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Abstract
In production environments where change is the rule rather than the exception, adaptation

of software plays an important role. Such adaptations presuppose dynamic reconfiguration of
the system architecture, however, it is in the static setting (design-phase) that such reconfig-
urations must be designed and analysed, to preclude erroneous evolutions. Modern software
systems, which are built from the coordinated composition of loosely-coupled software compon-
ents, are naturally adaptable; and coordination specification is, usually, the main reference point
to inserting changes in these systems.

In this paper, a domain-specific language—referred to as ReCooPLa— is proposed to design
reconfigurations that change the coordination structures, so that they are analysed before being
applied in run time. Moreover, a reconfiguration engine is introduced, that takes conveniently
translated ReCooPLa specifications and applies them to coordination structures.
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1 Introduction

In the last few years, Service-Oriented Architecture (SOA) has been adopted as the architec-
tural style to support the needs of modern intensive software systems [10]. SOA systems are
based on services, which are distributed, loosely-coupled entities that offer a specific com-
putational functionality via published interfaces. Within SOA, services are coordinated, so
that the ensemble delivers the system required functionality. Coordination is the design-time
definition of a system behaviour. It establishes interactions between software building blocks
(services, in SOA systems), including their communication constraints and policies. Such
policies may be encapsulated in a multitude of ways [3], but point-to-point communication
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approaches (e.g., channels [4]), gain relevance by fomenting the desired decoupling between
computation and coordination concerns. This separation of concerns makes SOAs flexible,
reliable and naturally dynamic. Although policies are pre-established, services with similar
interface may be discovered and bound to the architecture at run time, rather than fixed at
design time.

Flexibility and dynamism is a desired feature in production environments where change is
the rule rather than the exception. Constant environment evolution brings new requirements
to the system, may contribute to degradation of contracted Quality of Service (QoS) values,
or introduce failure states to systems [27, 33]. These changes raise the need for the system
to adapt to the new context while running.

Reconfigurations in SOA systems usually target the manipulation of services: dynamic
update of service functionality, substitution of services with compatible interfaces (but not
necessarily the same behaviour) or removal of services [30, 26, 13, 19, 31]. However, in
some situations, this may not be enough. For instance, when a substituting service have
incompatible interface, it may be necessary to target the way services interact with each
other. This sort of reconfigurations go into the coordination layer and usually substitute,
add or remove the components of the interaction (e.g., communication channels), move
communication interfaces between components and may even rearrange a complex interaction
structure [16, 15]. Thus, there is a mismatch between the need and the offer currently existing
in practice. More worryingly it is the lack of suitable formal methods to correctly design and
analyse this sort of reconfigurations.

In previous work of these authors [22, 23], a formal framework for modelling and analysing
coordination-based reconfigurations in the context of SOA, was defined. In this framework, a
coordination structure (referred to as coordination pattern) is regarded as a graph of channels
where nodes are interaction points for either services or other coordination patterns; and
edges are communication channels with a specific behaviour. But, to express and apply
these reconfigurations, in practice, is not yet delivered by such framework, hindering its
applicability. Therefore, in this paper it is introduced a Domain-specific Language (DSL),
referred to as ReCooPLa, to express coordiantion-based reconfigurations, materialising the
formal model presented in [22] and briefly discussed in further sections.

DSLs [32, 21, 24] are languages focused on a particular application domain, used to
abridge the programming and the jargon of the domain. Their level of abstraction is tailored
to the specific domain, allowing for embedding high-level concepts in the language constructs,
and hiding low-level details under their processors. In addition, they allow for validation and
optimisation at the domain level, offering considerable gains in expressiveness and ease of
use, compared with General-purpose Programming Languages (GPLs) [14].

Consequently, ReCooPLa is a simple and small language that provides a formal, but still
high-level, interface for reconfiguration designers. The reconfiguration construct plays, then,
the main role in ReCooPLa. It resembles functions, as in GPLs, with a header and a body.
The header defines the reconfiguration identifier and its arguments; the body is constituted of
instructions, where coordination-specific notions are embodied in constructs that manipulate
the graph structure underlying coordination patterns.

A suitable reconfiguration engine, for application of the reconfigurations expressed in
ReCooPLa is also proposed in this paper. It is regarded as a machine that executes the
reconfigurations over the target coordination patterns. To this end, a translation of ReCooPLa
constructs into the engine’s running code is carefully defined.

