
Metaphorisms in Programming

José N. Oliveira

High Assurance Software Laboratory
INESC TEC and University of Minho

Braga, Portugal
(jno@di.uminho.pt)

Abstract. This paper introduces the metaphorism pattern of relational
specification and addresses how specification following this pattern can
be refined into recursive programs.
Metaphorisms express input-output relationships which preserve rele-
vant information while at the same time some intended optimization
takes place. Text processing, sorting, representation changers, etc., are
examples of metaphorisms.
The kind of metaphorism refinement proposed in this paper is a strategy
known as change of virtual data structure. It gives sufficient conditions
for such implementations to be calculated using relation algebra and
illustrates the strategy with the derivation of quicksort as example.

Programming from specifications. Algebra of programming.

Politicians and diapers should be changed often
and for the same reason.

(attributed to Mark Twain)

1 Introduction

The witty quote by 19th century author Mark Twain that provided inspiration
for the title of this paper embodies a metaphor which the reader will surely
appreciate. But, what do metaphors of this kind have to do with computer
programming?

Programming theory has been structured around concepts such as syntax, se-
mantics, generative grammar and so on, which have been imported from Chom-
skian linguistics. The basis is that syntax provides the shape of information
and that semantics express information contents in a syntax-driven way (e.g.
meaning of the whole dependent on the meaning of the parts).

Cognitive linguistics breaks with such a generative tradition in its belief that
semantics are conveyed in a different way, just by juxtaposing concepts in the
form of metaphors which let meanings permeate each other by an innate capac-
ity of our brain to function metaphor-wise. Thus we are led to the metaphors
we live by, quoting the classic textbook by Lakoff and Johnson [8]. If in a public

2 J.N. Oliveira

discussion one of the opponents is said to have counterattacked with a win-
ning argument, the underlying metaphor is argument is war ; metaphor time is
money underlies everyday phrases such as wasting time, investing time and so
on; Twain’s quote lives in the metaphor politics is dirt, the same that would
enable one to say that somebody might need to clean his/her reputation, for
instance.

In his Philosophy of Rhetoric [14], Richards finds three kernel ingredients
in a metaphor, namely a tenor (e.g. politicians), a vehicle (e.g. diapers) and a
shared attribute (e.g. ... left for the reader to guess). The flow of meaning is from
vehicle to tenor, through the (as a rule left unspecified) common attribute.

In [11] the author sketched a brief characterization of this construction in
the form of a “cospan”

T

f ��

V

g
��

A

(1)

where f :T→ A and g :V→ A are functions extracting a common attribute (A)
from both tenor (T) and vehicle (V). The cognitive, æsthetic, or witty power of
a metaphor is obtained by hiding A, thereby establishing a composite, binary

relationship1 T V
f ◦·goo between tenor and vehicle — the “T is V” metaphor

— which leaves A implicit.

It turns out that, in the field of program specification, many problem state-
ments are metaphorical in the same (formal) sense: they are characterized as
input-output relationships in which the preservation of some kernel information
is kept implicit, possibly subject to some form of optimization.

An example of this is text formatting, a relationship between formatted and
unformatted text whose metaphor consists in preserving the sequence of words
of both, while the output text is optimized wrt. some visual criteria.2 Other
examples could have been given:

– Change of base of numeric representation — the number represented in the
source is the same represented by the result, cf. the ‘representation changers’
of [5].

– Conversion of finite lists into balanced search trees — the information pre-
served is the set of elements of the source list; the optimization is the invari-
ant induced on the output tree, making it adequate for searching, etc.

1 Given a binary relation R, writing b R a (≡ “b is related to a by R”) means the same
as a R◦ b, where R◦ is said to be the converse of R. So R◦ corresponds to passive
voice, check e.g. John loves Mary compared to Mary is loved by John: (loves)◦ =
(is loved by).

2 It is the privilege of those who don’t work with wysiwyg text processors to feel the
rewarding (if not æsthetic) contrast between the window where source text is edited
and that showing the corresponding, nice-looking PDF output.

Metaphorisms in Programming 3

– Source code refactoring — the meaning of the source program is preserved,
the target code being better styled wrt. coding conventions and best prac-
tices.

– Sorting — the bag (multiset) of elements of the source list is preserved, the
optimization consisting in obtaining an ordered output.

T

T

f ��

R

??

