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Abstract

Binary relational algebra provides semantic founda-
tions for major areas of computing, such as database
design, state-based modeling and functional program-
ming. Remarkably, static checking support in these
areas fails to exploit the full semantic content of rela-
tions. In particular, properties such as the simplicity
or injectivity of relations are not statically enforced
in operations such as database queries, state transi-
tions, or composition of functional components. When
data models, their constraints and operations are rep-
resented by point-free binary relational expressions,
proof obligations can be expressed as inclusions be-
tween relational expressions. We developed a type-
directed, strategic term rewriting system that can be
used to simplify relational proof obligations and ulti-
mately reduce them to tautologies. Such reductions
can be used to provide extended static checking for de-
sign contraints commonly found in software modeling
and development.

Keywords: Models verification, Symbolic execution;
Abstract model verification; Extended static checking;
Strategic term rewriting

1 Introduction

Software design is error-prone. The negative impact
of programming errors on software productivity can
be limited by catching them early. Static checkers (e.g.
syntax and type checkers) are tools which catch er-
rors at compile-time, i.e. before running the program.
Examples of such errors are unmatched parentheses
(wrong syntax) and adding integers to booleans (wrong
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typing). Errors such as null dereferencing, division by
0, and array bound overflow, are not caught by stan-
dard static checking; detecting their presence requires
extensive testing, and if their presence can not be ex-
cluded with certainty, they must be handled at run-time
via exception mechanisms.

Software formalists will argue that error checking in
the coding phase is too late: first a formal model should
be written, queried, reasoned about, and possibly ani-
mated (using e.g. a symbolic interpreter). Formal mod-
eling relies on “rich” datatypes such as finite mappings,
finite sequences, and recursive data structures, which
abstract from much of the complexity found in com-
mon imperative programming languages (e.g. pointers,
loop boundaries). However, such rich structures are
not able to capture all properties, meaning that addi-
tional constraints need to be added to models such as
invariants (attached to types) and pre-conditions (at-
tached to operations). Checking such constraints is
once again a process which falls outside standard static
type-checking, leading to a so-called dynamic type
checking process, typical of model animation tools
such as the VDMTools system [1]. Static checking of
formal models involving such constraints is a complex
process, relying on generation and discharge of proof
obligations [2]. While proof obligations can be gener-
ated mechanically, their discharge is in general above
the decidability ceiling in requiring full-fledged formal
verification (theorem proving) [3]. Between these two
extremes of standard, cheap, decidable static checking
and costly theorem proving, extended static checking
(ESC) [4] aims to catch more errors at compile-time
at the relatively moderate cost of adding annotations
to the code which record design decisions which were
lost throughout the programming process (if ever ex-
plicitly recorded).

Extended static checking tools have been developed
for imperative programming languages such as Java
(ESC/Java [4]). At the heart of these tools we find a
verification condition generator and the Simplify theo-
rem prover [5]. Verification conditions are predicates
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in first-order logic which are computed in weakest
precondition style. Theorem proving is performed by
a combination of techniques, including SAT solvers,
matching algorithms, and heuristics to guide proof
search.

In the current paper we follow the spirit of this
approach but intend to apply it much earlier in the
design process: we wish to perform extended static
checking at abstract model level. Formal modeling
notations such as Alloy, Z and VDM include “rich
data structuring” primitives which already preclude
(by construction) the occurrence of errors such as null
pointers and array bound overflow. In verifying de-
signs at abstract model level we aim to catch errors
higher on the semantic scale. A pertinent example is
the finite mapping data type (also called finite partial
function), which covers a number of interesting sit-
uations in both formal modeling (e.g. in VDM-like
notations) and programming (e.g. SQL). For instance,
relational tables with a primary key can be modeled as
finite mappings. UPDATE and INSERT are examples
of operations which in general put primary keys at risk,
something that model animation tools and database
systems can only check at run-time. Maintenance of
primary key relationships by these operations will be
one of the targets of our extended static checks.

The main novelty of our approach resides in the cho-
sen method of proof construction, whereby first-order
proof obligations are subject to the PF-transform [6]
before they are reasoned about. (See reference [7]
for the theory behind this blending of ESC with the
PF-transform, suggestively referred to as the ESC/PF
proof obligation calculus.) Such a transformation elim-
inates quantifiers and bound variables and reduces
complex formulæ to algebraic expressions which are
more agile to calculate with (see Fig. 1 for details).
As shown in [7], ESC proof obligations can be dis-
carged at PF-level, leading to the so-called ESC/PF
calculus. In the current paper we move from “paper
and pencil” ESC/PF reasoning to mechanical calcula-
tion using a Haskell implementation of strategic term
rewriting [8, 9, 10].