Outline. In the reminder of this paper it is presented relevant related work (Section 2) and
suitable background notions to make this document self-contained (Section 3). Then, in
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Section 5 it is presented the reconfiguration engine. In Section 4 the ReCooPLa language
is introduced with detailed description and examples; a translation of this language into
the reconfiguration engine is also provided. Finally, in Section 8 the paper is closed with
concluding remarks, discussing the work presented.

2 Related work

Domain-specific languages constitute an important tool to tackle the specificities of the
domains to which they are tailored. Reconfigurations design in the context of SOA is the
domain underlying this work. As such, in the following paragraphs, similar reconfiguration
design approaches are addressed.

Fractal [6] is a hierarchical and reflective component model intended to implement,
deploy, and manage complex software systems, that offers several features as, for instance,
composite components and dynamic reconfiguration. To adapt a running system there
should be identified the places where the changes have to be realized; and these changes
must be applied taking into account the safety of the system, regarding the states of the
components. For this, FPath and FScript [9] can be used. FPath and FScript notations are
two DSLs to encode dynamic adaptation of Fractal-based systems. The former eases the
navigation inside a Fractal architecture by using queries. The latter, which embeds FPath,
enables the definition of adaptation scripts to modify the architecture of a Fractal application.
FScript provides transactional support for architectural reconfigurations in order to ensure
the reliability and consistency of the application if the reconfiguration fails at a given point.

In [7] Architectural Design Rewriting (ADR) is proposed as a declarative rule-based
approach for modeling reconfigurable Software Architectures (SAs). ADR is a suitable and
expressive framework based on an algebraic presentation of graph-based structures and
conditional rewrite rules. The features of ADR are particularly tailored to understanding and
solving Architecture Description Language (ADL) problematics. In fact, an ADR can serve
as the basis to formalise or extend ADLs with features such as conditional reconfigurations.

ADLs provide a formal foundation for describing SAs by specifying the syntax and
semantics for modelling and describing components, connectors, and their configurations.
Their use has been limited to static analysis and system generation focused on static issues
and, therefore, do not supporting architectural changes. However, a few ADLs, such as
Darwin [18] or Rapide [17]can express run time modification to architectures provided that
the modifications are specified during the design of the application.

Wright [2] and Acme [11] also offer mechanisms for specification of reconfigurations. For
instance, in Acme, it is possible to represent reconfigurable architectures by expressing the
possible reconfigurations in terms of Acme structures, which extend the original language.
This defines Acme extensions to represent different types of reconfigurations at the architecture
level.

While ADLs focus on describing SAs for the purposes of analysis and system generation,
Architectural Modification Languages (AMLs) focus on describing changes to architecture
descriptions and are, thus, useful for introducing unplanned changes to deployed systems.
The Extension Wizard’s modification scripts, C2’s AML [20], and Clipper [1] are examples
of such languages. In turn, Architectural Constraint Languages (ACLs) have been used to
restrict the system structure using imperative [5] as well as declarative [18] specifications;
other authors advocate behavioural constraints on components and their interactions [17].

The presented languages endow SA design approaches with means to specify reconfigura-
tions. However, the reconfigurations targeted focus on the high-level entities of architectures,
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rather than on coordination details. Also their focus is the dynamic reconfiguration; Re-
CooPLa, in contrast, is more of a static approach with a purpose of reconfiguration analysis.

Also related to ReCooPLa is the GP programming language presented in [28, 29]. It is a
language for solving graph problems, based on a notion of graph transformation and four
operators shown to be Turing-complete. The language allows for the creation of programs over
graphs at a high-level of abstraction. A program is a set of rules defining a transformation
scheme based on the double-pushout approach [8, 12]. Guards may be used to restrict the
application of the program rules.

Like GP, ReCooPLa actuates over a graph-based structure to perform modifications.
While GP does so with program rules, ReCooPLa defines reconfiguration methods based on
primitive (coordination-oriented) constructs.

3 Reconfiguration model

This section provides an informal account of the reconfiguration model, which has been
introduced and formalised in [22, 23]. In particular, it introduces the notions of coordination
patterns and coordination-based reconfiguration notions, which are later embodied in the
constructs of ReCooPLa.

