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Abstract

Generalized additive models are well-known as a powerful and palatable predictive modeling tech-
nique. Scorecards, the discretized version of generalized additive models, are a long-established method
in the industry, due to its balance between simplicity and performance. Scorecards are easy to apply and
easy to understand. Moreover, in spite of their simplicity, scorecards can model nonlinear relationships
between the inputs and the value to be predicted. In the scientific community, scorecards have been
largely overlooked in favor of more recent models such as neural networks or support vector machines.
In this paper we address scorecard development, introducing a new formulation more adapted to support
regularization. We tackle both the binary and the ordinal data classification problems. In both settings,
the proposed methodology shows advantages when evaluated in real datasets.

1. Introduction

Learning from examples is one of the most successful areas in machine learning, having predictive

modelling as one of the fundamental learning frameworks. Several methods for the predictive modelling

of data have been proposed during the last decades, ranging from simple techniques as homoscedastic

Gaussian models to more evolved solutions as neural networks.

According to the nature of their assumptions, solutions can be generically considered as paramet-

ric or non-parametric. Both parametric and non-parametric approaches have different advantages and

drawbacks. Parametric models are generally understood as more interpretable and simpler than their

non-parametric equivalents. Also, they generally allow the input of relevant domain knowledge by ex-

perts which can frequently improve the quality of the solution for a given problem. On the other hand,

non-parametric technologies can approximate any relationship, no matter how complicated, between a
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set of predictive variables and a set of classification labels or a scoring variable, being therefore more

versatile and flexible than parametric models. Still, their enormous flexibility is often accompanied by a

lack of model interpretability which make their use unattractive in many important business applications

of modelling like medical decision support and credit scoring.

Scorecards based on generalized additive models, a family of well-known, powerful, yet interpretable,

predictive modelling techniques with a wide applicability range, have been used in business applications

like credit scoring. Scorecards seem to be a good solution to fulfil the gap between parametric and

non-parametric predictive modelling techniques, providing a good trade-off between interpretability and

predictive power.

In the present work, we introduce a new formulation for scorecard design by adopting a differential

encoding, which facilitates the regularization process. Additionally, we extend the formulation for ordi-

nal data, which is not typically considered in scorecard design. The experimental comparison confirms

the interest of the proposed approach.

This paper is organized as follows: Section I contains the present introduction; Section II presents the

state of the art of predictive modelling techniques commonly used in practice to develop scorecards, and

Section III summarizes the theoretical background needed for the construction of the scorecards used in

this paper. In section IV we describe the general process of scorecard development and the proposed

methodology; Section V summarizes the results of the experimental studied carried out in the context of

this research and section VI presents the main conclusions of this paper.

2. Related Work

The predictive modelling problem consists in inferring, from a set of labelled observations (training

set), the probable class of unknown observations (test set). Assume, in the following, thatX1, X2, . . . , Xp

is a collection of input continuous variables (features), Y is a target variable (to be predicted) and

{(yi, xi1 , . . . , xip)}, where i = 1, . . . , n, is a set of n independent realizations of Y,X1, X2, . . . , Xp.

In this paper we are interested in both binary (Y = {0, 1}) and ordinal multiclass prediction (Y =

{C1, C2, C3, . . . , CK} such that C1 ≺ C2 ≺ C3 ≺ . . . ≺ CK , where ≺ defines an order in Y ).
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2.1. Generalized Additive Models

Generalized Additive Models [15] (GAM), introduced by Hastie and Tibshirani, are an extension of

Generalized Linear Models (GLM) which, on their turn, are an extension of Linear Regression (LR).

Linear Regression assumes that E(Y |X1, X2, . . . , Xp) verifies a linear relationship in the input vari-

ables, i.e., E(Y |X1, X2, . . . , Xp) = β0 + β1X1 + β2X2 + . . . + βpXp for some coefficients βi, where

i = 0, 1, . . . , p. The general linear regression expression is yi = β1xi 1 + β2xi 2 + . . . βpxi p + εi, where

εi represents an unknown disturbance variable, assumed to follow a normal distribution.

The hypothesis of normally distributed regression errors is very restrictive and to overcome this prob-

lem, Nelder and Wedderburn proposed the Generalized Linear Models (GLM) [22], expanding the ap-

plicability of regression analysis beyond disturbances with normal distribution.

GLM consist of three parts: a random component, a systematic component and a link function ag-

gregating both components. The random part of the GLM is related with the assumption that the target

variable Y has exponential density of the form fY (y, θ, φ) = exp{yθ−b(θ)
a(φ)

+ c(y, φ)}, where θ and φ

are named the natural and the scale parameters, respectively. The systematic component of the GLM

consists in the assumption of a deterministic form for the predictor η, which is supposed to be linear on

the predictive variables, i.e., η = β0 + β1X1 + . . .+ βpXp. The link function g(.) brings the random and

the systematic components together by establishing that the expected value of Y , E(Y ) = µ, is related

to the predictive variables as g(µ) = η.

GAM generalizes the previous regression procedure by substituting the linear predictor η with the

more general version η = s0 +
∑p

j=1 sj(Xj), where sj(.) are smooth functions standardized to ver-

ify E(sj(Xj)) = 0 for j = 1, . . . , p. Using GAM in practice relies on two well-known estimation

algorithms from regression analysis, namely, the local scoring algorithm [5] and the backfitting algo-

rithm [15], implemented as nested loops: inside each step of the local scoring algorithm (outer loop), a

weighted backfitting algorithm (inner loop) is used until convergence or the residual sum of squares fails

to decrease; then, based on the estimates of the backfitting algorithm, a new set of weights is calculated

and the next iteration of the scoring algorithm starts. The scoring algorithm stops when a convergence
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criterion is satisfied or when the deviance of the estimates stop decreasing.