In Section 2 we will motivate our extended static
checking approach with a small modeling example.
In Section 3 we recapitulate binary relation theory
which can be used to capture the semantics of mod-
els with rich data structures and their operations. In
Sections 4 and 5 we will demonstrate how the alge-
braic laws of the theory can be harnessed in a strategic
term rewriting system, implemented in the functional
programming language Haskell. In Section 6 we re-
visit the model operations of our example to show how
our rewriting system is capable of generating the ap-
propriate proof obligations and simplify or discharge
them. Section 7 discusses related work and Section 8
concludes.

φ PF φ

〈∃ a : : b R a ∧ a S c〉 b(R ·S)c
〈∀ a,b : : b R a⇒b S a〉 R⊆ S

〈∀ a : : a R a〉 id ⊆ R
b R a ∧ c S a (b,c)〈R,S〉a
b R a ∧ b S a b (R∩S) a
b R a∨b S a b (R∪S) a

b = a b id a
TRUE b > a
FALSE b ⊥ a

Figure 1: The PF-transform. In analogy to the well-
known Laplace transform [11], the PF-transform takes
expressions from a mathematical problem space, in
this case first order logic formulæ, into a mathematical
solution space, in this case relational algebra expres-
sions [12]. The PF-transform eliminates quantifiers
and bound variables (so-called points), resulting in
a pointfree notation which is more agile to calculate
with.

2 Motivating example

The UML class diagram in Fig. 2 depicts a simpli-
fied model of a system for trading non-consumable
(uniquely identifiable) items. A user can put an item
for sale for a given price, and other users can express
their interest in these items for a price they are will-
ing to pay. If a match between a seller and a buyer is
established, this leads to a deal with an agreed price.

The specification of queries, predicates, and trans-
formations on this model may present some pitfalls.
Suppose the following operations are desired:

listWantedItems :: Wanted→MapIidPrice
wantedItemsAreForSale ::

Wanted→ForSale→Bool
putBatchForSale ::
(Uid,MapIidPrice)→ForSale→ForSale

settleDeal :: (Iid,Uid,Price)→Deal→Deal

The listWantedItems query produces a map of item
identifiers together with the price that has been offered
for them. The wantedItemsAreForSale predicate tests
whether each item listed in Wanted is actually for sale,
thus testing referential integrity. The transformation
putBatchForSale adds a batch of items belonging to
a given user to the ForSale relation. The settleDeal
transformation adds an entry to the Deal collection.

When specifying these operations, the designer
could benefit from the feedback of an extended static
checker. For example, the checker should tell her/him
that query listWantedItems should only return a map
if the Wanted collection contains no two offers for
the same item with different prices. Rather than
adding a precondition to that effect, he will likely de-
cide to change the return type to a general relation
Rel Iid Price or, equivalently, to Set (Iid,Price). In
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Name×Balance UidUseroo

Uid×Price IidForSaleoo

Price Iid×UidWantedoo

Uid×Price IidDealoo

Description IidItemoo

Figure 2: Simplied UML model of a trading system
and the corresponding binary relational model. The
relations in this model are finite and simple (explained
in Section 3). This is loosely based on a formal model
(written in Haskell) for a real estate exchange market,
which has been developed for a digital city consortium.

case of the settleDeal operation, to ensure that pre-
existing deals do not get lost the checker should indi-
cate that a precondition is needed that either no deal
yet exists for the given item, or that it exists with the
same buyer identifier and price.

3 Overview of relation theory

In this section we provide a brief introduction to the
theory of binary relations [12].

Relations. Let B ARoo denote a binary relation
R on data-types A (source) and B (target). We write
bRa to mean that pair (b,a) is in R. The underly-
ing partial order on relations is written R ⊆ S, with
the usual semantics of the subset relation between
sets of pairs. In relational terms, it means that S
is more defined or less deterministic than R, that is,
R⊆ S ≡ bRa⇒bSa for all a,b. R∪ S denotes

the union of two relations and > is the largest relation
of its type. Its dual is ⊥, the smallest such relation.
The identity id relates every element to itself. Equality
on relations can be established by ⊆-antisymmetry:
R = S≡ R⊆ S ∧ S⊆ R.

