
SMT-based Schedulability Analysis using RMTL-
∫

André de Matos Pedro
CISTER/INESC TEC, ISEP
Rua Dr. António Bernardino
de Almeida 431, 4200-072

Porto, Portugal
anmap@isep.ipp.pt

David Pereira
CISTER/INESC TEC, ISEP
Rua Dr. António Bernardino
de Almeida 431, 4200-072

Porto, Portugal
dmrpe@isep.ipp.pt

Luís Miguel Pinho
CISTER/INESC TEC, ISEP
Rua Dr. António Bernardino
de Almeida 431, 4200-072

Porto, Portugal
lmp@isep.ipp.pt

Jorge Sousa Pinto
HASLab/INESC TEC, UM

Rua da Universidade
Braga, Portugal

jsp@di.uminho.pt

ABSTRACT
Several methods have been proposed for performing schedu-
lability analysis for both uni-processor and multi-processor
real-time systems. Very few of these works use the power
of formal logic to write unambiguous specifications and to
allow the usage of theorem provers for building the proofs of
interest with greater correctness guarantees. In this paper
we address this challenge by: 1) defining a formal language
that allows to specify periodic resource models; 2) describe a
transformational approach to reasoning about timing prop-
erties of resource models by transforming the latter specifi-
cations into a satisfiability modulo theories problem.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.2.4 [Software En-
gineering]: Software/Program Verification—Formal meth-
ods, Model checking ; F.4.1 [Mathematical Logic and For-
mal Languages]: Mathematical Logic —Temporal logic

Keywords
Temporal logic, Schedulability analysis, Compositional, Hard
Real-Time Systems, Embedded Systems

Copyright is held by the authors,
CRTS ’16 Porto, Portugal

1. INTRODUCTION AND MOTIVATION
Very few works adopt formal logic as the framework for spec-
ifying and reasoning about the scheduling problems at hand.
Therefore, specifications may be subject to multiple inter-
pretations, and both the construction and checking of asso-
ciated proofs becomes error prone. This is not the case when
using formal logic, since the syntax and semantics must be
defined unambiguously. Practitioners can use modern the-
orem provers to build machine checkable proofs of the un-
ambiguous specifications that they are interested in showing
for the scheduling analysis problem. Furthermore, (timed)
temporal logic becomes capable to supply the synthesis algo-
rithms with the scheduling problem that automatically out-
puts the concrete implementation via the transformation of
the specifications into, e.g., finite state machines.

In this paper we focus on the formal treatment of periodic re-
source models [6] with the goal of analyzing the composition-
ality of rigorously defined components, each one with its own
set of real-time tasks and their associated timing properties.
We transform the schedulability problem into a satisfiability
modulo theories (SMT) problem in order to integrate the de-
scription of the scheduling behavior with the schedulability
analysis. This allows to draw counter-examples when the
system is not schedulable which can then be used for the
system engineers to adapt the design accordingly.

1.1 Resource Models
As resource model (RM), we consider a model whose compo-
nents are of two possible kinds, namely, simple components
or supervisor components. A simple component is denoted
by a tuple C = (Γ, ω, ϑ, φ) where Γ = {τ1, . . . , τn} is a set
of tasks, ω is a RM, ϑ is a scheduler policy, and φ is a set
of properties defined in a program logic to monitor the be-
haviour of Γ. The supervisor components (or hypervisors)
are tuples H = (Ω, φh) where Ω is a set of periodic resource
models, and φh is a set of timed properties to check. Having
these two kinds of components is justified by the fact that
the framework was originally designed to be able to account
for the specification and reasoning about runtime monitors
as artifacts to check, upon run-time, that the RM behave as
specified.

RS-A

RS-C

ts1
εidle

Pts1 Pts1Pts1 Pts2Pts3Pts2

εidle
ts1

Pattern C

ts1 ts1ts2 ts3 ts3

estart(ωC , τ1) eresume(ωC , τ1)

ts2 ts3

estart(ωA, τ1)

ts3 ts2 ts1

Pattern A

Pts1

ρ

estart(ωA, τ1) estart(ωA, τ1)
estart(ωA, τ2)

estart(ωA, τ3)

eresume(ωA, τ3)

estart(ωA, τ2) estart(ωA, τ3)

eresume(ωA, τ3)

estop(ωA, τ1)
estop(ωA, τ2)

esleep(ωA, τ3)

estop(ωA, τ3)

esleep(ωC , τ1)

estop(ωA, τ1)

estop(ωA, τ2)

esleep(ωA, τ3)

estop(ωA, τ1)

estop(ωA, τ3)

εidle εidlets1

beginning of trace
Monitor miss the deadline (option one)

Maximum detection delay ts1

Pts1

Monitor executes (option two)

10 units

Figure 1: Example of patterns and the global trace gener-
ated by the composition of resource models.

