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Abstract—A recent research trend is driven to increase the
monitoring and control capabilities of low voltage networks. This
paper describes a probabilistic forecasting methodology based
on kernel density estimation and that makes use of distributed
computing techniques to create a highly scalable forecasting
system for LV networks. The results show that the proposed
algorithm outperforms three benchmark models (one for point
forecast and two for probabilistic forecasts) and demonstrate the
applicability of the distributed in-memory computing solution for
a practical operational scenario. The ultimate goal is to integrate
information about net-load forecasts in power flow optimization
frameworks for low voltage networks in order to solve technical
constraints with the available home energy management system
flexibility.

Index Terms—Forecasting, smart grid, low voltage, probabilis-
tic, scalability

I. INTRODUCTION

The installation of smart grid equipment, such as smart
meters and data concentrators, contributes to increase the
monitoring and control capabilities of low voltage (LV) grids.
However, advanced computational solutions are needed to
fully explore the information collected by the different devices.

A new paradigm is the preventive control of distribution
grids, where a key input is information about net-load forecasts
in each node of the distribution grid, which can be used to run
(optimal) power flow algorithms in order to detect and solve
potential technical problems in a predefined time horizon (e.g.,
24 hours-ahead). This approach can be complementary to the
real-time control and avoid expensive control actions (e.g.,
load or renewable energy curtailment). Information from fore-
casting algorithms is a key requirement for these management
functions.

Forecasting the consumption of individual LV clients is
challenging due to a high variability of the time series and a
vast type of consumption profiles. For instance, Mirowski et al.
[1] showed that the Mean Absolute Percentage Error (MAPE)
can range between 40% and 90% for one LV consumer, in
contrast to 8% for a LV feeder. In this problem, Hayes et al.
[2] showed that a naive method (i.e., forecast equal to the
load at the same time period in the previous equivalent day)
can outperform linear and non-linear autoregressive models.
Taieb et al [3] applied component-wise gradient boosting with
P-splines to generate quantile forecasts for LV clients.

Compared to the state of the art, this paper makes the
following contributions: (i) apply a weighted kernel density

estimation (KDE) method that outperforms the naive model
from [2] and generates conditional density forecasts; (ii)
describes a distributed in-memory computing framework that
ensures high scalability of the forecasting methodology and
makes it suitable for operational deployment.

The rest of the paper is organized as follows: section II de-
scribes the forecasting methods used in this article, both point
and probabilistic forecast. The approach for online parameter
estimation and the computational solution is also described in
this section. Section III introduces the evaluation metrics along
with the results for the proposed solution. Section IV presents
the conclusions.

II. FORECASTING METHODOLOGY

A. Conditional Kernel Density Estimation

Let Lt be the the load during the hour t, and let L̂t+h|t
be the load forecast for the time horizon t + h given the
information available at hour t. This approach considers that
the prediction can be made by a linear weighted combination
of past observed values of the load. A weighted average can
be written as

L̂t+h =

∑n
i=1 Liωi,t+h∑n
i=1 ωi,t+h

(1)

where the smoothing coefficients ωi,t+h, measure of similarity
between the new measures and each correspondent historical
measure, so the forecast is given by a weighted average of the
load observations.

The only information required for this approach is a his-
torical set of data pairs (vi, Li), i = 1, , n, with Li the
corresponding normalized load power, and the vector vi the
covariates that benefit the prediction task such as calendar
variables (e.g. weekday, hour of the day) and observed power
consumption (e.g. previous day t−24, previous week t−168).

This forecast methodology relies on the premise that if two
situations are similar (analogous), the observations that occur
shortly after them will be also similar. Therefore, the outcome
of a similar past situation may be used as a prediction of what
will happen after the current situation. Following this idea,
there are three major steps: (1) how to measure similarity; (2)
how to select the number of neighbors (or analogs) according
to the computed similarities; (3) how to weight past historical
values to generate the load forecast.