The functions sj(.) may also be specified non-parametrically. As previously mentioned, the use of

parametric techniques, although convenient for their interpretability, may result in hindered predictive

power. Waal et al. [11] proposed a compromise between the simplicity and interpretability of logistic re-

gression and the predictive power of neural networks by means of a generalized additive neural network

(GANN). Although usually presented, as previously done, as extensions of linear models, GAM can be

understood as constrained forms of artificial neural networks, in which case they acquire the designa-

tion of GANN. Estimating GANN consists in assembling a separate multilayer perceptron with a single

hidden layer of neurons for each input variable Xj .

Nevertheless, in many applications found in literature, especially in the field of credit scoring, logistic

regression [18], a particular member of the GAM family, is still a model of choice given its simplicity

and the absolute need of interpretability.

2.2. Scorecards

Scorecards are GAMs, where the functions sj(.) are piece-wise constant. The general approach to

scorecard development involves the binning of the predictive variables and the specification of a fitting

objective function, which includes specifying a target for prediction and guiding the search for the best

model. The literature on scorecard design is scarce, being more associated with commercial solutions [1,

2]. Next, we refresh some concepts to facilitate the presentation of scorecard design that will follow.

2.3. AdaBoost

Although not typically studied as such, Adaboost (Adaptive Boosting), when using a decision stump

as the weak learner, can also be understood as a scorecard. AdaBoost is a boosting algorithm intro-

duced by Freund and Schapire [14]. Boosting algorithms are a part of a big set of machine learning

techniques called ensemble methods which general idea is to use several models to classify observations

and combine them together to obtain a classifier with a predictive performance superior than any of its

constituents. AdaBoost uses a weak learner to classify observations. A weak learner is defined as a
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classifier which is only slightly correlated with the true data labels. In the case of binary prediction, a

weak learner is a classifier which is only slightly better than throwing a coin and deciding an object’s

class according to the trial’s result.

During each iteration, the algorithm trains a weak learner ht(xi) using an iteratively determined dis-

tribution and selects the weak hypothesis minimizing the expected error rate. After selecting the best

weak hypothesis ht for the distribution Dt, the observations xi correctly identified by ht are weighted

less than those misclassified, so that the algorithm will, when fitting a new weak hypothesis to Dt+1

in the next iteration, select one such rule which identifies better those observations that its predecessor

failed. The output of the AdaBoost algorithm is a final or combined hypothesis H . H is simply the

sign of a weighted combination of the weak hypothesis, i.e., H is a weighted majority rule of the weak

classifiers, H(x) = sign
(∑T

t=1 αtht(x)
)

.

AdaBoost is a state of the art, widely-used classification method. Addressing the aforementioned di-

chotomy between statistical methods and machine learning methods, Creamer and Freund [10] reported

on the use of AdaBoost for the development of scorecards to classify equity investments. Their exper-

imental study points out that AdaBoost performed in line with logistic regression, while being able to

overcome some of its problems.

3. Background

We detail next some of the discretization techniques of continuous variable and discuss fitting objec-

tive functions together with regularization techniques.

3.1. Discretization Methods

Many machine learning algorithms are known to perform better if data has been discretized (binned)

prior to classification [19]. Determining a discretization scheme for Xj , where j = 1, . . . , p, consists

simply in determining setsDj = {dj 1, . . . , dj n} such thatXj =
⋃n−1
i=1 [dj i, dj i+1] and

⋂n−1
i=1 ]dj i, dj i+1[=

∅, i.e., partitioning each feature Xj,∀j = 1, . . . , p. Each dj i is said to be a cut-off point for the variable

Xj . In the context of predictive modelling, the general goal of binning is to discretize the continuous
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features into a (possibly small) number of intervals with good class coherence, maximizing the inter-

dependence between class labels and improving, therefore, prediction accuracy. Discretization methods

work on the thin line between information quality, i.e., obtaining homogeneous bins according to the

class attribute to predict and statistical quality, i.e., guaranteeing sufficient sample size in every bin to

ensure inference quality.

During the last few years, many discretization methods have been proposed by machine learning

researchers [19]. These can be grouped into several categories according to different aspects of their

nature: 1) supervised or unsupervised, 2) direct or incremental, 3) global or local), 4) static or dynamic

and 5) top-down or bottom-up.

Unsupervised methods do not make use of the class membership information during the discretization

process. The simplest, most widely known and used algorithms of this kind include the equal-width and

equal-frequency interval binning algorithms.

Equal-width and equal-frequency interval binning algorithms are very similar. The first consists sim-

ply in determining the minimum and maximum of the continuous feature and dividing this range into a

user-defined number of bins with equal width. The second, on the other hand, divides the range into a

user-defined number of bins such that each bin contains the same number of observations.

Opposed to unsupervised methods, supervised methods use the class membership estimation to esti-

mate the cut-off points. A study carried out by Dougherty seems to point out that supervised methods

outperform unsupervised methods [12].

Incremental methods start with a simple discretization scheme and improve this initial discretization

by iteratively adding cut-off points until a certain tolerance value is achieved. Direct procedures, on the

other hand, start with a user-defined number of intervals (cf. equal-width interval binning algorithm).

The number of bins in an indirect method is not known a priori and depends on the toleration criterion

specified.

Algorithms which discretize continuous features as a pre-processing step, i.e., prior to classification,

are called global methods. Conversely, if discretization is done during the execution of a classifier as,

for instance, the decision tree generating C4.5 algorithm, they are called local methods.
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Static methods discretize one input feature at a time, while methods which take features’ interaction

into account are named dynamic.

Top-down algorithms start with one big interval containing all feature’s values and partition it in-

creasingly into smaller and smaller intervals. Bottom-up methods, on the contrary, consider the intervals

defined by a set of boundary points and consecutively combine them together.

In the rest of this section, we introduce two state-of-the-art discretization techniques and reinterpret

AdaBoost as a discretization method.

3.1.1 CAIM

The CAIM (Class-Attribute Interdependence Maximization) algorithm [21] is a supervised, indirect,

global, static, top-down discretization method. CAIM is a fully automatic procedure, not requiring user

intervention. The goal of the CAIM algorithm is to maximize the dependence between continuous fea-

tures and the labelling variable, assuring at the same time that the number of discrete intervals obtained

is small.