3.1 Coordination protocols
A coordination protocol works as glue-code defining and constraining the interaction between
components or services of a system. In this model, a coordination protocol is abstracted under
the notion of coordination pattern and it is seen as a reusable and composable architectural
element. It is formalised as a graph of channels where nodes are interaction points to
plug other coordination patterns or services; edges are uniquely identified point-to-point
communication devices with a specific behaviour given by a channel typing system. Formally,
it is a set of edges:

ρ ⊆ N × I × T ×N ,

where N is the set of nodes (to be precise, a node in a coordination pattern corresponds to a
set of channel ends), I is the set of channel identifiers and T is a channel typing system. For
the sake of examples, T ={sync, lossy, fifo, drain} is adopted as the channel typing system in
this paper, which is borrowed from the Reo coordination model [4]. Details on this model
and constituting channel types are not in the scope of this paper, though. In fact, their
absence do not preclude the general understanding of the topic under discussion.

Moreover, it is defined a notion of input and output ends of a channel and this notion
is reflected in coordination patterns under the notion of input and output ports. These
correspond to nodes that are only input or output ends of the constituting channels. The
remaining nodes are named internal or mixed nodes.

Listing 1 presents two coordination patterns. The coordination pattern cp1, for instance,
comprises two channels: a channel x1 of type sync, and channel x2 of type lossy. The channel
x1 has an input node a and an output node b.c1. In turn, the channel x2 has an input node
b.c (corresponding to output node of channel x1, once they are connected), and an output
node d.

Listing 1 Coordination patterns example.

1 Notation b.c is used to express the node {b,c}, where b and c are channel ends.
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cp1: {
(a, x1 , sync , b.c), (b.c, x2 , lossy , d)

}
cp2: {

(g, x3 , sync , h.i.j), (h.i.j, x4 , lossy , k), (h.i.j, x5 , fifo , l)
}

3.2 Coordination-based reconfigurations
A reconfiguration is a change to the original structure of a coordination pattern obtained
through a sequential or parallel application of parametrised elementary operations, which
are called reconfiguration primitives.

The most simple reconfigurations are the identity (id) and the constant (const(ρ))
primitives, where ρ is a coordination pattern. The former, returns the original coordination
pattern while the latter replaces it with ρ.

The par(ρ) primitive, where ρ is a coordination pattern, sets the original coordination
pattern in parallel with the ρ, without creating any connection between them. It is assumed,
without loss of generality, that nodes and channel identifiers in both patterns are disjoint.
Listing 2 presents the resulting coordination pattern, after applying par(cp2) to cp1.

Listing 2 Resulting coordination pattern after applying the par primitive.
cp1: {

(a, x1 , sync , b.c), (b.c, x2 , lossy , d), (g, x3 , sync , h.i.j),
(h.i.j, x4 , lossy , k), (h.i.j, x5 , fifo , l)

}

The join(N) primitive, where N is a set of nodes, creates a new node by merging all
nodes within N , into a single one. For instance, applying join(a,g) to cp1 (c.f., Listing 2)
creates a connection on node a.g, as presented in Listing 3.

Listing 3 Resulting coordination pattern after applying the join primitive.
cp1: {

(a.g, x1 , sync , b.c), (b.c, x2 , lossy , d),
(a.g, x3 , sync , h.i.j), (h.i.j, x4 , fifo , k),
(h.i.j, x5 , drain , l)

}

The split(n) primitive, where n is a node, is the opposite of join primitive because it
breaks connections within a coordination pattern by separating all channel ends coincident
in n. Listing 4 presents the resulting coordination pattern, after applying split(h.i.j) to
the cp1 from Listing 3. Notice that the ends composing node h.i.j will now belong to each
channel that previously shared that node (viz. channels x3, x4 and x5), in a non-deterministic
way.

Listing 4 Resulting coordination pattern after applying the split primitive.
cp1: {

(a.g, x1 , sync , b.c), (b.c, x2 , lossy , d),
(a.g, x3 , sync , h), (i, x4 , fifo , k),
(j, x5 , drain , l)

}
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Finally, the remove(c) primitive, where c is a channel identifier, removes a channel from
a coordination pattern, if it exists. In addition, if it is connected to other channel(s), the
connection is also broken as much as it happens with the split. Listing 5 presents the
resulting coordination pattern, after applying remove(x2) to cp1 from Listing 4. Notice
how node b.c was split and its composing end c, was removed with channel x2. Again, this
process follows a non-deterministic approach.

Listing 5 Resulting coordination pattern after applying the remove primitive.
cp1: {

(a.g, x1 , sync , b) (a.g, x3 , sync , h)
(i, x4 , fifo , k) (j, x5 , drain , l)

}

These primitive operations are assumed to be applied in sequence. Their parallel applica-
tion is also valid, but for this to happen, it is essential that the operations are independent:
i.e., that they affect separated substructures of a coordination pattern. This possibility of
composing primitive operations in sequence or parallel, allows for the definition of complex
reconfigurations, referred to as reconfiguration patterns. As such, they affect significant parts
of a coordination pattern at a time. Among other characteristics, they shall be generic,
parametric and reusable.