Three more operators are introduced to combine
relations: composition (R ·S), converse (R◦) and meet
(R∩ S). R◦ is such that a(R◦)b iff bRa holds. Meet
corresponds to set-theoretical intersection and com-
position is defined in the usual way: b(R · S)c holds
wherever there exists some mediating a such that
bRa ∧ aSc.

Figure 3: Binary relation taxonomy

Coreflexives. An endo-relation A ARoo is re-
ferred to as reflexive iff id ⊆ R holds, and as core-
flexive iff R⊆ id holds. Coreflexive relations, which
we denote by Greek letters (Φ, Ψ, etc.), are frag-
ments of the identity relation that model predicates
or sets. A predicate p is modeled by the coreflex-
ive [[p]] such that b[[p]]a ≡ (b = a) ∧ (p a) holds,
that is, the relation that maps every a which satis-
fies p onto itself. Negation is modeled by ¬Φ =
id−Φ. A set S⊆ A is modeled by [[λa.a ∈ S]], that is
b[[S]]a ≡ (b = a) ∧ a ∈ S .

Taxonomy. To establish a fundamental taxonomy
of relations (illustrated in Fig. 3), let us first define
the kernel of a relation, kerR = R◦ ·R and its dual,
imgR = ker(R◦) = R ·R◦, called the image of R.

A relation R is said to be entire (or total) iff its kernel
is reflexive; and simple (or functional) iff its image is
coreflexive. Simple relations are denoted with capital
letters M, N, etc. Dually, R is surjective iff imgR
is reflexive, and R is injective iff kerR is coreflexive.
This terminology is recorded in the summary table in
Fig. 3. The coreflexive fragments of kernel and image
are named domain (δ ) and range (ρ).

Functions. As the taxonomy indicates, a relation is
a function iff it is both simple and entire. Functions
will be denoted by lowercase letters ( f , g, etc.) and are
such that b f a means b = f a. The constant function
which maps every value of its domain to the value k is
denoted by k. It can be easily seen that, given two data
values a,b, relation b ·a◦ is the PF-version of singleton
relation {(b,a)}.

Algebraic properties. A rich set of algebraic proper-
ties is a-vailable for the various operators of relational
algebra [12], of which a small sample is listed in Ta-
ble 1. Of particular interest for the current paper are
the various shunting laws. They allow the ‘shunting’
of relations (functions and simple relations in the listed
cases) from one side of the inclusion to the other, sim-
ilar to the shunting rules we learned in high school,
such as x− y 6 z⇔ x 6 z+ y. The utility of such laws
will become evident below.
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Table 1: Some laws of the binary relational algebra.
(R ·S) ·T = R · (S ·T) comp assoc
R · id = R ; id ·R = R comp id
(R ·S)◦ = S◦ ·R◦ inv comp

(R◦)◦ = R inv inv
R ·⊥=⊥ ; ⊥·R =⊥ comp empty
(R∪S)◦ = R◦∪S◦ inv union

(R∪S) ·T = (R ·T)∪ (S ·T) union fusion
T · (R∪S) = (T ·R)∪ (T ·S) union fusion

Φ◦ = Φ corefl symm
Φ ·Φ = Φ corefl trans
R ·δ R = R dom elim

k ·R = k ·δ R const fusion
¬Φ ·Φ =⊥ ; Φ ·¬Φ =⊥ negCo comp

R ·¬ (δ R) =⊥ not dom cancel
R∪S⊆ T ≡ (R⊆ T ∧ S⊆ T) union univ

⊥⊆ R≡ True incl empty
R⊆ R≡ True incl refl

R ·Φ ·S⊆ T⇐ R ·S⊆ T monotonicity
R · f ◦ ⊆ S≡ R⊆ S · f shunt fun inv
f ·R⊆ S≡ R⊆ f ◦ ·S shunt fun

R ·M◦ ⊆ S≡ R ·δ M ⊆ S ·M shunt map inv
M ·R⊆ S≡ δ M ·R⊆M◦ ·S shunt map

imgR = R ·R◦ img def
kerR = R◦ ·R ker def

4 Rewriting relational expressions and
propositions

We developed a type-safe, type-directed rewriting sys-
tem for normalization of relational expressions that
harnessed the various algebraic laws of binary rela-
tions presented in Table 1 in the functional program-
ming language Haskell. In this section and the next,
we will provide a high-level description independent
of the programming language.