AssumeX is one training set for a certain classification task containingM examples belonging to one

of S classes. Let F indicate any of the continuous features present in X and let C denote a labelling

variable. Remembering the definition given earlier, a discretization scheme on F is simply a set D =

{d0, d1, . . . , dn} partitioning F .

Consider that D is sorted, in which case d0 = min(F ) and dn = max(F ). Any value present in F can

be associated with one and only one bin defined by the boundary set D. In this context, it is possible to

construct a two-dimensional frequency matrix (called quanta matrix) relating the binning of F and the

labelling variable C. Table 1 illustrates the general structure of a quanta matrix.

In Table 1, qir stands for the number of observations belonging, simultaneously, to the interval

]dr−1, dr] and the ith class in C. Mi+ denotes the number of observations belonging to the ith class in C

andM+r represents the number of observations contained in the interval ]dr−1, dr], where i = 1, 2, . . . , S

and r = 1, 2, . . . , n. The CAIM criterion, measuring the dependence between the labelling variable C

and the discretization variable D for feature F , is CAIM(C,D|F ) = n−1
∑n

r=1
maxr2

M+r
, where n is the
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Interval
Class [d0, d1] . . . ]di−1, dr] . . . ]dn−1, dn] Class Total
C1 q11 . . . q1r . . . q1n M1+
...

... . . .
... . . .

...
...

Ci qi1 . . . qir . . . qin Mi+
...

... . . .
... . . .

...
...

CS qS1 . . . qSr . . . qSn MS+

Interval Total M+1 . . . M+r . . . M+n M

Table 1. General structure of the quanta matrix

number of bins, maxr is the maximum of the qir values (i.e., the maximum of the rth column of the

quanta matrix).

The CAIM criterion favours discretization schemes in which the observations within each bin belong

to the same class. The sum value is divided by the number of intervals n to favor discretization schemes

with a small number of intervals. The higher the CAIM criterion value, the higher the correlation be-

tween the labelling variable C and the discretized variable D. Since finding the discretization scheme

with the globally optimal CAIM value would require a strong computational cost, CAIM algorithm only

finds a local maximum CAIM to generate a sub-optimal discretization scheme.

3.1.2 FCAIM

The FCAIM [20] (Fast Class-Attribute Interdependence) algorithm is a simple modification of the CAIM

algorithm, trying to maintain all its advantages, namely, guaranteeing the highest interdependency be-

tween the labelling variable and the discretization scheme, and diminishing computational effort.

FCAIM and CAIM algorithms are identical apart from one instruction. CAIM algorithm initializes

considering the minimum and maximum values of each continuous feature and additionally all the mid-

points of all the feature’s adjacent values. FCAIM algorithm initializes, on the contrary, considering

the minimum and maximum values of each continuous feature and all the midpoints of all the feature’s

adjacent values belonging to different classes. This new definition allows speeding up the discretization

process as the number of boundary points to test greatly decreases.

FCAIM criterion relies on the results published by Fayyad and Irani [13] stating that for discretization
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schemes using entropy-based criteria, the generated boundary points are always between two data points

belonging to two different classes. However, there is no proof that these results are valid for the CAIM

criterion. Nonetheless, experimental results seem to indicate that the overall quality of the discretization

provided by FCAIM is similar to that of CAIM [20].

3.1.3 AdaBoost

The AdaBoost algorithm can be used as a discretization method. AdaBoost will, for each iteration

t = 1, . . . , T , pick the best weak learner available over the features set. This procedure implicitly defines

a cascade of selected features and their respective threshold values which can be used to assemble a

discretization scheme for all the selected features. Unlike the previously introduced methods, AdaBoost

does not necessarily discretize all input features. Used as a pre-processing method, AdaBoost is also a

variable selection mechanism.

3.2. Regularization

As already referred, the goal of the traditional multivariate linear regression is to find the best linear

combination of X1, X2, . . . , Xp that predicts Y . This problem can be formulated as finding adequate

values of the coefficients wj in the model yi = w0 +
∑p

j=1 xijwj , where i = 1, . . . , n.

Let X denote the n × p matrix which columns are X1, . . . , Xp, W = (w1, w2, . . . , wp)
T and Y =

(y1, y2, . . . , yn)
T . Setting as the fitting objective function the Sum of Squares (RSS), defined as RSS =∑n

i=1 (yi − w0 −
∑p

j=1 xijwj)
2, we get, under typical assumptions, W = (XTX)−1XTY , where XTX

is the Hessian matrix of RSS.

It is well known that the sole minimization of the error in the training set may incur in model overfit-

ting. It is therefore typical to introduce regularization both to prevent overfitting and to solve ill-posed

problems, since the Hessian matrix XTX is often singular or nearly singular. From a statistical point

of view, regularization can be seen as introducing the prior knowledge that wj should not be too large.

From an optimization point of view, regularization can be interpreted as a balance mechanism between

large values of the continuous features and the target variable, i.e., a compromise between minimizing
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the training error and having small weights. In this sense, regularization is a method for improving

performance.

In its simplest formulation, regularization consists in adding a positive constant to the diagonal of

the Hessian matrix XTX (L2 regularization). The new expression for the explicit calculation of the

weight vector W becomes W = (XTX + λI)−1XTY , where I denotes a compatible identity matrix

and λ ∈ R+ is the regularization parameter. The new vector W minimizes the modified loss function

RSS = ||XW − y||2 + λ||W ||2. In practice, w0 is generally not penalized to avoid making the model

dependent on the mean value of the data.

While being simple, L2 regularization does not exactly promote model parsimony. The models es-

timated using this technique typically have non-zero values for all weights, which often makes model

interpretation more challenging. Addressing this problem, Tibshirani proposed the Least Absolute Se-

lection and Shrinkage Operator (LASSO) [27]. LASSO is a technique to ‘shrink’ weights (same goal

as L2 regularization) and simultaneously force higher values of the regularization parameter λ to make

weights more similar with each other to minimize their joint L2-norm. This is achieved considering L1

regularization.