In this regard, ReCooPLa language will offer a way of specifying such combinations,
abstracting them in an approach close to imperative programming.

4 ReCooPLa: reconfiguration language

ReCooPLa is a language to design coordination-based reconfigurations. Its specific tailoring
to the area of architectural reconfigurations, allows for the exploration of important charac-
teristics of DSLs. One of the most important being the possibility of abstracting specific
details, such as the effect of each primitive operation and their actual application (whether
in sequence or in parallel), and hiding their actual computation under the processor.

4.1 Conceptual description
In ReCooPLa, the reconfiguration is assumed to be a first call concept, as much as the function
concept is in other programming languages. In fact, these concepts share characteristics:
both have a signature (identifier and arguments) and a body which designates a specific
behaviour. But, in particular, a reconfiguration is always applied to, and always returns, a
coordination pattern. The arguments, in their turn, may be elements of the following data
types: Name, Node, Set, Pair, Triple, Pattern and Channel, each one with its idiosyncrasies.

The reconfiguration body is a list of different sorts of instructions. Special attention is
devoted to the instruction of applying (primitive, or previously defined) reconfigurations, since
this operation is the only responsible for changing the internals of a coordination pattern.
But there are more. To support the application of reconfigurations, ReCooPLa counts on
other constructs that mainly manipulate the parameters of each reconfiguration. In concrete,
it provides means to declare and assign local variables, as well as the usual operations over
such variables. In particular, field selectors and specific operations over structured data
types and common set operations (union, intersection and subtraction). Finally, an iterative
control structure is provided to iterate over the elements of sets.

From this small overview, it is induced that ReCooPLa is a small language borrowing
most of its constructs from programming languages on an imperative paradigm setting.
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To this design choice amount the facts that (i) reconfigurations are better expressed in a
procedural/algorithmic way; (ii) they represent the flow of actions needed to change the
configuration of a coordination structure and (iii) imperative languages present a more
natural approach for explicitly describing such step-wise algorithms.

4.2 Formal description

In the sequel, we introduce the syntax of the language by presenting (the most important)
parts of the underlying grammar. Along with the syntax, constructs are defined for further
reference in this article.

Formally, a sentence of ReCooPLa specifies one or more reconfigurations.

Reconfiguation

A reconfiguration (formally presented in Listing 6) is then expressed like a function. The
header is composed of a reserved word reconfiguration followed by a unique identifier
(the reconfiguration name) and its arguments, which may be an empty list. The body is a
list of instructions as explained later. In particular, the arguments are aggregated by data
type, unlike in conventional languages, where data types are replicated for every different
argument.

Listing 6 Extended Backus–Naur Form (EBNF) notation for the reconfiguration production.
reconfiguration

: ’reconfiguration ’ ID ’(’ args* ’)’ ’{’ instruction + ’}’
args : arg (’;’ arg )*
arg : datatype ID (’,’ ID)*

The construct for a reconfiguration is given as: rcfg(n, t1, a1, . . . , tn, an, b), where n is
the name of the reconfiguration; each ai is an argument with ti the respective data type;
and b is the body of the reconfiguration.

Data types

This language builds on a small set of data types: primitives (Name and Node), generics (Set,
Pair and Triple) and structured (Pattern and Channel). Name is a string and represents a
channel identifier or a channel end. Node, although considered as a primitive data type, it is
internally seen as a set of names, to maintain compatibility with its definition in Section 3.
The generic data types (based on the Java generics) specify a type to their contents, as seen
in Listing 7.

Listing 7 EBNF notation for the datatype production.
datatype : ...

| (’Set ’ | ’Pair ’ | ’Triple ’) ’<’ datatype ’>’

The structured data types have an internal state, matching their definition in Section 3. Each
instance of these types are endowed with attributes and operations, which can be accessed
using selectors (later in this section).

The construct of a data type is either given as T () or TG(t), where T is a ReCooPLa data
type and t is a subtype of a generic data type TG.
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Reconfiguration body

The reconfiguration body is a list of instructions, where each instruction can be a declaration,
an assignment, an iterative control structure, or an application of a reconfiguration. A
declaration is expressed as traditionally: a data type followed by an identifier or an assignment.
In turn, an assignment associates an expression, or an application of a reconfiguration, to
an identifier. The respective constructs are, then, decl(t, v) and either assign(t, v, e) or
assign(v, e), where t is a data type v is a variable name; and e is an expression.