V

g
��

M

__

f ◦·goo

A

The optimization implicit in all these examples can
be expressed by reducing the vagueness of relation f ◦ ·g
in (1) according to some criterion telling which outputs
are better than others. This can be achieved by adding
such criteria in the form of a relation R which “shrinks”
f ◦ · g ,

M = (f ◦ · g) � R (2)

using the “shrinking” operator of [9] for reducing non-determinism, see the dia-
gram above. By unfolding the meaning of this relational operator, the relation-
ship established by M (2) is the following:

t M v ≡ (f t = g v) ∧ 〈∀ t ′ : f t ′ = g v : t R t ′〉

In words: for each input v , choose among all outputs t ′ with the same (hidden)
attribute of v those which are better than any other with respect to R, if any.

We will refer to construction (2) as a metaphorism wherever V and T are
inductive types and functions f and g are recursive on such types. A metaphorism
M = (f ◦ · g) � R therefore involves two functions and an optimization criterion.
In the text formatting metaphorism, for instance,

[String]

concat·(map words) %%

String

wordszz

Formatoo

[String]

arrow Format relates a string (source text) to a list of strings (output text
lines) such that the original sequence of words is preserved when white space is
discarded. Formatting consists in (re)introducing white space evenly through-
out the output text lines. For economy of presentation, the diagram omits the
optimization part,

Format = (map words◦ · concat◦ · words) � R (3)

where R : [String] → [String] should capture the formatting criterion on lines
of text, e.g. even spaced lines better than ill-spaced ones, etc. Metaphorism (3)
also relies on a well-known property of relational converse, (R · S)◦ = S◦ · R◦.

Formally, nothing impedes f and g from being the same attribute function,
in which case types V and T are also the same. Although less interesting from
the strict (cognitive) metaphorical perspective, metaphorisms of this instance
of (2) are very common in programming — take sorting as example, where V

4 J.N. Oliveira

and T are inhabited by finite sequences of the same type. Interestingly, some
sorting algorithms actually involve another data-type, but this is hidden and
kept implicit in the whole algorithmic process. Quicksort, for instance, unfolds
recursively in a binary fashion which makes its use of the run-time heap look
like a binary search tree — a pattern found in any divide & conquer algorithm.
Because such a tree is not visible from outside, some authors refer to it as a
virtual data structure [15].

Contribution. This paper addresses a generic process of implementing metapho-
risms in a way that introduces divide & conquer strategies and the implicit vir-
tual data structures. Conditions for the semantics of (2) to be preserved along
the calculation process are discussed. Altogether, the reasoning shows how the
“outer metaphor” of the specification (2) disappears and is replaced by a more
implicit but more interesting “inner metaphor” which is at the heart of the im-
plementation. We will restrict to a special case of (2) which is described in the
next section and will use quicksort as running example.

Related work. This paper follows the line of research of reference [9] in inves-
tigating relational specification patterns which involve the “shrinking” combi-
nator for controling vagueness and non-determinism. It also relates to previous
work on representation changers [5] and on the relational algebra of program-
ming, in general [1, 10]. Our calculation of sufficient conditions for implementing
metaphorisms via change of virtual data-structure, illustrated with quicksort,
can be regarded as a generalization and expansion of the derivation of the same
algorithm in [1], where it is given in a rather brief and terse style.

Paper structure. The remainder of this paper is structured as follows. Sections
2 and 4 identify the class of metaphorisms addressed in the paper. Sect. 3 dis-
cusses implementation strategies for such metaphorisms. Sect. 5 finds generic
conditions for these to be implemented by change of recursive pattern (virtual
data-structure), an example of which is given in Sect. 6. Finally, Sect. 7 con-
cludes. Some background on relation algebra and proofs of auxiliary results are
given in appendices A and B, respectively.

2 Shrunken equivalence relations as metaphorisms

Wherever f = g in (2) we get M = (f ◦ · f)�R, a “shrunken” equivalence relation
because f ◦ · f is an equivalence, known as the kernel of f , ker f = f ◦ · f :

M = (ker f) � R (4)

So y M x means not only that f y = f x (this is the information to be preserved),
but also that y is “best” among all other y ′ such that f y ′ = f x holds, as
expressed by the meaning of the shrinking combinator [9, 13], see property (37)
in the appendix: S �R is the largest sub-relation X of S such that, for all b′, b ∈ B,
if there exists some a ∈ A such that b′Xa ∧ bSa holds, then b′Rb holds.