With L1 regulation, the RSS function becomes RSS = ||XW − Y ||2 + λ||W ||1, where ||.||1 stands

for the L1 norm (taxicab). This new problem is still an unconstrained convex optimization problem in

terms of W . However, RSS is now a non-differentiable function each time, at least, one element of W is

zero. Consequentially, obtaining a closed form solution for W is impossible. Many solutions have been

proposed to overcome this problem [24].

One interesting property of LASSO is that it works as a weight estimation and variable selection

procedure simultaneously. LASSO assigns the weight 0 to all input features considered irrelevant. Ex-

perimental evidence shows that L1 regularization tends to outperform L2 regularization if irrelevant

features are present among the input variables [16].

Despite being a great contribution to ensure model parsimony and interpretability, LASSO also has

some limitations. Hastie and Zou [28] identified two problems with LASSO which compromise its

success as a variable selection mechanism: if p > n, LASSO selects at the most n variables before
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saturating and given a strong pairwise correlation between predictive variables, LASSO selects only one

variable without caring which. On the other hand, Tibshirani observed that in the usual situation in

which n > p, if high correlations between predictive variables are present, the prediction performance

of LASSO is inferior to that of L2 regularization.

The elastic net [28] was proposed by Hastie and Zou to overcome these issues. Elastic nets bring

the L1 and L2 regularization penalizations together by considering the criterion LW (λ1, λ2) = ||XW −

Y ||2 + λ1||W ||1 + λ2||W ||2, where λ1 and λ2 control the L1 and L2 regularization, respectively.

Defining α = λ2
λ1+λ2

, this formulation is equivalent to determining Ŵ in the constrained least squares

problem given by Ŵ = argminW ||XW − Y ||2 subject to the constraint (1 − α)||W ||1 + αW ||2|| ≤ t

for some t ∈ R+. This constraint is called the elastic net penalty, which is a convex combination of the

L1 and L2 penalties. Notice that when α = 1 the elastic net becomes L2 regularization and when α = 0,

it becomes L1 regularization. Additionally, if α ∈]0, 1[, the elastic net penalty is convex and conserves,

therefore, the properties of both L1 and L2 regulatization methods.

4. Constructing Scorecards

Consider, for instance, the problem of classifying a certain group of bank clients, who subscribed

some credit service, in two groups, according to the risk of not being able to successfully repay their

credit.

Suppose that previous experience from credit analysis suggests that X1: “client’s age in years”, X2:

“client’s monthly salary (in K Euros)”, X3: “number of client’s late payments during the last year” and

X4: “percentage of credit paid” are adequate features for this predictive modelling problem. Assume as

well that enough statistical history is available to assemble a discretization scheme for the features and

weight the respective bins.

A scorecard is, in practice, a table-like, discrete classification scheme as depicted in Table 2.

To classify a new observation, it is necessary to calculate its score value and compare it with a pre-

calculated threshold. Typically the threshold is set according to business rules and may be periodically

updated due to changes in the operational conditions. For example, if a certain client is 23 years old,
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X1 X2 X3 X4

B Range W B Range W B Value W B Range W
1 [18, 25[ 1 1 ]0, 0.5] 5 1 [0, 1] 20 1 [0, 0.05] 1
2 [25, 40[ 3 2 ]0.5, 0.75] 6 2 ]1, 3] 8 2 ]0.05, 0.1] 5
3 [40, 65[ 5 3 ]0.75, 1] 8 3 ]3, 4] 5 3 ]0.1, 0.2] 10
4 > 65 7 4 ]1, 1.5] 10 4 > 4 1 4 ]0.2, 0.3] 15

5 ]1.5, 2] 15 5 ]0.3, 0.5] 20
6 > 2 35 6 ]0.5, 0.8] 40

7 ]0.8, 1] 100

Table 2. Example of a Scorecard. The ‘W’ column represents the score due to the corresponding feature.

has a monthly salary of 1.4K Euros, always paid his/her loan in time and has already repaid 30% of the

credit, he/she will have a score of 46 (1+10+20+15) and, for a threshold of 30, belongs to the safe group.

Formally, a scorecard can be understood as a particular case of a generalized additive model, in which

sj(Xj) are piecewise-constant functions. The determination of sj(.) consists in estimating a discretiza-

tion scheme for each continuous feature Xj and the value of sj(Xj) for each bin in Xj .

Several alternatives exist to compute both the discretization scheme and the weighting factors which

can or cannot include expert domain knowledge (cf. Section III). Ideally, the computation of the dis-

cretization scheme would be done together with the weight estimation process. This is, however, a diffi-

cult problem and in practice, weight estimation follows the determination of the discretization scheme.

Algorithm 1 summarizes the usual process of scorecard development. In practice, data cleansing takes

place prior to scorecard construction.

Algorithm 1 Scorecard
Require: Training set X

1) Infer a discretization scheme D from X
2) Obtain P , a discretized version of X using D
3) Infer a set of weights W for each binned feature in P
return W

The techniques discussed for GLM (cf. Section III) can be used to estimate scorecard weights. In

practice, it is just necessary to construct an appropriate input matrix P to replace the matrix X of the

continuous features. Several option exist to perform this coding.
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4.1. Weight of Evidence coding

A common practice is to compute the weights in two steps [1, 2]. First, for each feature, the relative

importance (score) of each bin is estimated; then, the relative importance of each feature is optimized.

A standard way to estimate the relative importance of each bin is using the weight of evidence (WOE)

[1, 2]. This effectively replaces the original feature value by the WOE computed in the corresponding

bin.

The WOE value is based on the odds ratio of regression analysis and measures the strength of a group-

ing variable to separate between two groups. WOE is commonly defined as WOE = ln
(

#{Y==1}
#{Y==0}

)
,

where Y == 1 and Y == 0 codify, respectively, the positive and the negative outcomes. This definition

allows the computation of the WOE value for each bin i of feature j, denoted WOEji. Since in practice

some bins may have just a few observations (or no observations at all in the equal width discretiza-

tion method), we adopt the Laplace’s rule of succession (also known as Laplace correction or add-one

smoothing) to estimate the underlying probabilities:

WOE = ln

(
#{Y == 1}+ 1

#{Y == 0}+ 1

)
, (1)

The additive scorecard becomes

Score = W0 +

p∑
j=1

qj∑
i=2

WjWOEji. (2)

Note that in this case the score value for bin i of feature j is Wji = WjWOEji. The optimization of

the weights among the features, Wj , consists in solving a linear problem in the WOE-coded data matrix,

PWOE .