The control structure marked by the reserved word forall, is used to iterate over a set
of elements, as in the spirit of other programming languages. Again, a list of instructions
defines the behaviour of this structure. In Listing 8 it can be seen the respective production
for this control structure.

Listing 8 EBNF notation for the forall production.
forall : ’forall ’ ’(’ datatype ID ’:’ ID ’)’ ’{’ instruction + ’}’

The construct for this iterative control structure is given as forall(t, v1, v2, b), where t is
a data type, v1, v2 are variables and b is a set of instructions.

The application of a reconfiguration, (c.f., reconfiguration_apply production in List-
ing 9), is expressed as an identifier followed by the ’@’ operator and a reconfiguration name.
The last may be a primitive reconfiguration or some other reconfiguration previously declared.
The ’@’ operator stands for application. A reconfiguration is applied to a variable of type
Pattern. In particular, this variable may be omitted (optional identifier in the production
reconfiguration_apply); when this is the case, the reconfiguration called is applied to the
original pattern. This typical usage can be seen in Listing 13.

Listing 9 EBNF notation for the reconfiguration_apply production.
reconfiguration_apply

: ID? ’@’ reconfiguration_call
reconfiguration_call

: (’join ’|’split ’|’par ’|’ remove ’|’const ’|’id ’|ID) op_args

The construct for this operation is given either as @(c) or @(p, c), where p is a Pattern and
c is a reconfiguration call. Each reconfiguration call also has its own construct: r(a1, . . . , an),
for r being a reconfiguration name, and each ai its argument.

Operations

An expression is composed of one or more operations. These can be specific constructors for
generic data types, including nodes, or operations over generic and structured data types.
Listing 10 shows examples of these types of operations. Each constructor is defined as a
reserved word (S stands for Set, P for Pair, T for Triple and N for Node); and a list of values
that shall agree to the data type. The corresponding production is given in Listing 10 and
exemplified in Listing 11.

Listing 10 EBNF notation for the operations productions.
constructor

: ’P’ ’(’ expression ’,’ expression ’)’
| ’T’ ’(’ expression ’,’ expression ’,’ expression ’)’
| ’S’ ’(’ ( expression (’,’ expression )*)? ’)’
| ’N’ ’(’ ID (’,’ ID)* ’)’
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operation
: ID (’#’ ID)? ’.’ attribute_call

Listing 11 Constructors input example.
Pair <Node > a = P(n1 , n2);
Triple <Pair <Node > b = T(a, P(n1 ,n2), P(n3 ,n4 ));
Set <Node > c = S(n1 , n2 , n3 , n4 , n5 , n6);
Node d = N(e1 , e2);

For the Set data type, ReCooPLa provides the usual binary set operators: ’+’ for union,
’-’ for subtraction and ’&’ for intersection. For the remaining data types (except Node
and Name), selectors are used to apply the operation, as shown in Listing 10 (production
operation). Symbol # is used to access a specific channel (the proceeding ID) from the
internal structure of a pattern (the preceding ID). An attribute_call correspond to an
attribute or an operation associated to the last identifier, which must correspond to a variable
of type Channel, Pattern, Pair or Triple. The closed list of attributes/operations possible
are presented in Listing 12 and described below:

in: returns the input ports from the Pattern and Channel variables. It is possible to
obtain a specific port, using the optional integer parameter, which will point to a specific
entry from the set (seen as an array).
out: returns the output ports from the Pattern and Channel variables. The optional
parameter can be used as explained for the in attribute call.
name: returns the name of a Channel variable, also known as channel identifier.
ends: returns the ends of a Channel variable in the context of a Pattern given as
parameter.
nodes: returns all input and output ports plus all the internal nodes of a Pattern variable.
names: returns all channel identifiers of a Pattern variable.
channels: returns a set of channels of a Pattern variable.
fst: returns the first element from the Pair and Triple variables.
snd: returns the second element from the Pair and Triple variables.
trd: returns the third element from a Triple variable.