The similarity of each past situation to the current situation
vt+h is evaluated by calculating a distance between the two



di,t+h = d(vi, vt+h), were vi is the historical vector at time
i. In our experiments, absolute distance is used, but other
distance functions may also be considered.

di,t+h =
1

K

K∑
k=1

|vk,i − vk,t+h| (2)

When vt+h is available, the distance between this vector and
each historical vector vi, i = 1, , n is computed, resulting in a
n-dimensional vector of distances dt+h = (d1,t+h, , dn,t+h).
The next step is to apply a criterion to select a number
M of the total n observations that are close to vt+h.The
parameter M is determined based on a bandwidth δs that acts
as a threshold. Distances above δs lead to null coefficients of
ωi,t+h. The bandwidth δs can be computed in a several ways.
Here, is computed from a percentage of the range of distances,
as described in [4].

δs = dmin + pr(dmax − dmin) (3)

where dmin and dmax are the minimum and the maximum
of the distance. Other alternatives to the maximum distance
could be chosen for computing δs, like the median or the mean
distance. Once selected historical data, a weighting strategy is
applied. For this purpose, we consider the negative exponential
function, defined by

ωdm = exp(−αdm) (4)

where m = 1, ...,M is the mth historical data out of the M
selected based on the distance threshold given by Eq.3, and
dm is the distance between vm and the new vector vt+h. The
weighting function is only applied to the M selected historical
observations. The value of the parameter α regulates how
local the weighting is, so that the larger the exponent α, more
localized the model is. The weighting function must have a
maximum value at zero distance, and its value must decay
as distance grows. Additionally, these weights are multiplied
by an age weighting function aimed to give more importance
to recent observations that to old ones. The age-weighting
function is given by

ωτm = λτm (5)

where ωτm is the age-weighting coefficient, τm is the age
in hours of the selected historical element m, and λ is the
forgetting factor with 0 < λ < 1.

Lastly, the weights to be used in the local model are given
by

ωm = ωτmω
d
m (6)

The kernel density estimation based on a non-parametric ap-
proach was employed for the probabilistic forecast, following
the approach described in [5]. The kernel density estimation
(KDE) is a well-known memory-based learning method that
estimates an unknown density function by smoothing the
observations. The density at a given point is computed by
assigning to each sample point a weight representing the
contribution to the density. Thus, given a random sample

Y1, ..., YN of the random variable Y , the kernel density es-
timator can be written as

f̂(y) =
1

N

N∑
i=1

Khu(y − Yi) (7)

with Khu
(·) = K(·/hu)/hu, where K is a kernel function

and hu is the smoothing parameter or bandwidth.
The first step is to choose the kernel, and in the literature,

there are several possible kernels, namely, normal, biweight,
beta, Epanechnikov, and logistic, among others. For this case,
the beta kernel estimator is chosen, so the unknown density
function for values within the range [0, 1] can be estimated by,

f̂(y) = n−1
n∑
i=1

Ky/h+1,(1−y)/h+1(Yi) (8)

which is similar to the standard kernel estimator, but with beta
kernels [6]. The choice of the beta kernel is given by the fact
that, the estimators proposed in [6] produces estimates that are
free of boundary bias and are always non-negative. In [7] a
boundary correction approach is used to deal with this.

The estimation of the predictive density, using also the
weighting coefficients with time decay, is

f̂(y) =

∑n
t=1 wiKy/h+1,(1−y)/h+1(Yi)∑n

t=1 wi
(9)

The density function at the value y is constructed by ap-
plying kernel density estimation to the set of observations
{Y1, Y2, . . . , Yn} with each Yt value weighted in accordance
with the closeness of the corresponded vt. Then, the resulting
density estimation is used for producing probabilistic forecasts,
represented as a set of quantiles. The quantiles are obtained
by means of the cumulative distribution function. So, let Y
be a real valued random variable with cumulative distribution
function FY (y) = P (Y ≤ y) =