4.2. 1-out-of-K coding

A potentially better approach than the WOE coding is to simultaneously optimize the weights within

each feature and among all features. As already seen, the mathematical formula for an additive scorecard
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can be written as

Score = s0 +

p∑
j=1

sj(Xj),

where s0 is the intercept and sj(.) can be written as

sj =

qj∑
i=1

WjiPji, (3)

where qj is the number of bins in feature j, Wji is the score weight associated with the bin i of feature j

and Pji is a dummy indicator variable of a feature, e.g.,

Pji =


1 if Xj takes value in bin i

0 otherwise

This coding scheme of Pj is commonly named 1-out-of-q coding scheme in which Pj is a vector of

length qj such that if the feature takes value in bin i, then all elements Pji of Pj are zero except one,

which takes the value 1.

Using the fact that
∑

i Pji = 1, sj(.) can be rewritten as

sj = Wj1 +

qj∑
i=2

(Wji −Wj1)Pji (4)

and the overall score as

Score = s0 +

p∑
j=1

Wj1 +

p∑
j=1

qj∑
i=2

(Wji −Wj1)Pji (5)

Noticing that
∑

jWj1 can be absorbed in the intercept, the model can finally be formulated as

Score = W0 +

p∑
j=1

qj∑
i=2

WjiPji (6)
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This results in a linear model defined over an extended feature set, where each feature is replaced by

a vector of length qj − 1. The training set can be summarized in a n×
(∑p

j=1(qj − 1)
)
P matrix. Each

row of P corresponds to an observation in the discretized training set for which Pji is set to 1 whenever

the value of the jth continuous feature lies within its ith ≥ 2nd bin. This concept is illustrated in Table 3.

w12 w13 . . . w1q1 . . . wp2 wp3 . . . wpqp
Obs. 1 0 0 . . . 1 . . . 1 0 . . . 0
Obs. 2 0 1 . . . 0 . . . 0 1 . . . 0

... 0 0 . . . 0 . . . 0 0 . . . 0
Obs. N 1 0 . . . 0 . . . 0 0 . . . 0

Table 3. Exemplification of the general structure of the indicator matrix P

4.3. Differential-coding

In this work we propose an alternative to the direct coding of the weights associated with each bin,

coding the differences between weights of consecutive bins: Wji = Wji−1 + δji. This options leads

immediately to Wji =
∑i

`=1 δj`. Now the model (6) can the rewritten as

Score = W0 +

p∑
j=1

qj∑
i=2

(
i∑

`=2

δj`

)
Pji (7)

After a simple algebraic manipulation, one gets the final formulation:

Score = δ0 +

p∑
j=1

qj∑
i=2

δjiP
?
ji, (8)

where P ? is a binary, n×
(∑p

j=1(qp − 1)
)

matrix, with each row corresponding to an observation in the

discretized training set for which P ?
ji is set to 1 whenever the value of the jth continuous feature lies in

a bin ` with ` ≥ i ≥ 2. This concept is illustrated in Table 4.

The key advantage of the proposed differential-coding comes into play when regularization is re-

quired. While in the 1-out-of-K coding regularization will enforce small values for the weights – which

is likely a not intuitive assumption –, in the differential-coding regularization will promote smooth vari-

ations in the score between consecutive bins – a much more intuitive and desirable setting.
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δ12 δ13 . . . δ1q1 . . . δp2 δp3 . . . δpqp
Obs. 1 1 1 . . . 1 . . . 1 0 . . . 0
Obs. 2 1 1 . . . 0 . . . 1 1 . . . 0

... 0 0 . . . 0 . . . 0 0 . . . 0
Obs. N 1 0 . . . 0 . . . 0 0 . . . 0

Table 4. Exemplification of the general structure of the indicator matrix P ?

4.4. Fitting Objective Function

All coding options we considered, WOE, 1-out-of-K, and differential-coding, result in linear classi-

fication models in the new space defined by PWOE, P , and P ?. Conventional linear methods may now

be applied in order estimate scorecard weights. It is important to emphasize that, although the problem

being solved is linear, the resulting scorecard is still a nonlinear model in the original features, due to

the binning process.

Almost all the methodologies aim at minimizing the “misclassification error rate” (MER). Since the

direct minimization of MER is a difficult problem, such goal is often replaced by more amenable loss

functions as the hinge or squared error functions.

Other methodologies focus on the optimization of the “area under the curve” (AUC). The AUC is the

area spanned by any Receiver Operating Characteristics (ROC) curve, which consists, in the case of a

binary problem, in expressing the true positive rate as a function of the false positive rate. Frequently,

when dealing with a binary classification problem, obtaining a classifier which minimizes MER may not

be the most desired situation. In fact, it is often more important to achieve a high correlation between

output scores and the probability of correct classification.

For even class distributions, the average AUC value is identical to the classifier’s accuracy. On the

other hand, for uneven class distributions, the average AUC value is a monotonic function of the clas-

sifier’s accuracy. This means, as observed by Cortes and Mohri [9] that, on average, there is no gain

in designing specific learning algorithms for AUC maximization for even class distributions. However,

for uneven class distributions, classifiers exhibiting equally low accuracy values may yield significantly

different AUC values.

Along the last decades, several estimation methods for AUC maximization have been proposed. Most
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of these methods consist in a reformulation of existent estimation techniques through the customization

of each method’s objective function to achieve AUC maximization. Herbrich, Grapel and Obermayer

[17] introduced a framework for ordinal regression using support vector machines, detailing the use of

these classifiers for AUC optimization. Posterior research on AUC optimization focus on improvements

of this technique and the study of other techniques such as linear and quadratic programming, least

squares estimation, among others.