Listing 12 EBNF notation for the attribute_call production.
attribute_call

: ’in ’ ( ’(’ INT ’)’ )?
| ’out ’ ( ’(’ INT ’)’ )?
| ’ends ’ ’(’ ID ’)’
| ’name ’ | ’nodes ’ | ’names ’ | ’channels ’
| ’fst ’ | ’snd ’ | ’trd ’

All these operation give rise to its own language construct. For the sake of space, only a
few are exemplified: the construct for the constructor of a Pair data type is P (e1, e2), where
e1, e2 are expressions; for the field selection it used .(v, c), where v is a variable and c is a
call to an operation; for the union of sets it is +(s1, s2), with s1, s2 being variables of type
Set. The remaining construcs, follow similar definitions.

Now, putting it all together, one can derive valid sentences of ReCooPLa. Listing 13
presents one such example, where two reconfigurations are declared: removeP and overlapP.
The former removes, from a coordination pattern, an entire set of channels by applying the
remove primitive repeatedly. The latter sets a coordination pattern in parallel with the



10 ReCooPLa: a DSL for coordination-based reconfiguration of software architectres

original one, using the par primitive, and performs connections between the two patterns by
applying the join primitive with convenient arguments.

Listing 13 ReCooPLa input example.
reconfiguration removeP (Set <Name > Cs ) {

forall ( Name n : Cs) {
@ remove (n);

}
}

reconfiguration overlapP ( Pattern p; Set <Pair <Node >> X) {
@ par (p);
forall (Pair <Node > n : X) {

Node n1 , n2;
n1 = n.fst;
n2 = n.snd;

Set <Node > E = S(n1 , n2);
@ join(E);

}
}

5 Reconfiguration engine

Like traditional programming languages, also ReCooPLa sentences require to be interpreted
or executed in order to provide the expected results. While the former are translated into
executable machine code, ReCooPLa is translated into a subset of Java code, which is then
recognised and executed by an engine. This engine, referred to as the Reconfiguration Engine,
is developed in Java programming language and, as expected, executes reconfigurations
specified in ReCooPLa over coordination patterns, which are defined in CooPLa [23], a
lightweight language to define the graph-like structure of coordination patterns. Its model
is as simple as it can be, taking into account only a few entities. Figure 1 presents the
respective Unified Modelling Language (UML) class diagram of that model.

The shaded package cp.model is respected to the model of a coordination pattern. This is
actually, the implementation version of the formal model presented in Section 3. Important
to know is that both CoordinationPattern and Channel classes provide attributes and methods
that match the attributes and operations of the Pattern and Channel types in ReCooPLa.
For instance, the attribute nodes of the Pattern type has its counterpart method getNodes()
in the CoordinationPattern class.

The remaining entities of the diagram are concerned with the reconfigurations themselves,
and are assumed to belong to a cp.reconfiguration package. As easily induced, the classes
Par, Const, Remove, Join, Split and Id are the implementation of the homologous primitive
reconfigurations also introduced in Section 3. The relationships with the elements of the
cp.model package define their arguments. Moreover, these classes have a common implicit
method (given by the interface IReconfiguration): apply(CoordinationPattern p), where the
behaviour of these primitives is defined as the effects of their application over the coordination
pattern p, given as argument.

The Reconfiguration class represents a generic reconfiguration that requires its concrete
classes to implement the apply(CoordinationPattern p) method. The careful reader may have
noticed that the concrete classes of Reconfiguration are greyed-out, and also that they are
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CoordinationPattern

Channel
0..*

Node
2

<<interface>>
IReconfiguration

<<abstract>>
Reconfiguration

Par SplitJoinConst Remove Id

1 1

1

12..*

Name
1

id ends

arg

argarg
channels

argarg

OverlapP

RemoveP

implodeP

MoveP

...

package: cp.model

Reconfiguration
Creator <<create>>

<<implement>>

Figure 1 The Reconfiguration Engine model

not all presented. This is where the most interesting part of the engine, comes into play. In
fact, there are no such concrete classes at design time. All of them are created dynamically,
in run time, by the ReconfigurationCreator class, taking advantage of reflection features of
the Java Virtual Machine (JVM) and working packages like Javassist2. This implementation
follows a similar approach to the well-known Factory design pattern, but instead of creating
instances, creates concrete classes of Reconfiguration. The idea behind this design is that each
reconfiguration definition within a ReCooPLa specification gives rise to a newly created class
with an apply(CoordinationPattern p) method. Then, the content of such method is derived
from the content of the ReCooPLa reconfiguration and added dynamically, via reflection,
to the created class. Once the classes are loaded into the running JVM, the application of
reconfigurations becomes as simple as calling the apply method from instances of such classes.

However, for this being possible, it is necessary to correctly translate ReCooPLa constructs
into the code accepted by the Reconfiguration Engine. Section 6 goes through the details of
such translation.