Terms. The terms to be rewriten by our term rewrit-
ing system will be the expression of binary relational
calculus with some additional annotations. The follow-
ing outlines the grammar:

P :=R⊆T R | True | P ∧ P
R := id | R ·T R | R◦ | VL | AT | ...
T :=1 | Int | Bool | String | [T ] | T×T | ...
L :=entire | simple | injective | surjective |

reflexive | coreflexive
V := variable names
A := values

Thus, some of the relation operators are annotated with
type information (shown as subscript). Relation vari-
ables are annotated with properties as they appear in
the leafs of the taxonomy of Figure 3. For example, a
function f is an entire and simple relation and is there-
fore annotated as f[entire,simple ]. Also, endo-relations
can be annotated to be (co-)reflexive.

Predicates on relations. The first ingredient into
our rewriting system are predicates for testing the vari-
ous properties that relations may have, such as simplic-
ity, surjectivity, etc. The various properties declared on
relational variables propagate through relational oper-
ators. For example, the composition of two surjective
relations is surjective, and the inverse of an injective
relation is simple. This gives rise to predicates on
relations that inductively check their properties. For
example:

isSimple(id) = True
isSimple(rl) = simple ∈ l
isSimple(r◦) = isIn jective(r)
isSimple(s ·b r) = isSimple(r) ∧ isSimple(s)
...

isSimple(r) = False

Similar predicates are supplied for the remaining prop-
erties. These predicates test for properties by induc-
tion over the structure of relational expressions, but
do not attempt to derive proofs for the properties. In
this sense, they are approximations and may fail to
discover that a certain relational expression enjoys
particular properties.

Type-directed and property-aware rewriting rules.
The predicates above are used in the definition of
rewrite rules. Each rewrite rule encodes particular laws
of the relational calculus. Since our rewrite system is
type-directed, rewrite rules are annotated with types.
Here is an encoding of the inv comp law, applied in
the left-to-right direction:

inv comp : (r ·b s)◦ 7−→(c←a) s◦ ·b r◦

Pattern matching is performed on a relational expres-
sion and, on successful match, a resulting expression
is returned.

The const fusion rule provides an example of rewrit-
ing directed by properties:

const fusion : (s ·b r) 7−→(c←a) (sc)

if isConstant(s) ∧ ¬ (isCore f lexive(r)) ∧
isEntire(r)

const fusion : (s ·b r) 7−→(c←a) ((sc) ·a (δbr))
if isConstant(s) ∧ (¬ (isCore f lexive(r))

The rule works on a composition and, if the first argu-
ment s constant as required by the guarding predicate,
then it replaces the second argument r by its domain.
If the second argument r is entire, δ r = id then the
rule return just the first (constant) argument. When r
is coreflexive, the rule does not trigger, because the
domain of a coreflexive is that relation itself.

An example of a rewrite rule on the level of rela-
tional propositions is offered by the shunting rule for
functions:
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shunt fun inv :
((x ·b f ◦)⊆(c←a) y) 7−→(c←a) (x⊆(c←b) (y ·a f ))

if isEntire(f ) ∧ isSimple(f )

Note the use of a guarding predicate that tests whether
the relation f is indeed a function (entire and simple).

Combinators for strategic rewriting. To compose
rewriting systems out of individual rewrite rules, we
employ the following set of rule combinators known
from strategic term rewriting 1:

nop :: Rule -- identity rule
(.) :: Rule→ Rule→ Rule -- sequential comp.
(⊕) :: Rule→ Rule→ Rule -- choice (based on mplus)
(�) :: Rule→ Rule→ Rule -- choice (bas. on mcatch)
all :: Rule→ Rule -- map on all children
one :: Rule→ Rule -- map on one child
run :: Rule→ R r→ (R r,Derivation)-- top-lev. app.

The implementation of each of these combinators is
straightforward, and omitted here for brevity. The
top-level application function run takes the result of
rewriting and the derivation (proof trace) out of the
Rewrite monad; in case of failure it returns the original
term and an empty derivation.

Using the basic rule combinators, more sophisti-
cated ones can be defined:

many r = (r . (many r))�nop -- repeat until failure

once r = r�one (oncer) --apply once, at any depth

innermost r =
all (innermost r). ((r . innermost r)�nop)

The derived combinator innermost performs exhaus-
tive rewrite rule application according to the leftmost
innermost rewriting strategy.