4.5. Scorecards for Ordinal Data

One of the main challenges when designing models for ordinal data is the proper integration of the

order information in the design process. Several of the state of the art methods impose, explicitly or

implicitly, constraints among the boundaries between the classes, assuming for instance that they should

not cross each other [25, 26, 6]. In the linear setting, this process corresponds to find a direction common

to all boundaries and a threshold specific to each boundary such that the MER is minimized. In case of

the scorecard design, it consists in simultaneously finding the weights and an adequate set of boundary

points {o1, o2, . . . , on}, where o1 < o2 < . . . < on, defining a partition of the score variable

Score =]−∞, o1]∪]o1, o2] ∪ . . .∪]on−1, on]∪]on,+∞[.

The label i of a new observation is then predicted using its estimated score s∗ by determining the unique

value of i satisfying s∗ > oi−1 ∧ s∗ ≤ oi.

In some state of the art approaches, the design of methods embodying this rational requires the design

of algorithms specifically for this task [25, 26]. Other methods [6] can be framed under the single binary

classifier (SBC) reduction, an approach for solving multiclass problems via binary classification rely-

ing on a single, standard binary classifier. SBC reductions can be obtained by embedding the original

problem in a higher-dimensional space consisting of the original features, as well as one or more other

features determined by fixed vectors, designated here as extension features. This embedding is imple-

mented by replicating the training set points so that a copy of the original point is concatenated with

17



each of the extension features vectors. The binary labels of the replicated points are set to maintain a

particular structure in the extended space. This construction results in an instance of an artificial binary

problem, which is fed to a binary learning algorithm that outputs a single binary classifier. To classify

a new point, the point is replicated and extended similarly and the resulting replicas are fed to the bi-

nary classifier, which generates a number of signals, one for each replica. The class is determined as a

function of these signals. This is the approach we propose and adopt in this work.

In the following experimental work, we compare the aforementioned approaches for scorecard design

for data with both binary and ordinal targets.

5. Experimental Study

The results of the experimental study carried out to evaluate the performance of the proposed differential-

coding and of different alternatives for scorecard development are presented next.

5.1. Datasets

Table 5 presents the characteristics of the datasets used.

Group 1 - Binary Target
Acronym Nr. Obs. Nr. Var. Class Distribution
APP [3] 106 7 [85, 21]
IDS [4] 351 32 [126, 225]

LIVER [4] 345 7 [145, 200]
PIDD [4] 725 8 [476, 249]

WDBC [4] 569 32 [357, 212]
Group 2 - Ordinal Target

Acronym Nr. Obs. Nr. Var. Class Distribution
BALANCE 625 4 [288, 49, 288]

ERA 1000 4 [92, 142, 181, 172, 158, 118, 88, 31, 18]
ESL 488 4 [2, 12, 38, 100, 116, 135, 62, 19, 4]
LEV 1000 4 [93, 280, 403, 197, 27]
SWD 1000 10 [284, 438, 278]
BCCT 1144 30 [160, 592, 272, 120]

Table 5. List of considered datasets

Datasets from Group 1 were used as collected from the indicated sources with exception of IDS and

LIVER. Both the missing values of IDS as well as its second feature (column of zeros) were removed.
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The last feature of LIVER was removed, as it was not a proper continuous feature. All labelling variables

were codified as {0, 1}.

Datasets from Group 2 were collected from the Weka website and they were adjusted so that both

discrete features and the labelling variables would match the coding {1, 2, . . . , N}. The exception is the

BCCT dataset from a breast cancer application [7].

5.2. Methodology

5.2.1 Binary Problems

Each discretization method introduced (AdaBoost1, CAIM, FCAIM, Equal Width2 and Equal Frequency2)

was combined with a different weight estimation method to construct a unique scorecard.

The following objective functions aiming for MER minimization were considered, namely: Least

Squares (RSS), Maximum Likelihood (GLM with binomial response and logit link function) and margin

maximization (linear SVM).

LS and ML objective functions were regularized by means of an elastic net, with the α parameter

being determined by grid search over the range {0.01, 0.1, 0.4, 0.6, 0.9, 0.99}. These calculations were

performed using the functions lasso and lassoglm in Matlab R2013a.

The linear SVM parameter, C, was determined by grid-search over the range {2−10, 2−9, . . . , 29, 210}.

All results involving SVM were obtained through the use of the library LIBSVM [8] (Version 3.17).

Additionally, the objective functions AUC-SVM [17] and AUC-RLS [23] using, respectively, sup-

port vector machines and regularized least squares were considered for comparison. AUC-RLS was

regularized by means of Ridge regression with λ ∈ {10−8, 10−4, 10−1, 1, 5, 10, 15, 20, 50, 100, 250} and

AUC-SVM used a linear SVM as previously described.

All scorecard weight estimation techniques except AUC-SVM used 10-fold cross validation. AUC-

SVM was trained with 3-fold cross validation for computational reasons.

To assess the relative performance of scorecards we have applied other classifiers (logistic regression,

1AdaBoost’s parameter T was set to 100.
2A division in 10 bins was considered.
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nonlinear SVM, LDA and AdaBoost) to the same cross validation sets. SVM were tuned considering a

radial basis function, with parameters (γ, C) determined by grid search over {2−10, 2−9, . . . , 29, 210} ×

{2−10, 2−9, . . . , 29, 210}. Logistic regression was obtained using Matlab’s function glmfit. These clas-

sifiers were selected to compare scorecard performance with simple, well-established linear techniques

like LDA and powerful, more recent, nonlinear techniques like SVM. Furthermore, AdaBoost was in-

cluded given its usual good performance and it is also another option for scorecard development. Lo-

gistic regression was included as it is considered state-of-the-art in many practical uses of scorecard

development.