∫ y
∞ fY (t)dt, the τ−quantile,

issued at time t for lead time t+h can be computed as follows:

q̂τt,h = F−1Y (τ) (10)

where τ ∈ [0, 1]. To obtain the cumulative distribution function
from the estimated density function in Eq.9 two more steps
are added. Firstly, the probability distribution function (pdf )
is obtained by properly normalizing the estimated density
function, so that, the sum of its events (integral) sums up
to one. Secondly, the cumulative distribution is obtained
using numerical integration through the estimated pdf. This
way, once the cumulative distribution function is estimated,
performing the quantiles computation is straightforward and
computationally cheap. Altogether, this procedure produces
a valid cumulative distribution function at horizon t, so the
following monotonicity property is satisfied

q̂τ1t,h ≤ q̂
τ2
t,h ∀τ1, τ2 such that τ1 ≤ τ2 (11)

This is of special importance, since quantile crossing is
avoided and no additional corrections are needed to be im-
plemented to dealt with this.



B. Parameter Estimation

The parameter estimation of the KDE method is time
consuming and a batch (or offline) estimation is unfeasible
if thousands of time series need to be forecasted. In contrast
to cross validation approaches, where the overall possible
parameter combinations are tested, a dynamic continuous
optimization ensures a continuous tracking of the optimum
(which might be changing with time), in a so-called dynamic
simplex (or Nelder-Mead) algorithm [8]. This is ideal for large
volumes of streaming data, such as this case, where highly
dimensional power observations are constantly added as new
observations arrive.

Recalling the parameters to be optimized, we have pr
(percentage of points to be used in the weighting step) and
α (smoothing coefficient of the weighting function). The
dynamic simplex solution is employed (see [8] for deeper
details). So the optimization is done using few evaluations
as possible. And by evaluations is meant testing the algorithm
with different parameters. The criterion for evaluating which
pairs of parameters are better is given by an objective function,
in this case the mean absolute error is considered.

A dynamic optimum search is performed using a simplex
structure. A simplex S is defined as a convex hull with N+1
vertices {xj}N+1

j=1 in an N-dimensional space RN , where N
is given by the number of parameters to be estimated. In this
case N = 2, so a triangle is used a simplex. Given a initial pair
of parameters, the iterative process starts by defining an initial
simplex (three pairs of parameters) and the objective function
is computed for each of these pairs. The worst point of the
simplex is chosen for reflection, this is, the method expands
the simplex in the opposite direction. Figure 1 illustrates the
dynamic simplex procedure for one LV forecast, the starting
point (blue point) is defined, from that, a number of successive
reflections are considered, searching the best portion of the
space in which to move.

C. Computational Solution

In order to sustain a high demand for processing mul-
tiple LV forecasts, a solution based in parallel computing
is adopted to improve performance and scalability. For this
purpose we choose Gearman1, for being simple and a reliable
proven software in distributing tasks to multiple processes and
computers. This last feature allows horizontal scaling (adding
more computers to the layer) in case of a growing demand
for processing power. To illustrate the relation between time
complexity and the number of LV forecasts processed, we
simulate 3 different scenarios aimed to reproduce a production
environment, where the algorithm updates its coefficients and
a forecast is generated for the next 24 hours. The scenarios
are as follows:

1) Synchronous execution (single thread) to process a batch
of LV forecasts;

2) Asynchronous execution (multiple thread) using 10 pro-
cesses and one computer;
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Fig. 1. Tracking parameter path using dynamic simplex algorithm, with initial
pair of parameters (pr = 8.0, α = 25.0)

3) Asynchronous execution (multiple thread) using 30 pro-
cesses distributed by two computers.
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Fig. 2. Gearman run time simulation using single and multiple thread
processes.

The simulation results illustrated in Figure 2 show a clear
difference between single thread and multiple thread execution
times, where the multiple threads executions significantly
exceed in performance the single thread ones. It also reveals a
linear progression between the time to finish the execution and
the number of LV clients to forecast. By calculating the results,
we realize that the usage of the multiple thread technology
improves the time required to complete the same tasks by at
least 80% compared to the traditional single thread method.
The simulation also demonstrates that better results can be
achieved by increasing the number of available processes to
execute the LV forecast, which offers scalability for the future
in case of higher number of LV to forecast.



