Improving transaction abort rates without compromising
throughput through judicious scheduling

Ana Nunes
High-Assurance Software Lab
INESC TEC & University of Minho
ananunes@di.uminho.pt

ABSTRACT

Althought optimistic concurrency control protocols have in-
creasingly been used in distributed database management
systems, they imply a trade-off between the number of trans-
actions that can be executed concurrently, hence, the peak
throughput, and transactions aborted due to conflicts.

We propose a novel optimistic concurrency control mech-
anism that controls transaction abort rate by minimizing
the time during which transactions are vulnerable to abort,
without compromising throughput. Briefly, we throttle trans-
action execution with an adaptive mechanism based on the
state of the transaction queues while allowing out-of-order
execution based on expected transaction latency. Prelimi-
nary evaluation shows that this provides a substantial im-
provement in committed transaction throughput.

Categories and Subject Descriptors

H.2.4 [Database Management]|: Systems—concurrency,
distributed databases

General Terms

Performance, Reliability

Keywords

Optimistic concurrency control, adaptive scheduling

1. INTRODUCTION

Optimistic concurrency control is increasingly popular in
distributed data management systems ranging from repli-
cated relational databases [2, 3] to novel large scale and high
throughput transactional systems such as Yahoo!’s OMID [5].
In these systems, potentially conflicting transactions are al-
lowed to execute mostly without coordination. However, af-
ter execution, a certification (conflict detection) phase takes
place to determine whether the resulting changes are con-
sistent and should be applied to the database. While this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

493

José Pereira
High-Assurance Software Lab
INESC TEC & University of Minho

jop@di.uminho.pt

mechanism allows more concurrency, transactions that are
later found to conflict are aborted and must be re-executed.

Notice that the more transactions are allowed to exe-
cute concurrently, the more likely it is for conflicts to arise.
Also, any transaction is vulnerable to being aborted by other
transactions from the moment it starts to execute until it is
certified, hence, the longer it takes to execute a given trans-
action, the more vulnerable it is. This is the main caveat of
most optimistic concurrency control strategies: when loaded,
latency increases and more conflicts are found. This can
make it hard for long-running transactions to commit at
all [1].

Current proposals fail to address this issue, as they typ-
ically either execute transactions as soon as these are sub-
mitted [2, 3, 5] or simply restrict the number of transactions
that can be concurrently executed in the system [1]. We im-
prove over them by applying a novel scheduling strategy that
attempts to minimize aborts, while maximizing transaction
throughput.

The main contribution of this paper is a transaction schedul-
ing algorithm that uses the level of queuing in a system and
transaction classification to self-adapt for optimal perfor-
mance (high throughput, low abort rate). This is achieved
by minimizing the time during which these are vulnerable to
being aborted by concurrent transactions, thereby reducing
the overall abort rate.

2. APPROACH

Our approach, AJITTS (Adaptive Just-In-Time Transac-
tion Scheduling), is based on reaching and maintaining the
optimal level of queueing in the system: as low as possible
to minimize aborts but as high as needed to ensure that
all resources are fully used to maximize throughput. This
considers both that (i) transaction execution latency varies
with load and that (74) transactions that are expected to
execute relatively faster should be scheduled proportionally
later. The goal is that all transactions wait an equal and
minimal amount of time after being executed, thus decreas-
ing the likelihood of being aborted.

Briefly, transactions submitted to the system are totally
ordered and placed in the queue. This applies both to a
centralized queue [5] as well as to a consistenly replicated
queue [2, 3, 1], that, for simplicity of presentation, we con-
sider a single logical queue. At the head of the queue is
the transaction currently undergoing certification, in the
certification state. All other transactions are in one of three
states: not_executed, executing, executed or aborted.

Assuming first that all transactions take the same amount

Table 1: Throughput and abort rate improvement
| | Throughput | Abort Rate |

OPT 51.4 tps 23.5%

AJITTS 150 tps 5.1%

of time to be executed, consider that there is a line in the
queue that determines where transactions should start ex-
ecution: all transactions before the line are not eligible to
start executing, while all transactions between the line and
the head of the queue that are in the not_executed state are
to be executed. Simply put, transactions are evaluated for
execution whenever transactions arrive to or leave the queue.
Ideally, the line would be placed in such a position that each
transaction’s execution completes just as it arrives at the
head of the queue, minimizing the time spent in the executed
state before reaching certification, thus minimizing its vul-
nerability to being aborted by others. When a transaction
reaches the head of the queue, if in the executed or aborted
states, the transaction goes into certification. Conflict de-
tection ensues: If the transaction was in the executed state,
is immediately certified and, again, any conflicting transac-
tions either in the executing or executed states are aborted.