5.2.2 Ordinal Problems

In this paper, we considered two alternatives for the estimation of scorecard weights for ordinal data,

namely regularized least squares (oRLS) and the data replication method mapped to linear support vector

machines (oSVM). Cardoso et. al. [6] introduced the data replication method, a new machine learning

paradigm specifically intended for ordinal classification, which reduces the ordinal problem to a single,

standard binary problem that can be solved by applying well-established algorithms. For the oRLS

method, class values were replaced by the middle values of K equal-sized intervals in the range [0, 1)

and the weights found by square error minimization. Method oRLS were regularized in the same fashion

as AUC-RLS and oSVM, respectively. Both methods were trained with 10-fold cross validation.

Cardoso et. al. [7] carried an experimental study on ordinal data classification using kernel discrim-

inant analysis. This study compared three linear discriminant analysis based approaches: a first model

based on the Frank and Hall framework (FH LDA), a second model based on the data replication method

(oLDA) and a third, more recent model using kernel discriminant learning ordinal regression (KDLOR).

Their conclusions point out that KDLOR does not offer any advantage over FH LDA and oLDA and

that these two were comparable in terms of accuracy, with a slight advantage to oLDA.

Motivated by these results, we have also compared scorecards’ performance with oLDA. For compu-

tational reasons, oLDA was trained with 3-fold cross validation. The developed classifiers for ordinal

data were evaluated considering the mean absolute error (MAE).
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5.2.3 Test procedure

Datasets were randomly split into training (75% of data) and test sets (25% of data). The splitting

process was repeated 40 times to ensure stability.

5.3. Results

5.3.1 Binary Problems

Tables 6, 7, and 8 resume the misclassification error rates obtained for the developed scorecards.

APP IDS LIVER PIDD WDBC
LS ML SVM LS ML SVM LS ML SVM LS ML SVM LS ML SVM

AdaBoost 17.4 16.8 18.5 10.1 9.2 10.1 33.9 31.9 37.2 27.0 26.1 24.7 5.3 3.9 4.0
CAIM 13.5 13.7 15.2 7.9 7.9 8.2 38.2 37.9 38.2 25.9 26.1 26.0 5.2 4.5 6.4

FCAIM 13.2 12.6 17.5 8.0 8.2 8.1 40.5 40.7 40.6 26.5 26.5 26.6 5.1 4.6 6.3
Eq. Width 15.9 14.8 15.6 11.2 7.3 8.7 35.2 31.6 38.4 25.7 23.8 23.7 3.0 3.2 4.8
Eq. Freq. 14.7 14.7 16.3 11.8 7.0 10.8 34.9 31.7 38.4 26.1 24.0 23.5 2.9 3.0 4.4

Table 6. Scorecards: MER (%) with WOE-coding

APP IDS LIVER PIDD WDBC
LS ML SVM LS ML SVM LS ML SVM LS ML SVM LS ML SVM

AdaBoost 19.9 18.8 20.1 10.2 10.2 10.6 34.4 34.4 32.2 26.9 26.9 28.0 5.1 3.9 4.1
CAIM 12.3 11.7 13.9 7.7 7.8 7.7 38.1 38.0 38.3 26.2 26.2 26.9 4.9 4.4 4.5

FCAIM 12.7 12.5 13.7 7.7 8.2 8.3 40.6 40.6 38.0 26.7 26.5 26.6 5.3 4.5 4.6
Eq. Width 20.7 19.4 17.1 11.5 11.1 12.4 42.5 43.7 35.6 26.4 26.3 26.0 4.8 4.5 4.7
Eq. Freq. 18.9 18.1 15.3 12.0 11.3 12.2 36.8 41.7 34.5 26.2 26.5 26.7 4.7 5.0 5.4

Table 7. Scorecards: MER (%) with 1-out-of-K coding

APP IDS LIVER PIDD WDBC
LS ML SVM LS ML SVM LS ML SVM LS ML SVM LS ML SVM

AdaBoost 19.3 17.9 19.1 9.4 9.6 9.5 32.4 31.9 31.7 26.3 25.8 27.0 5.0 3.9 3.8
CAIM 12.4 12.0 13.9 7.7 7.9 7.7 38.1 38.1 38.3 26.1 26.1 26.9 5.0 4.3 4.5

FCAIM 12.7 12.5 13.7 7.6 8.1 8.3 40.6 40.5 38.0 25.7 26.4 26.6 5.1 4.4 4.6
Eq. Width 13.7 12.7 13.9 7.0 7.5 7.8 32.2 30.9 31.1 24.1 24.2 24.6 3.9 2.8 3.1
Eq. Freq. 12.9 12.5 12.3 7.4 7.8 7.8 32.1 31.1 31.7 24.4 24.1 23.8 3.9 2.5 2.6

Table 8. Scorecards: MER (%) with differential-coding

The results exhibited in Tables 7 and 8 indicate that the proposed differential-coding generally outper-

forms the usual WOE coding, and also the 1-out-of-K formulation with exception of some scorecards

constructed with the supervised methods CAIM and FCAIM. Wilcoxon signed rank test was applied to

evaluate the statistical significance of these exceptions. For an α value of 0.01, all differences were not

statistically significant.

Furthermore, results indicate that the supervised discretization techniques CAIM and FCAIM outper-

form the non-supervised techniques “equal width” and “equal frequency” just when scorecard weights
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are estimated with the 1-out-of-K and WOE codings. Within the δ-coding framework, both supervised

and non-supervised discretization techniques led to similar results. This validates our remark on the

differential-coding, stating that it is able to correct possible inadequate discretization schemes (unsuper-

vised methods were not optimized).

Within the supervised discretization techniques, CAIM seems to outperform FCAIM, although the

differences were generally small. FCAIM may be preferred over CAIM given its superior computational

efficiency.

Maximum likelihood based weight estimation seems to outperform both LS and SVM based versions.

Exceptions to this behaviour in WOE, 1-out-of-K, and differential coding, which were shown to be

statistically significant, were underlined in Tables 6, 7, and 8. The LS results present in Tables 6, 7, and

8 were obtained with elastic net regularization. Nonetheless, the differences to L2 regularization were

meaningless. Consequently, since L2 regularization is more simple and computationally cheaper, Ridge

least squares estimation was selected to compare MER minimization and AUC optimization approaches.