Finally, one limitation of the conditional KDE algorithm is
the need to calculate the distances and search for analogs in
a batch of historical data, which access must be very fast. In
order to overcome this limitation, the memcached2 framework
is used since it is a simple, highly scalable key-based cache
that stores data and objects wherever dedicated or spare RAM
is available for quick access by applications, without going
through layers of parsing or disk I/O. The main goal is to
have fast access speed to information, in contrast to loading
the information each time from disk.

III. EVALUATION

A. Setup
The focus is on day-ahead point and probabilistic forecasts

using smart meter data (active power) from 103 individual
LV clients in Spain, with hourly temporal resolution. One
year of historical smart meter data from 2015 is used. The
first 9 months contains 6528 observations as historical data
and it is used for training, while the renaming 3 months are
used to simulate and test the online forecast scenario. In the
experiments, pr = 0.08 ∗ 100 and α = 25 were used as initial
starting vertex, and the step size si = 1, i = 1, . . . , k. By
the choice of the same step size for all the span parameters,
the algorithm produces an equilateral simplex. Note that the
parameter pr has been re-scaled so it has the same scale
than α, since different scales with the same step size result
in different changes in response. For the generation of the
probabilistic forecast at each horizon, we compute the τ -
quantiles from the cumulative distribution function given by
Eq.10 for a set of probabilities τi = {0.01, ..., 0.99} with
i = 1, ..., Q = 99. Our method will be denoted by DYNKDE.

B. Benchmark methods
A naive approach (denoted by NAIVE) is used as bench-

mark, where the load consumption forecast for instance t is
given by the observed power consumption from the previous
day t− 24. This approach is the same one reported in [2] to
outperform linear and non-linear autoregressive models.

For the probabilistic approach two other benchmark meth-
ods were considered:

1) Unconditional quantiles (denoted by UNCOND): We
compute the τ -quantile of the distribution of the active
all historical observations.

2) Quantiles conditioned to the time-of-day (denoted by
PERIODOFDAY). This method segments the data into
24 sub-datasets, and different quantiles are computed
for each sub-dataset.

Both methods have been considered before in the context of
load forecasting[3]. Due to the similarity of these two methods
with the proposed method we also include them in the analysis.
The UNCOND benchmark method does not take into account
any kind of seasonality, while the PERIODOFDAY allows the
demand distribution to change for each period of day. In the
DYNKDE the period of the day and recent demand effects are
included with a kernel density estimation strategy.

2memcached.org

C. Evaluation

Despite the popularity of the mean absolute percentage
error MAPE usage in the load forecasting context, this error
metric can be misleading when applied to smart meter data. In
particular, when load are close to zero, MAPE values become
very large, regardless of the actual absolute errors. The use of
scaled errors as a robust alternative to percentage errors when
comparing forecast accuracies across series on different scales
is endorsed. Therefore, in order to evaluate the deterministic
forecast, the Mean Absolute Scaled Error (MASE) [9] is used:

MASE =
MAE

MAEnaive
(12)

where MAE is the mean absolute error produced by the actual
forecast; while MAEnaive is the mean absolute error produced
by the naive forecast. MASE > 1 implies that the actual
forecast does worse than the benchmark.

We also consider Better as a relative measure for reliability.
This metric reflects a frequency of predictions by a proposed
model that is better than a baseline model.

Better =
1

n

n∑
i=1

I(|pi − oi| ≤ |bi − oi|) (13)

where oi, pi and bi are the observed, model predicted and
baseline prediction for interval i, respectively.

For probabilistic (density) forecast evaluation, the CRPS
(Continuous Ranking Probability Score), as it both measures
the calibration and the sharpness (see [10]), is used:

CRPS(F̂t,h, yt+h) =
∫ ∞
−∞

(F̂t,h − 1(z ≥ yt+h)2dz (14)

where 1 is the indicator function, F̂t,h the predicted cumulative
distribution function and yt+h the actual observation at horizon
h.