AJITTS works as follows. If a transaction arrives to the

head of the queue in the aborted state, it must be re-executed.

In this case, the transaction has waited too long and the line
should be pushed forward. On the other hand, if the trans-
action reaches the head of the queue in either not_executed
or executing states, it cannot be certified until it finishes.
Because certification must be in order, no other transac-
tion can overtake it, leaving certification idle. In this case,
the line should be pushed back. Moreover, AJITTS consid-
ers transactions with relatively different execution times by
proportionally scaling the position of the line according to
the expected duration of the transaction.

3. EVALUATION

AJITTS was evaluated using an event-driven simulator
with execution traces obtained from a TPC-E-like bench-
mark on MySQL database. TPC-E is a benchmark that
simulates the activities of a brokerage firm, handling cus-
tomer account management, trade order execution on behalf
of customers and the interaction with financial markets [4].
The trace was extracted from MySQL’s binlog and provides
the following information to the simulation: the timestamps
at which each transaction started, how long it took to ex-
ecute, and their write sets. It was observed that average
transaction latency varies between 43 and 501 milliseconds
depending on the type of transaction.

This simulator allows us to compare AJITTS with OPT,
a protocol with a standard optimistic scheduler but with a
conservative re-execution mechanism for previously aborted
transactions [1]. Simply put, OPT optimistically schedules
each execution as soon as it is submitted. Table 1 shows
how the throughput achieved with AJITTS is much higher
than with OPT for the same number of clients.

Figure 1 shows how the line positions evolve after each
update. A transaction type’s line position is updated when-
ever the estimate for its execution duration is changed or
whenever the adaptation input parameter changes. For ex-
ample, trade update transactions are scheduled much ear-
lier when compared to other transaction types. Notice that

494

400
|

300
|

—e— market-feed

-8~ trade—order
trade—result
trade-update

T T T T T T T T T T T T T T
o] 40000 80000 120000 160000 200000 240000
number of position updates

Figure 1: Line position per transaction type

the average duration for trade update transactions is sig-
nificantly larger that the duration of the other transaction
types. The position of the line for each transaction type con-
verges quickly: for market feed, trade order and trade result,
the line positions stabilize after 50000 committed transac-
tions; for trade update transactions, the amplitude of the
variation stabilizes after 80000 committed transactions.

4. CONCLUSION

When using optimistic concurrency control in replication
protocols with conservative re-execution, each abort takes a
toll on overall performance. We tackled this issue by propos-
ing AJITTS, which combines an adaptive mechanism based
on the state of transaction queues with out-of-order execu-
tion based on estimates of transaction latency.

AJITTS was evaluated using a TPC-E like benchmark
having clearly outperformed a traditional replication pro-
tocol with optimistic concurrency control in both perfor-
mance and latency figures. AJITTS performed better than
the traditional protocol in terms of throughput and abort
rate for workloads derived from the TPC-E like benchmark,
but slightly different in terms of CPU availability and con-
flict probability.

5. REFERENCES

[1] A. Correia, J. Pereira, and R. Oliveira. Akara: A
flexible clustering protocol for demanding transactional
workloads. On the Move to Meaningful Internet
Systems: OTM 2008, pages 691-708, 2008.

B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-r, a new way to implement database
replication. In Proceedings of the 26th International
Conference on Very Large Data Bases, VLDB 00,
pages 134-143, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

F. Pedone, R. Guerraoui, and A. Schiper. The database
state machine approach. Distributed and Parallel
Databases, 14:71-98, 2003. 10.1023/A:1022887812188.
Transaction Processing Performance Council (TPC).
TPC Benchmark E - Standard Specification, revision
1.12.0 edition, June 2010.

M. Yabandeh and D. Gémez Ferro. A critique of
snapshot isolation. In Proceedings of the 7th ACM
european conference on Computer Systems, EuroSys
’12, pages 155—168, New York, NY, USA, 2012. ACM.

2l

3]

(4]

5]

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