Metaphorisms in Programming 5

Example: take V = T = [A] parametric on type A and f = bag , the function
that extracts the bag of elements of a finite list. The equivalence relation is
Perm = ker bag , that is y Perm x means that y is a permutation of x . What
about R? If sorting is the intended optimization, one might want to specify that
y R x holds wherever y has less “out-of-order” entries than x , something like
e.g. (in Haskell concrete syntax)

y R x = oo y 6 oo x where
oo s = length [n | n ← [0 . . length s],n + 1< length s, s !! n > s !! (n + 1)]

where oo is the function that counts “out-of-order” entries.
For the calculational theory of [1, 9] to be applicable to metaphorism (4), one

needs to express either ker f or R (or both) as relational (un)folds, also referred
to as ana/catamorphisms in the literature [1]. This makes perfect sense since,
in many situations, T will be an inductive (initial, tree-like) data-type and f a
fold which recursively extracts information from T using some function k for
this. The popular notation f = (|k |) will be used to express (relational) folds, see
Appendix A for the basic properties of such a combinator.

It turns out that, if f is surjective, then the equivalence relation ker f will be
a fold too, this time relational

ker f = (|ker f · in|) (5)

where T FT
inoo is the initial algebra of type T, for some functor F. (The

proof of (5) is given in Appendix B.) So

ker f · in = ker f · in · F (ker f) (6)

holds, by fold-cancellation (28). In the case of lists, FX = 1 + A × X and
in = [nil , cons], where nil x = [] is the constant function which yields the empty
list and cons (a, s) = a : s adds a to the front of s. For f = bag , the fold which
extracts the multiset of elements of a given list, ker f = Perm and we have the
following property of the list permutation equivalence relation:

Perm · in = Perm · in · (FPerm) (7)

The useful part of (7) is

Perm · cons = Perm · cons · (id× Perm) (8)

where we use notation R×S to express the (Kronecker) product of two relations:
(b, d) (R×S) (a, c) holds iff both b R a and d S c hold. Thus (8) is the same as

y Perm (a : x) = 〈∃ z : z Perm x : y Perm (a : z)〉

which means that permuting a sequence with at least one element is the same
as adding it to the front of a permutation of the tail and permuting again.

The usefulness of (5, 6) is that the inductive definition of an equivalence
relation ker f generated by a surjective fold f is such that the recursive branch
F (ker f) in the unfolding of ker f can be removed if convenient.

Another meaning of (6) is that ker f is a congruence for the initial algebra
in, cf. the following theorem.

6 J.N. Oliveira

Theorem 1. Let R be a congruence for an algebra h : FA → A of functor F,
that is

h · (F R) ⊆ R · h (9)

holds and R is an equivalence relation. Then this is the same as stating:

R · h = R · h · (F R) (10)

(Proof: see Appendix B.) �

3 Calculating metaphorisms

Given a metaphorism M (4) such that f = (|k |), it can immediately be shown
that

M = (ker (|k |)) � R = ((|k |)◦ � R) · (|k |) (11)

by this law of shrinking: (S · f) �R = (S �R) · f [9]. Thus we have two main ways
of calculating metaphorisms:

– either we shrink ker (|k |) as a whole — a relational fold (5), as we have seen,
or

– we shrink (|k |)◦ and then fuse the outcome with (|k |) (11).

There is still a third way, known as changing the virtual data structure [15]. Given
any surjective function f : A→ B , its image img f = f · f ◦ — the converse-dual
of ker f = f ◦ · f — is such that img f = id, where function id x = x is the
identity function, i.e. the equality relation on its type. So img f : B → B can
be pasted anywhere it typechecks, i.e. where type B is present. Suppose another
(|h|) : W→ T is given which is surjective. Then

M = (ker (|k |)) � R
= (img (|h|) · ker (|k |)) � R
= (|h|) · (N � R′) where N = (|h|)◦ · ker (|k |)

(12)

for some R′ to be calculated. Using type diagrams, the strategy starts from

W
(|h|)

~~

T

T T

(|k |) ��

id=img (|h|)
oo

R

??
(|h|)◦

``

T

(|k |)��

M

__

ker (|k |)oo

A

(13)

Metaphorisms in Programming 7

and then shifts the “ictus” of algorithmic control from type T to type W:

W
(|h|)

~~

(|k |)·(|h|)

��

T T

(|k |)��

N=(|h|)◦·ker (|k |)
ii

A

(14)

In this way, the starting, “outer” metaphor involving only T disappears and
gives place to an “inner” metaphor between inductive types W and T, moving
the optimization inside in the form of a relation R′, which needs to be calculated:

W

(|h|)

��

W
R′

>>

(|k |)·(|h|)

T T

M

__

(|k |)��

N

jj

A

(15)

W is the (virtual) data type chosen to command the divide & conquer algo-
rithmic control. It is usually a binary or n-ary tree structure and is regarded as
virtual because, as mentioned above, it is doomed to disappear once the two-step
composition process is fused into a single step.

In summary, finding a generic divide & conquer version of metaphorism M =
(ker (|k |)) � R relying on virtual type W as representation of the original type T
amounts to finding a function that implements the divide step, (N � R′) where
N = (|h|)◦ · ker (|k |) and (|h|) is an abstraction function. Finding R′ is the hard
part of the exercise, as we shall soon see.

4 Special case of shrinking

R in (2,4) is in general a metric indicating which structures are better than
others, usually in the form of a preorder R =6h where h is the metric attribute
to be compared and 6h abbreviates h◦ · (6) · h, that is: y 6h x ≡ (h y) 6 (h x).
For instance, trees can be compared by measuring their depth; programs under
refactoring compared by counting LoC, and so on.

However, R can also take the form R = Ψ ·> in (4), where > is the “topmost“
relation of its type (32) — b > a is true for every a and b — and Ψ ⊆ id is a

8 J.N. Oliveira

partial identity specifying some form of selection.3 This indicates that only the
outputs satisfying Ψ are regarded as good enough.

In case R = Ψ · >, (4) reduces to M = Ψ · ker f , since ker f is an equivalence
relation and therefore entire (i.e. totally defined) and the following result holds

R � (Ψ · >) = Ψ ·R ⇐ R is entire (16)

(Proof in Appendix B.) It is this special case of (4) which will concern us in the
sequel, leaving the full generality of (4) for future work.

5 Shrinking metaphorisms into hylomorphisms

Consider metaphorisms of form M = Ψ ·ker (|k |) which, as we have seen above, are
special cases of (4). Suppose (|h|) :W→ T is an abstraction function (surjective)
which ensures that every inhabitant of T can be represented by one or more
inhabitants of W, as in diagrams (13) to (15). Below we record the calculation
implicit in such diagrams:

M = Ψ · ker (|k |)

≡ { img (|h|) = id because (|h|) is surjective }

M = img (|h|) · Ψ · ker (|k |)

≡ { inline image }

M = (|h|) · (|h|)◦ · Ψ · ker (|k |)

≡ { hint: assume Φ such that (|h|) · Φ = Ψ · (|h|) ; converses; Ψ◦ = Ψ }

M = (|h|) · Φ · (|h|)◦ · ker (|k |)︸ ︷︷ ︸
N

The goals are, therefore: (a) to find Φ such that

(|h|) · Φ = Ψ · (|h|) (17)

holds, and (b) to convert Φ · (|h|)◦ · ker (|k |) into the converse of a fold, which
we denote as usual by [(g)], for some g .4 Then the original metaphorism will be
converted into a so-called hylomorphism [1] (|h|) · [(g)] with a “change of data-
structure”.

As W and T are inductive types, the two partial identities (coreflexives) will
take the shape (say) Φ = (|inW ·Ω|) and Ψ = (|inT ·Θ|), where inW and inT are the
initial algebras of types W and T, respectively.

3 We use uppercase Greek letters (e.g. Ψ , Φ, ...) to denote partial identities, also
known as coreflexives, monotypes or tests [2, 3, 7]. Every partial identity Ψ is such
that Ψ ⊆ id and is in one-to-one correspondence with some predicate q . As in [9]
we write Ψ = q? wherever we want to indicate that q is the predicate captured by
Ψ . Thus Ψ = q? has the pointwise meaning b Ψ a ≡ b = a ∧ q a.