Figure 1 shows an example of a concrete CMF instance. It
considers two components RS-A and RS-C. The compontent
RS-A consisting of ts1, ts2, and ts3; the component RS-
C considers only a task, namely ts1. We can see in the
Figure 1 two distinct patterns of execution, according to the
task events estart, esleep, eresume, and estop, each denoting
a job’s status of execution (started, sleeping, resumed, and
finished).

1.2 Adopted Formal Logic
For this work, we adopt the RMTL-

∫
logic [4], a fragment of

the MTL-
∫

[3] with a restriction over the relations that can
be defined at the term level. RMTL-

∫
was introduce with

the original aim of easing specification of periodic resource
models and their verification/enforcement of properties dur-
ing run-time. The syntax of RMTL-

∫
is defined in a mutu-

ally inductive way. Let P and V denote, respectively, non-
empty finite sets of propositions and variables. The terms
denoted by η are of the form α ∈ R, x ∈ V , or

∫ η
ϕ. They

correspond respectively, to a real-valued constant, a logic
variable, and the duration of the formula ϕ. The formulae
denoted by ϕ are of the form p ∈ P (proposition), η1 < η2
(relation between terms), ¬ϕ (negation), ϕ1 ∨ ϕ2 (disjunc-
tion), ϕ1 UI ϕ2 (interval-bounded until), ϕ1 SI ϕ2 (interval-
bounded since), or ∃xϕ (existential quantifier).

The semantical interpretation of RMTL-
∫

formulas is de-
fined elsewhere [4]. The model to interpret the formulas are
sets of time-labelled traces produced by a periodic RM. As
an example, we can use the RTML-

∫
formula∫ 10

estop(RS-A(ts1)) < 9 (1)

to denote that the task ts1 belonging to the resource model
RS-A must hold in at most 9 time units in any execution
trace before time 10 (see the time line Pattern A of the
Figure 1).

2. SPECIFICATION OF RESOURCE
MODELS

In order to allow for non-ambiguous specification of resource
models and facilitate the construction of a RMTL-

∫
formu-

lae that has specifications of these models, we propose a
simple language and transformation semantics. This lan-
guage, named L, has expressions to declare tasks and re-

(define-fun i n d i c a t o r ((mt Time)) Int
(i te (= (computep trace mt pa) TVTRUE) 1 0)

)

(declare-fun eva ln ((Time)) Int)
(assert (= 0 (eva ln 0))) (assert (f o ra l l ((x

Int)) (=> (> x 0) (= (eva ln x) (+ (eva ln (
- x 1)) (i n d i c a t o r x))))))

(assert (< (eva ln 10) 9))

Listing 1: RMTL-
∫

duration term encoding using SMT-
Libv2.

source models, together with concurrency relations (higher
priority or same priority between tasks and resource mod-
els). Let τ1, . . . , τk be task names, ρ1, . . . , ρl resource model
names, opt ∈ {�, ./} and opm ∈ {‖,�}. The syntax of L is
inductively defined by

tsk ::= τi(C,P) | tsk1 opt tsk2

rm ::= ρj(tsk,B, P) | rm1 opm rm2,

where C is a WCET, tsk is a set of tasks, B and P are
natural numbers denoting, respectively, a budget and pe-
riod. The operator � represents urgency among tasks, i.e.,
if tsk1 � tsk2 holds then tsk1 is a task with more urgency
than tsk2; the operator ./ denotes that two tasks have ex-
actly the same urgency in the system. Similarly, the opera-
tor � denotes a urgency relation over resource models, and
‖ denotes concurrent execution between two resource models
with the same level of urgency in the system. For instance,
a possible RM specification for Figure 1 can be expressed as

RC-A(ts1(10, 8) � (ts2(5, 20) ./ ts3(7, 27))) ‖
RS-C(ts1(4, 33)).

The next step of our method consists in the transformation
of a specification written in L into an equivalent RMTL-

∫
specification. We can then check for the satisfiability of a
scheduling property over the generated set of formulas, like
for instance checking if task ts1 in RS-A halts before time
9, again using the Equation 1. Next, we convert this for-
mula into the SMT-LIBv2[1] language using our tool [5] and
delegate the reasoning to the Z3 solver [2].

To better exemplify how the process is done, let us assume
the Listing 1 that shows an incomplete candidate encoding
of the point-wise semantics for the RMTL-

∫
duration term.

