v4 model.

The greyscale transformation did not significantly hinder the models’ performance,
the differences being more notorious on the SSD Inception v2 and smaller on YOLO v4,
where even the models trained with greyscale images showed a better performance.
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Furthermore, the DL models’ performance was not homogeneous with regard to
different crops, with the models trained with carrot images and those trained with spinach
images being the lowest and highest extremes, respectively. In this case, and in line
with different authors [29,30], the images’ quantity and quality, particularly the specific
phenotypic traits of each crop, may compromise the results.

The models could classify vegetables at different phenological phases, even in non-
structured environments, considering overlaps and variable sunlight conditions. For the
comprehensive tracking of the crop cycle, it is crucial to monitor the phenology right after
the cotyledons’ appearance and opening. Regarding coty (cotyledons’ opening), YOLO
v4 classified this phenophase with an mAP of approximately 67%. Although slightly
lower than the results reported by the literature [39,40], it is important to highlight that, in
contrast to these, the images applied in this study represent actual conditions, without pre-
processing operations, such as segmentation, to differentiate the plants.

5. Conclusions

This paper presents a benchmark of four DL models for assessing the capability of
CNN to leverage phenological classification in vegetable crops. A dataset with 4123 images
was manually collected during various growing seasons of eight vegetable crops repre-
senting the main phenophases from emergence to harvest. For benchmarking purposes,
each model was tested for the classification of each crop individually. YOLO v4 was the
best-performing model compared to the SSD models. Therefore, this model was tested
with all data obtaining a mAP of 76.6% and a BA of 81.7%.

All assessed models delivered promising results, and were able to classify the pheno-
logical phases of individual plants between emergence and harvest. Furthermore, a sin-
gle DL model could classify multiple vegetable crops considering phenology dynamics
throughout the growing season at the subfield scale. As far as we have been able to
ascertain, this is the first study to evaluate the potential of CV_DL for vegetable crops’
phenological research. Notwithstanding some limitations, this work is an important step
towards sustainable agricultural practices.

Further work needs to be done to (i) enlarge the dataset, balancing it with more images
within less populated phenophases and increasing the number of vegetable crops; and
(ii) assess the inference speed of the proposed models before transferring the detection
framework to a robotic-assisted CV platform, thus allowing a more rigorous image col-
lection as well as a more accurate ground truth identification; (iii) extend the benchmark
with a new and more optimised backbone network, such as YOLO v7, and different DL
architectures, such as faster R-CNN, confirming whether the SSD and YOLO architectures
maintain better performance; and (iv) perform an ablation study in the best-performing
model, YOLO v4, to understand the model behaviour and measure the contribution of each
model component to the overall model performance.

Furthermore, the proposed CV_DL framework can be framed in a modelling approach
estimating the extent to which genetic, environmental, and management conditions impact
the timing of phenophases and how they affect the efficiency of agricultural practices and
crop yield.
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