4 Converses of folds are usually termed unfolds or anamorphisms. Notation [(R)] means
(|R◦|)◦.

Metaphorisms in Programming 9

Calculation of (17) proceeds by fusion (27), aiming to reduce both (|h|) · Φ
and Ψ · (|h|) to some fold (|R|) over W. On the one side,

Ψ · (|h|) = (|R|)⇐ Ψ · h = R · (F Ψ) (18)

On the other side:

(|h|) · Φ = (|R|)

≡ { inline Φ = (|inW ·Ω|) }

(|h|) · (|inW ·Ω|) = (|R|)

⇐ { fusion (27) }

(|h|) · inW ·Ω = R · F (|h|)

≡ { cancellation of (|h|) (28) }

h · F (|h|) ·Ω = R · F (|h|)

≡ { assume Λ such that F (|h|) ·Ω = Λ · F (|h|) }

h · Λ · F (|h|) = R · F (|h|)

⇐ { Leibniz }

h · Λ = R

Replacing this in Ψ · h = R · FΨ , the side condition of (18), we get: Ψ · h =
h · Λ · (F Ψ). Let us summarize both calculations in the form of a theorem.

Theorem 2. Let (|h|) : W→ T be an abstraction of inductive type T by W, and
Ψ = (|inT · Θ|) and Φ = (|inW · Ω|) be partial identities representing inductive
predicates over such types.

For (|h|) · Φ = Ψ · (|h|) (17) to hold, search for the existence of Λ : FT → FT
such that

Ψ · h = h · Λ · FΨ (19)

F (|h|) ·Ω = Λ · F (|h|) (20)

hold, where F is the base functor of W, that is, inW : FW→W.
�

Note that condition (20) establishesΩ as weakest precondition for F (|h|) to ensure
Λ on its output, cf. (35) in Appendix A. Likewise, (19) establishes Λ as weakest
precondition for h to maintain invariant Ψ .

Searching for the anamorphism. Thus far, the starting metaphor ker (|k |) has
been left aside. Going back to

M = (|h|) · Φ · (|h|)◦ · ker (|k |)︸ ︷︷ ︸
N

10 J.N. Oliveira

our aim is to convert N = Φ · (|h|)◦ · ker (|k |) into [(R)] for some R. Below we shall
need the extra condition that ker (|k |) is a congruence for h, that is,

h · F ker (|k |) ⊆ ker (|k |) · h (21)

holds, equivalent to

ker (|k |) · h = ker (|k |) · h · (F ker (|k |)) (22)

by Theorem 1. Another alternative to state (21) is

(|k |) · h 6 F (|k |) (23)

meaning that (|k |) · h should be less injective (39) than F (|k |), see Appendix B.
We shall also need the assumption:

F (ker (|k |)) · Λ = Λ · F (ker (|k |)) (24)

We calculate:

Φ · (|h|)◦ · ker (|k |) = [(R)]

≡ { converses }

ker (|k |) · (|h|) · Φ = (|R◦|)

≡ { (|h|) · Φ = Ψ · (|h|) (17), Theorem 2 }

ker (|k |) · Ψ · (|h|) = (|R◦|)

⇐ { fusion (27) }

ker (|k |) · Ψ · h = R◦ · F (ker (|k |) · Ψ)

⇐ { (19); functor F; Leibniz }

ker (|k |) · h · Λ = R◦ · F ker (|k |)

≡ { (22) }

ker (|k |) · h · (F ker (|k |)) · Λ = R◦ · F ker (|k |)

⇐ { (24) ; Leibniz ; converses }

R = Λ · h◦ · ker (|k |)
�

In summary, note how the original metaphorism Ψ · ker (|k |) gets converted into
a hylomorphism whose divide step is another metaphorism:

R = Λ · ((|k |) · h)◦ · (|k |) (25)

That is, the “outer” metaphor which we started from (involving only T) disap-
pears and gives place to an “inner” metaphor between inductive types W and
T, whereby the optimization is internalized.

This “inner” metaphor is more interesting, as we can see by looking at an
example of this reasoning.

Metaphorisms in Programming 11

6 Example: Quicksort

This section shows how the derivation of quicksort as given in e.g. [1] corre-
sponds to the implementation strategy for metaphorisms given above, under the
following instantiations:

– T is the usual finite list datatype with constructors (say) nil and cons, that
is, inT = [nil , cons].

– W is the binary tree data type whose base is F f = id + id × (f × f) and
whose initial algebra is (say) inW = [empty , fork].

– (|k |) = bag , the function which converts a list into the bag (multiset) of its
elements.