Table 9 summarizes the obtained results for the proposed differential-coding.

APP IDS LIVER PIDD WDBC
MER AUC MER AUC MER AUC MER AUC MER AUC

R
id

ge
L

S

AdaBoost 18.4 0.79 9.2 0.96 31.2 0.74 26.1 0.80 4.8 0.99
CAIM 12.8 0.82 7.9 0.95 38.0 0.63 25.7 0.76 5.0 0.99

FCAIM 12.9 0.81 8.0 0.95 37.4 0.63 26.3 0.76 5.0 0.99
Eq. Width 13.8 0.85 6.8 0.97 31.1 0.74 24.1 0.83 3.0 0.99
Eq. Freq. 10.8 0.87 6.7 0.97 31.3 0.73 24.8 0.83 3.5 0.99

A
U

C
-R

L
S AdaBoost 20.1 0.76 10.8 0.94 37.4 0.67 39.3 0.57 5.9 0.98

CAIM 14.1 0.82 9.7 0.94 39.7 0.59 27.8 0.67 6.5 0.97
FCAIM 13.9 0.82 9.3 0.94 39.2 0.58 27.9 0.67 6.5 0.97

Eq. Width 15.2 0.83 13.8 0.89 40.7 0.61 35.0 0.50 10.2 0.96
Eq. Freq. 13.7 0.82 15.5 0.89 40.6 0.62 35.1 0.51 11.9 0.95

A
U

C
-S

V
M

AdaBoost 17.9 0.81 10.3 0.95 32.6 0.73 26.9 0.79 4.0 0.99
CAIM 13.1 0.81 10.6 0.92 37.9 0.63 26.6 0.75 5.0 0.99

FCAIM 13.5 0.78 10.4 0.92 37.8 0.63 26.6 0.75 5.3 0.99
Eq. Width 16.1 0.81 8.9 0.97 35.1 0.69 25.6 0.80 3.0 0.99
Eq. Freq. 16.7 0.82 9.1 0.96 33.7 0.71 26.3 0.80 2.7 0.99

Table 9. Scorecards: MER (%) and AUC with differential-coding

Table 9 shows that Ridge LS consistently outperforms the alternative methods both in terms of MER

and AUC criteria. Furthermore, AUC-SVM provides, on average, more satisfactory results than AUC-

RLS. These results do not support the use of the AUC as fitting objective function, even for unbalanced

datasets where it could be expected some advantage. Ridge LS and AUC-SVM provided comparable

MER values in, for example, LIVER and PIDD datasets but AUC-SVM did not conduct to better AUC
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values. A possible explanation for this finding lays in the fact that all features involved in the process of

scorecard weight estimation are binary and the matrices P and P ? have very specific structures, while the

AUC methods were originally formulated for continuous input features, under more standard conditions.

Table 10 allows the comparison of the best performing scorecard (Tables 6, 7, and 8) with other

classifiers.

Classifier APP IDS LIVER PIDD WDBC
Scorecard 11.7 7.0 30.9 23.8 2.5
AdaBoost 16.4 10.0 31.4 24.5 3.8
Log. Reg. 13.6 15.7 31.7 23.0 5.2

GAM 14.3 18.3 46.8 25.4 5.4
LDA 12.6 15.4 35.8 24.2 3.8
SVM 13.0 6.1 30.4 23.3 2.6

Table 10. Scorecards vs. Other Classifiers: Misclassification Error Rate (%)

The obtained results indicate that scorecards achieved satisfactory performance, scoring the best in 2

of the 5 considered datasets and among the top 3 in the rest. These results reinforce that scorecards may

be a reasonable tradeoff between interpretability and predictive power.

Finally, it is interesting to note that the proposed differential scorecard compares favorably with ad-

aboost. As already noticed, Adaboost model can be re-shaped into the scorecard format. However, the

opposite is also true: the scorecard model can be re-written as the sign of a weighted combination of

decision stumps. Therefore, the hypothesis space of concepts is the same for both approaches and under

this perspective, the differential scorecard can be understood as an improved Adaboost.

5.3.2 Ordinal Problems

Table 11 presents the MAE for the considered methods for ordinal data classification.

Our empirical results suggest that the performance difference between scorecards developed with

oRLS and linear oSVM is not statistically significant. Moreover, the obtained results do not suggest

that scorecards perform worse than the nonlinear (RBF kernel) ordinal method oLDA when classifying

ordinal data. In fact, although the differences found were not statistically significant, scorecards (oRLS

and oSVM) outperformed the ordinal method oLDA in 5 out of 6 times. Moreover, scorecards have
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Scorecard
oLDA AdaBoost

oRLS oSVM
BALANCE 0.06 0.00 0.05 0.23

ERA 1.26 1.30 1.28 1.48
ESL 0.34 0.35 0.33 0.62
LEV 0.40 0.42 0.44 0.60
SWD 0.46 0.44 0.47 0.53
BCCT 0.55 0.53 0.64 0.38

Table 11. Scorecards vs. oLDA and AdaBoost: Mean Absolute Error

significantly outperformed AdaBoost when classifying ordinal data with the sole exception of the BCCT

dataset.

6. Conclusions

Despite the myriad of techniques that address classification problems, most of them do not find wide

acceptance in the industry due to the lack of interpretability. Scorecards are one of the clear exceptions,

being well-established in some fields.

In this paper we address the improvement of the performance of scorecards by properly reformulat-

ing the learning problems. The differential encoding, representing the difference between consecutive

weights, facilitates the design problem. The experimental study carried out seems also to indicate that

scorecards developed with the proposed differential coding technique outperform AdaBoost and per-

form in line with the best performing (but non-interpretable) classifiers. The extension to ordinal data

classification has also proven very competitive with state of the art methods. These results suggest a

wider attention from the scientific community to scorecard design.

In future work, we plan to study improvement to scorecard design, by iterating between the variable

discretization and weight optimization. Moreover, since the P and P ? matrices present a very specific

structure, we plan to study optimization procedures of the fitting objective function that take advantage

of that knowledge.
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