5 Rewriting strategies

Having defined individual rules and rule combinators,
we can proceed to the composition of rewrite systems
for various purposes.

Normalization of relational expressions. The fol-
lowing definitions express that a relational expression
can be normalized by exhaustive application of individ-
ual association, desugaring, and normalization rules:

simplify = innermost simplify1
simplify1 =comp assocl�desugar1�applylaw1
desugar1 = ker def � img def � ...
applylaw1=

inv comp� inv inv� comp id�
comp empty�dom elim� corefl symm�
const fusion�not dom cancel� ...

1These rules and our representation technique are inspired on
the 2LT system [13]. For related work using a similar approach see
e.g. [14].

We use the convention of postfixing the names of
single-step rule combinations with 1 in order to dis-
tinguish them from rule combinations that rewrite
repetitively until a fixpoint is reached. Note that the
comp assoc rule is employed to bring relational com-
positions into left-associative form. Since the normal-
ization rules together form a confluent and terminating
rewrite system, the left-catching combinator � is suffi-
cient to combine them — no need for backtracking.

For example, the following derivation is constructed
when applying the simplify strategy to (N ·(¬ (δ N))◦ ·
M◦)◦, where N and M are simple relations:

(N · (¬ (δ N))◦ ·M◦)◦
= {corefl symm}
(N · (¬ (δ N)) ·M◦)◦

= {not dom cancel}
(⊥·M◦)◦

= {comp empty}
⊥◦

= {corefl symm}
⊥

This normalization proof trace demonstrates that the
original expression is equal to ⊥. (Recall that proof
traces are generated by our Rewrite monad.)

Deriving proofs and proof obligations. We define
a more sophisticated strategy to simplify or dispatch
proof obligations:

derive = simplify.all and process conjunct .
innermost and true

where
process conjunct=
(shunt conjunct⊕ strengthen conjunct)�
nop

shunt conjunct = shunt .derive
strengthen conjunct =

strengthen.derive.qed
shunt = (shunt fun inv� shunt map inv)⊕

(shunt fun� shunt map)
strengthen = corefl cancel
all and :: Rule→ Rule -- apply arg. rule on all conjs
qed :: Rule -- test whether the current exp. is True

The initial application of simplify brings a given propo-
sition into conjunctive normal form, where each con-
junct is a normalized relational inclusion. The all and
combinator applies process conjunct to all conjuncts.
After processing each conjunct separately, and true
(p ∧ True⇔ True ∧ p⇔ p) is applied to absorb the
propositions that have been rewritten to True. The pro-
cessing of each conjunct makes a non-deterministic
choice (using the backtracking operator ⊕) between
starting with a shunting step (shunt conjunct) or start-
ing with a strengthening step (strengthen conjunct);
the conjunct is left unchanged if neither is possible
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(nop). When starting with shunting, the choice be-
tween shunting a left-composed relation or shunting a
right-composed converse of a relation is again made
non-deterministically (shunt). After the shunting step,
a recursive call is made to the overal derive strategy.
When starting with strengthening, the subsequent re-
cursive call to derive is required to lead to a full proof
(qed), since we are interested in strengthened proposi-
tions only for the purpose of discharging proof obliga-
tions.

The use of backtracking entails that several results
may be obtained or the same result through different
derivations. In the implementation, lazy evaluation
is employed to ensure that only a single derivation is
actually constructed.

6 Application scenarios

We now explain how our rewriting system can be used
in concrete scenarios, such as the ones in our motiva-
tion example (Section 2). The overall operation of the
developed tool is based on transforming and rewriting
PF-relational expressions using the ESC/PF calculus
described in [7].