6 ReCooPLa translation

Throughout this section, it is assumed the existence of Java classes to match the types in
ReCooPLa. This way, besides those classes already mentioned in Figure 1, the following
are also assumed: Pair, with a getFst() and a getSnd() methods to access the fst and snd
attributes of this class; Triple, extending Pair with an attribute trd and method getTrd();
and the LinkedHashSet from the java.util package, which will be abbreviated to LHSet
for readability purposes. Moreover, to ease the understanding of the translation process,
the details about reflection will be ignored or just abstracted. For instance, the method
mkClass(cl, t1, a1, . . . , tn, an, b) abstracts the dynamic creation of a Reconfiguration class
with name cl; attributes a1, . . . , an of type t1, . . . , t_n, respectively; and method apply with
body b, which always ends with a return p instruction, where p is the argument of apply.

2 http://www.javassist.org

http://www.javassist.org
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This being said, the translation of the constructs of ReCooPLa into the Reconfiguration
Engine is given by the rule-based function T (C), where C is a construct of ReCooPLa as
presented in Section 4 and defined as shown in Table 1. Notice that details like semicolons
and efficiency are not taken into account, for simplicity sake.

T (rcfg(n, t1, a1, ...tn, an, b)) → mkClass(n, T (t1), a1, ... T (tn), an, T (b))
T (T ()) → T
T (TG(t)) → TG<T (t)>
T (Set(t)) → LHSet<T (t)>

T (decl(t, v)) → T (t) v
T (assign(t, v, e)) → T (decl(t, v)) = T (e)
T (assign(v, e)) → v = T (e)

T (forall(t, v1, v2, b)) → for(T (t) v1 : v2){T (b)}
T (@(r(e1, . . . , en))) → r rec = new r(T (e1), . . . , T (en)); rec.apply(p)
T (@(r(p, e1, . . . , en))) → r rec = new r(T (e1), . . . , T (en)); rec.apply(p)

T (P (e1, e2)) → new Pair(T (e1), T (e2))
T (T (e1, e2, e3)) → new Triple(T (e1), T (e2), T (e3))
T (S(e1, . . . , en)) → new Node(new LHSet<T>(){{add(T (e1)); . . . ; add(T (en)); }}) 3

T (N(n1, . . . , nn)) → new Node(new LHSet<String>(){{add(n1); . . . ; add(nn); }})
T (+(s1, s2)) → (new LHSet(s1)).addAll(s2)
T (−(s1, s2)) → (new LHSet(s1)).removeAll(s2)
T (&(s1, s2)) → (new LHSet(s1)).retainAll(s2)
T (#(p, c)) → p.getChannel(c)
T (.(v, c)) → v.T (c)
T (in(i)) → getIn(i)
T (out(i)) → getOut(i)
T (ends(p)) → getEnds(p)
T (oper()) → getOper()

Table 1 Translation rules for the ReCooPLa constructs. It is used: n for referring identifiers;
t,ti for data types; ai for arguments; b for set of instructions; T for non-generic data type; TG for
generic data type, except Set; v, vi for local variables; e, ei for expressions; p for patterns; si for sets;
c for channel names; i for numbers; and finally oper for the operations in, out, name, names, nodes,
channels, fst, snd and trd.

It goes without saying that a translation can only occur when the ReCooPLa specification
is syntactically and semantically correct. The ReCooPLa parser is in charge to ensure the
syntax correction of the consuming specifications; in turn, a semantic analyser is defined
to report errors concerning structure, behaviour and data types. The definition of this
ReCooPLa module is out of the scope of this paper.

In Listing 14, it is shown the result of applying the translation rules to the OverlapP
ReCooPLa reconfiguration shown in Listing 13, which is a correct ReCooPLa specification.

Listing 14 Example of a ReCooPLa reconfiguraiton translated.
public class OverlapP extends Reconfiguration {

private CoordinationPatter p;
private LHSet <Pair <Node >> X;

3 T comes from the context where the construct appears or the type of the composing expressions ei.
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public OverlapP ( CoordinationPattern arg1 ,
LHSet <Pair <Node >> arg2) {
this.p = arg1;
this.X = arg2;

}

public CoordinationPattern apply( CoordinationPattern pat) {
Par par;
Join join;
par = new Par(this.p);
par.apply(pat );
for(Pair <Node > n : this.X) {

Node n1 , n2;
n1 = n. getFst ();
n2 = n. getSnd ();
LHSet <Node > E = new LHSet <Node >() {{

add(n1); add(n2);
}};
join = new Join(E);
join.apply(pat );

}

return pat;
}

7 Example

Consider a company that sells training courses on line and whose software system originally
relied on the following components: Enterprise Resource Planner (ERP), Customer Relation-
ship Management (CRM), Training Server (TS) and Document Management System (DMS).
To follow the tendency of modern software development and for an easier expansion of the
company, the Chief Information Officer (CIO) decided to launch a system update project,
where the adoption of a SOA solution was the key. This entailed the change of the monolithic
components into several services and their integration and coordination with respect to the
several business activities.