The uninterpreted function computep evaluates a proposi-
tion at the instant mt, and pa is a proposition representing
an event. It is true from the beginning of the event’s occur-
rence until the next event is triggered in the system. Our
goal is to find a trace (or set of traces) that satisfies these
constraints, henceforth if the answer we obtain is unsat then
the system is impossible to be scheduled (somehow the con-
straints may be incoherent); otherwise, we have a flow of
the system for which these constraints result in a schedula-
ble behaviour.

Comparatively to classic approaches, it is clear that this type
of reasoning allows to construct and extend our constraints
easily, instead of needing to reformulate every step of the
analysis (it is a constructive approach). Note also that the
expressiveness to deal with temporal order is of extremely

ID Formula Time sat/unsat

(a) �<4 a→ �2b 0.05s X

(b)
∫ 9
c < 2 1.16s X

(c) ((a ∨ b) U<10 c) 0.59s X

(d) ((a ∨ b) U<10 c) ∧
∫ 9
c < 2 1.38s X

(e) ((a ∨ b) U<10 c) ∧ 10 <
∫ 9
c 0.02s unsat

Table 1: Preliminary results from Z3 SMT solver.

importance when dealing with systems depending on a time,
which using just sets of inequalities and equalities alone can-
not provide. It is therefore important to reuse such sets of
(in-)equalities and combine them with logic connectives to
get a fine-grained description of the system. Furthermore,
the recent developments of SMT solvers positively impact
our approach, namely due to the efficiency of the underlying
reasoning methods that increases the chances of construct-
ing the proofs we need in a fully automatic way.

3. PRELIMINARY RESULTS
Currently, it is not possible to devise a fair evaluation com-
parison for our approach since there are no available tools
that consider duration terms in the way we consider in this
work. In order to provide some insight about the feasibility
of our technique, we have measured the times taken by the
Z3 SMT solver to prove satisfiability of a set of specifica-
tions, as shown in Table 1. We have considered different
structures for the presented formulae. The goal is to show
indicators of the feasibility of the approach on sets of for-
mulae with heterogeneous structural schemes, as we would
expect to occur in a real-life example.

We noticed that time to solve formulas is not directly related
with a formula’s complexity or length, as formula (a) indi-
cates. Note that formulas containing durations are slower
in average to solve than formulas containing only tempo-
ral operators, as confirmed by the time it took to solve the
satisfiability of formula (b) when compared to formula (c).
Furthermore, a mix of both temporal operators and dura-
tions does not mean slower times as exhibited in the case of
formula (d). Finally, we also have noted that showing that a
formula is unsatisfiable is in general faster than proving sat-
isfiability. The formula (e) from the Table 1 is an example
of such phenomena.

More complex examples can be seen in the tool’s repository
[5]. Our experimental results indicate that this method can
indeed be feasible for small sets of tasks and resource models.

4. CONCLUSION AND FURTHER WORK
In this paper we have described an alternative approach to
scheduling analysis following a formal based rigorous specifi-
cation of the components of the scheduling hierarchy, and its
transformation into the SMTLIBv2 language for which we
have used the Z3 solver to obtain valid schedules. Our plan
in terms of future work is to improve on the developments
done so far and on the kind of system we target, in order to
understand how the proposal scales for systems which have
characteristics very close to those used in the industry.

5. ACKNOWLEDGMENTS
This work was partially supported by National Funds through
FCT/MEC (Portuguese Foundation for Science and Tech-
nology) and co-financed by ERDF (European Regional De-
velopment Fund) under the PT2020 Partnership, within the
CISTER Research Unit (CEC/04234); also by by FCT/MEC
and the EU ARTEMIS JU within project ARTEMIS/0001/2013
- JU grant nr. 621429 (EMC2).

REFERENCES
[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The

SMT-LIB Standard: Version 2.5. Technical report,
Department of Computer Science, The University of
Iowa, 2015. Available at www.SMT-LIB.org.

[2] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. In TACAS’08/ETAPS’08, pages 337–340, 2008.

[3] Y. Lakhneche and J. Hooman. Metric temporal logic
with durations. Theor. Comput. Sci., 138(1):169–199,
1995.

[4] A. M. Pedro, D. Pereira, L.M. Pinho, and J.S. Pinto.
Logic-based schedulability analysis for compositional
hard real-time embedded systems. SIGBED Review,
12(1):56–64, 2015.

[5] A. M. Pedro, D. Pereira, L.M. Pinho, and J.S. Pinto.
rmtld3synth Synthesis Tool, 2016. Available at
https://github.com/cistergit/rmtld3synth/,
version 0.1-alpha.

[6] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model. ACM TECS,
7(3):30:1–30:39, 2008.