Given a test set of size N , it is possible to compute the
average CRPS for an h-step-ahead forecast as:

CRPS(h) =
1

N

N∑
t=1

CRPS(F̂t,h, yt+h) (15)

IV. RESULTS

Figure 3 shows an example of probabilistic forecast gen-
erated for the active power consumption by a LV client. The
evaluation results are outlined in Fig. 4 and Fig. 5. To promote
the interpretation of the results, we made the forecast horizon
equivalent to the period of the day, in order to be possible to
relate the error measurements with the intra-daily consumption
pattern.

The UNCOND method forecasts a flat density shape across
all time horizons (top panel of Fig. 3), this is due to the fact
that the method does not condition to recent demand or takes
into account hourly seasonality of the data. The PERIODOF-
DAY improves the shape of the density forecast (middle panel
of Fig. 3) in relation to UNCOND. The DYNKDE exhibits
better calibration with sharper forecasted densities surrounding
the observations.
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Fig. 3. One-day ahead load forecast example. The blue and gray regions
show 50% and 90% forecast intervals respectively. The black points serve as
the real values and the median quantile forecast is the black line.

The MASE results shows a direct comparison between
the deterministic solution versus the naive approach (top
panel Fig.3). In general, the adopted solution outperforms the
naive approach. This is more noticeable in hours of higher
variability on consumption, where the the most part of the error
distribution is bellow 1 (red dashed line). This result shows
that an analog based method can outperform naive models and
improve the forecast skill, which contrasts with conclusions
from the state of the art.

The bottom panel in Fig 4 shows the reliability of the
proposed approach over the benchmark methods presented in
Section III-B. The DYNKDE is compared with the NAIVE,
and the median (50% quantile) of the UNCOND and PERI-
ODOFDAY methods. The lower improvement of the proposed
approach can be found when compared with the baseline
NAIVE method, coherent with the findings reported in [2].
Forecasting procedures that are not carefully calibrated fail to
pass this “naive test” surprisingly often.

The probabilistic evaluation is based on the CRPS. In
order to compare the CRPS values across all LV series, the
consumption values were standardized to lie between 0 and 1.
As expected, the CRPS is higher during the periods of the day
where large consumption values occur. Being a generalization
of the MAE error it is highly dependent on the range of
observed values.

Fig. 5 depicts the CRPS average values obtained with
the probabilistic benchmark methods (dashed lines) and the
DYNKDE. The UNCOND has worst performance. By con-
ditioning on period of the day the error decreases [3]. The
DYNKDE has the best performance as it exhibits lower CRPS
values. The results also reveals that, for a shorter forecast
horizon (or equivalently with the beginning period of the day),
PERIODOFDAY and DYNKDE have similar errors. But, for
higher consumption and consequently higher variability, as in

during the day, the proposed method is superior.
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Fig. 4. Deterministic performance results for 24 hours-ahead forecasts. The
top panel are the MASE outcomes using the metric defined in Eq.12. It
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the deterministic approach with respect to the metric Better defined in Eq.
13.
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V. CONCLUSION

This papers proposed a method to obtain the forecast density
estimation using a non-parametric approach that basically
searches for analogs in the historical data.

A dynamic simplex algorithm was modified and employed
for the parameter estimation, allowing continuous parameter
tuning with few parsimonious function evaluations. The pro-
posed algorithm is implemented in a distributed and scalable
computational solution.

The proposed method was compared with three benchmark
models: naive method where the forecast is equal to the
observed consumption in the previous day; unconditional



quantiles computed from the historical data; quantiles con-
ditioned to the time-of-day. Different metrics were considered
to evaluate the point and probabilistic forecast performance of
the method.

The results showed that the proposed method was able to
outperform the benchmark models in both point and proba-
bilistic forecast. The forecasted conditional densities showed
a superior calibration are more sharper than the other models,
leading to a lower value of the continuous ranking probability
score.

The simulation study also demonstrated the applicability of
the distributed in-memory computing solution for a practical
operational scenario. For instance, in a dataset of 840 LV
clients the computational time required to generate a forecast
for the next 24 hours is 336 seconds (considering 30 threads
from 2 computers), a reasonable result that ensures scalability
for a grow demand in number of clients (or smart meters).
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