List wanted items. The operation listWantedItems
can be specified in binary relational terms as
listWantedItems = Wanted · π◦1 , where π1 is the first
projection on pairs, i.e. π1 (a,b) = a. Note that
we leave the argument Wanted implicit in the def-
inition of the operation. Regarding Wanted as a
set of pairs, the definition converts to the pointwise
{ (p, i) | (p,(i,u))∈Wanted }, where p, i, u range over
Price, Iid and Uid, respectively. Clearly, this won’t be
a simple relation in general, even if Wanted is so, be-
cause dropping u from the input may lead to the same
i related to different p. Since this operation is specified
to produce a finite map (thus simple), it gives rise to
the proof obligation img(Wanted ·π◦1 )⊆ id, which in
turn leads to the following derivation when applying
our derive strategy:

img(Wanted ·π◦1 )⊆ id
⇔{ img def }

Wanted ·π◦1 · (Wanted ·π◦1 )◦ ⊆ id
⇔{ inv comp}

Wanted ·π◦1 · (π◦1 )◦ ·Wanted◦ ⊆ id
⇔{ inv inv}

Wanted ·π◦1 ·π1 ·Wanted◦ ⊆ id
⇔{shunt map inv}

Wanted ·π◦1 ·π1 ·δ Wanted ⊆ id ·Wanted
⇔{comp id}

Wanted ·π◦1 ·π1 ·δ Wanted ⊆Wanted
⇔{shunt map}

δ Wanted ·π◦1 ·π1 ·δ Wanted ⊆Wanted◦·Wanted

What does the last line above mean? We simply have
to apply the rules of the PF-transform the other way

round and find the corresponding, more descriptive
logic expression:

∀x,y . x ∈ dom (Wanted) ∧< [E]
y ∈ dom (Wanted) ∧ π1 (x) = π1 (y)
⇒Wanted (x) = Wanted (y)

This formula expresses that query listWantedItems
only returns a finite map if the Wanted collection con-
tains no two offers for the same item with different
prices. This feedback should lead the designer to
broaden the output type of the operation to general
binary relations.

Settle deal. Using singleton relation notation as de-
cribed in Section 3, we can define settleDeal (i,u,p) =
Deal∪ (u,p) · i ◦. (Again we leave the old value of
Deal implicit in the definition.) Checking the simplic-
ity of its output gives rise to the following derivation
(condensed):

img(Deal∪ (u,p) · i ◦)⊆ id
⇔{ img def ,various union laws}

Deal ·Deal◦ ⊆ id ∧
Deal · i · (u,p) ◦ ⊆ id ∧
(u,p) · i ◦ ·Deal◦ ⊆ id ∧
(u,p) ·> · (u,p) ◦ ⊆ id
⇔{various shunting laws,dom elim}

δ Deal · i⊆ Deal◦ · (u,p) ∧
i ◦ ·δ Deal⊆ (u,p) ◦ ·Deal

Thus, the simplification of this proof obligation leads
to an intermediate conjunction of four proof obliga-
tions, of which two are subsequently discharged. The
remaining two obligations actually express the same
property (they can be converted into each other by
taking their inverse). Conversion back to pointwise
notation gives the following precondition:

i ∈ dom (Deal)⇒ (u,p) = Deal (i)

Note that the proof obligation we derived is weaker
than the over-defensive precondition that is typically
added to an operation such as settleDeal, namely that
i /∈ dom(Deal).

Batch addition of items to sell. Once PF-
transformed, our last function is defined by

putBatchForSale (u,m) = ForSale † x

where x = withUser u m and withUser u m = 〈u,m〉.
This model illustrates the use of two other useful bi-
nary operators on relations, override (· † ·) and split
(〈·, ·〉) [15]. The latter pairs the outputs of two relations
(recall Fig. 1) and the former overrides one relation
by another. Checking the simplicity of the output of
putBatchForSale leads to a 32-step derivation of which
we show only the starting and closing steps, the latter
condensed for space economy:
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img(n † x)⊆ id
⇔{override def }
img(n∪ x ·¬ (δ x))⊆ id
⇔{ img def }

(n∪ (x ·¬ (δ (n)))) · (n∪ (x ·¬ (δ (n))))◦ ⊆ id
⇔{ inv union}

(n∪ (x ·¬ (δ (n)))) · (n◦∪ (x ·¬ (δ (n)))◦)⊆ id
...

((True ∧ True) ∧ (True ∧ x ·¬ (δ (n))⊆ x))
⇔{and true,monotonicity}
(True ∧ x · id ⊆ x))
⇔{and true,comp id}
x⊆ x
⇔{ incl refl}
True

Thus the proof obligation is discharged completely. In
this case extended static checking validates the user
model and no changes are needed. The 32-step deriva-
tion took 0.14 seconds to run with version 6.8.2 of the
Haskell interpreter (GHCi) on a MacBook Pro (1.83
GHz Intel Core Duo processor).