One of the most important activities for the company was the update of user information,
which is accomplished taking into account the corresponding new user update services that
derived from the ERP, CRM and TS components. Originally, such update was designed to
be performed sequentially as shown in the coordination pattern of Figure 2.

i

UUerp UUcrm UUts

j1 j2 j3s1

:: fifoe

s
2

::
s
y

n
c

f1

:: fifoe

s
3

::
s
y

n
c

f2

:: fifoe

s
4

::
s
y

n
c

Figure 2 The User update coordination patttern. Each channel is identified with a unique name
and a type (::t notation). It defines an instance of a sequencing pattern, where UUerp executes first,
then UUcrm and finally UUts with data entering in port i.
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However, other configurations where considered and studied taking advantage of the
ReCooPLa language and the underlying reconfiguration reasoning framework. For instance,
another configuration for the user update activity may be given by the coordination pattern
in Figure 3. This can be obtained from the initial pattern by application of a reconfiguration
that collapses nodes and channels into a singe node. In ReCooPLa, this is easy to define, as
it is shown in Listing 15, where removeP was already defined in Listing 13.

Listing 15 implodeP reconfiguration pattern.
reconfiguration implodeP (Set <Node > X; Set <Name > Cs){

@ removeP (Cs);
@ join (X);

}

This reusable reconfiguration pattern takes a set of nodes and another of channels
respecting to the desire structure to collapse. Then, it removes the channels and the given
nodes are joined. Using the translation mechanism of ReCooPLa specifications It would be
obtained a Java class similar to the one presented in Listing 16.

Listing 16 ImplodeP class generated.
public class ImplodeP extends Reconfiguration {

private LHSet <Node > X;
private LHSet <Name > Cs;

public OverlapP (LHSet <Node > arg1 ,LHSet <Name > arg2) {
this.X = arg1;
this.Cs = arg2;

}

public CoordinationPattern apply( CoordinationPattern pat) {
RemoveP removeP ;
Join join;
removeP = new RemoveP (this.Cs);
removeP .apply(pat );
join = new Join(this.X);
join.apply(pat );

return pat;
}

}

In the current example, applying implodeP ({j1, j2, j3}, {f1, f2}) to the original coordina-
tion pattern would result in the one in Figure 3, where (for reading purposes) node k is used
to represent the union of j1 and j2.

8 Conclusions and Future Work

The paper introduces ReCooPLa, a DSL for design of coordination-based reconfigurations.
These reconfigurations actuate, through the application of primitive atomic operations, over
a graph-based structure, which is an abstract representation of the coordination layer of a
SOA-based system. ReCooPLa also counts on a Reconfiguration Engine that, via reflection
features, processes and applies the reconfigurations over the coordination patterns.
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i

UUerp

UUcrm

UUts

k
s1

:: fifoe

s2:: sy
nc

s4

:: sync

s5

:: sync

Figure 3 The User update coordination pattern reconfigured. It defines an instance of a parallel
pattern, where UUerp, UUcrm and UUts execute in parallel with data entering in port i.

ReCooPLa differs from other architecture-oriented languages in the sense that it focus
on reconfigurations rather than on the definition of architectural elements like components,
connectors and their interconnections. Moreover, the language and the underlying approach
is intended to target the early stages of software development; in concrete, the design
of reconfigurations and their analysis against requirements of the system. However, this
approach may be lift to the dynamic setting by mapping the code of each reconfiguration
and coordination pattern to the actual coordination layer of a system. This would allow to
reconfigure deployed systems taking a very abstract way of planning such reconfigurations.
Nevertheless, such lift shall be carefully analysed as several factors may hinder the correct
and safe application of reconfigurations.

As future work, it is planned the full integration of ReCooPLa with the framework for
reconfiguration analysis [22, 23]. In particular, it is intended to extend the language to cope
with a quantitative/probabilistic model of coordination as elaborated in [25].
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