7 Related work

Extended static checking. Extensive progress has
been achieved on extended static checking (for review
see [3]), resulting in practical tools for imperative lan-
guages [4]. These tools rely on theorem provers to find
counter examples of verification conditions [5], us-
ing a combination of techniques such as backtracking
search, matching algorithms for universally quantified
formulæ, and heuristics. As alternative or supplemen-
tal technique, we have explored proof construction
through rewriting of pointfree relational expressions.
The absence of quantifiers and variables in these ex-
pressions promises to allow a more effective proof
search and to enlarge the scope of properties that can
be practically checked for, such as those arising in
software modeling using rich data structures.

Relational programming (symbolic). MacLennan
pioneered relational programming and proposed it
as a more general substitute for functional program-
ming [16]. He keeps a separation between finite rela-
tions representing data structures, and infinite relations
representing operations. Cattrall and Runciman built
on his work to develop compilation support for rela-
tional programming, where finite and infinite relations
are mixed, and where relational expressions are made
compilable by rewriting them according to algebraic
properties [17].

Relation-algebraic analysis (finite). Modeling and
analysis of systems based on finite relational repre-
sentations is supported by systems such as Grok [18]
and RelView [19] which are, however, very different

from our approach: Grok is a calculator for finite rela-
tional algebra expressions and RelView uses BDDs to
implement relations in an efficient way.

Typed strategic rewriting. Strategic program-
ming [10] was first supported in the non-typed setting
of the Stratego language [8]. A strongly-typed combi-
nator suite was introduced as a Haskell library by the
Strafunski system [9] and later generalized into the so-
called ‘scrap-your-boilerplate’ generic programming
library [20]. We developed GADT-based strategic
combinator suites, similar to the one presented here,
for two-level data transformation [21] and transforma-
tion of pointfree and structure-shy functions [22]. A
similar use of GADTs can be found in [14].

Description logics. Description logic (DL) [23] is a
family of variable-free notations intended for knowl-
edge representation. General knowledge as well as
transient facts are represented by unary predicates
(concepts, akin to co-reflexive binary relations) and
binary predicates among them (relationships, akin to
general binary relations). Operations include union,
conjunction (intersection), negation (complement),
role restriction (denoted by ∀R.Φ and having binary-
relational interpretation ¬ (δ (R ·¬Φ)) ), and existen-
tial restriction (denoted by ∃R.> and interpretable as
δ (R ·Φ)).

Description logics are weaker than classical first-
order logic, making them decidable and amenable to
automatic reasoning. The DL community has explored
many variations of the formalism and has produced a
range of corresponding reasoning tools [24, 25]. These
tools are generally aimed at solving subsumption of
one concept by another (corresponding to the inclu-
sion relation between (co-reflexive) binary relations)
for knowledge bases with large numbers of facts. Rea-
soning and optimization methods include rule-based
rewriting of DL-expressions.

8 Concluding remarks

We have implemented a type-directed strategic rewrite
system for normalization of pointfree relational ex-
pressions and simplification or discharge of relational
propositions. We have demonstrated the utility of the
system in the context of extended static checking of
common model and program properties. We intend to
elaborate our approach in various directions.

So far, we have limited ourselves to rewriting of
pointfree expressions, relying on manual transforma-
tion of logic formulæ into relational algebra expres-
sions and back. We intend to also automate this point-
free transform.

The suite of operators and laws implemented in the
system is currently under study with respect to mini-
mality, confluence and termination. We are especially
interested in a comparison on expressiveness of the
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supported binary relational algebra with the numerous
variants of description logic.

The strategy for proof search is likely to further
evolve as well, for instance to include short cut deriva-
tions for special common cases or to eliminate dupli-
cation of proof obligations due to converse inclusions.
A thorough analysis of the formal properties of the
rewriting system we are building is one of our current
concerns.

When achieving a good degree of maturity, an as-
sessment will be needed as to whether this approach
can indeed be an alternative or supplement to existing
ESC approaches based on theorem proving. A good
test will be to try and discharge complex ESC/PF proof
obligations such as those arising from the Verified File
System project [26, 7]. Besides ESC, we envision to
apply our relational algebra rewriting system to areas
such as program optimization, program verification,
relational programming, and more.

As suggested in [26], ESC/PF could be integrated in
a Alloy-centric tool-chain complementing the bounded
verification performed by the Alloy Analyzer with
unbounded verification, thus enabling its application
to the certification of highly-critical software systems.
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