– ker bag = Perm, the list permutation relationship (the metaphor we start
from).

– (|h|) = flatten, for h = [nil , inord] where inord (a, (x , y)) = x ++ [a] ++ y ;
that is, flatten is the binary tree into finite list surjection.

– Ψ filters ordered lists, Ψ = (|[nil , cons] · (id + Θ)|) where Θ = mn? for
mn (x , xs) = 〈∀ x ′ : x ′ εT xs : x ′ > x 〉, where εT denotes list mem-
bership; that is, predicate mn (x , xs) ensures that list x : xs is such that x is
at most the minimum of xs, if it exists.

As seen in Sect. 5, we have to search for some partial identity Λ = id+ Υ : id+
id × (T × T) → id + id × (T × T) which, following (19), should be the weakest
precondition for [nil , inord] to preserve ordered lists (Ψ):

Ψ · [nil , inord] = [nil , inord] · (id+ Υ) · (id+ id× (Ψ × Ψ))

≡ { coproducts; Ψ · nil = nil, since the empty list is trivially ordered }

Ψ · inord = inord · Υ · (id× (Ψ × Ψ))

Let ord and wpl be the predicates represented by partial identities Ψ and Υ ,
respectively, that is Ψ = ord? and Υ = wpl?. Unfolding inord we get the following
pointwise calculation of weakest pre-condition wpl :

ord (x ++ [a] ++ y)

≡ { pointwise definition of ordered lists }

(ord x) ∧ (ord y) ∧ 〈∀ b : b εT x : b 6 a〉 ∧ 〈∀ b : b εT y : a 6 b〉︸ ︷︷ ︸
wpl (a,(x ,y))

From this we get the following relational definition of the divide step (25) of
the implementation,

R : [A]→ 1 + A× ([A]× [A])
R = (id+ wpl?) · (bag · [nil , inord])◦ · bag

(26)

12 J.N. Oliveira

which we unfold as follows, by letting R◦ = [R◦1 , R
◦
2] and using the converse of

(26):

[R◦1 , R
◦
2] = bag◦ · (bag · [nil , inord]) · (id+ wpl?)

≡ { bag◦ · bag = Perm; Perm.nil = nil; converses }{
R1 = nil◦

R2 = wpl? · inord◦ · Perm

In summary, y R x has the following meaning: either x = [] and R yields the
unique inhabitant of singleton type 1 (cf. R1) or x is non-empty and R splits a
permutation of x into two halves y and z separated by a “pivot” a, cf.

(a, (y , z)) R2 x = wpl (a (y , z)) ∧ (y ++ [a] ++ z) Perm x

where wpl was calculated above. Pivot a can be taken from any position in the
list. In the standard version, a is the head of x . There is, still, a check-list of
proofs to discharge.

Ensuring bi-ordered (virtual) intermediate trees. We start from the instantiation
of (20) for this exercise,

Fflatten · (id+ wp′?) = (id+ wpl?) · Fflatten

where the goal is to find another weakest precondition wp′ which is basically wpl
“passed along” Fflatten from lists to trees:

(id× (flatten × flatten)) · wp′? = wpl? · (id× (flatten × flatten))

≡ { (35) }

wp′ = wp(id× (flatten × flatten),wpl)

≡ { go pointwise }

wp′ (a, (t1, t2)) = wpl (a, (flatten t1,flatten t2))

≡ { definition of wpl }

wp′ (a, (t1, t2)) =

{
〈∀ b : b εT (flatten t1) : b 6 a〉
〈∀ b : b εT (flatten t2) : a 6 b〉

≡ { define εW = εT · flatten }

wp′ (a, (t1, t2)) = 〈∀ b : b εW t1 : b 6 a〉 ∧ 〈∀ b : b εW t2 : a 6 b〉)

Recall that Ω = id+ wp′?. In words, wp′ in Φ = (|inW ·Ω|) = (|inW · (id+ wp′?)|)
ensures that the first part of the implementation, controlled by the divide step
coalgebra R calculated above (26) yields trees which are bi-ordered. Trees with
this property are known as binary search trees [6].

Metaphorisms in Programming 13

Preserving the metaphor. Next we consider side condition (23), which instanti-
ates to:

bag · [nil , inord] 6 id+ id× (bag × bag)

⇐ { coproducts; (40) }

bag · nil + bag · inord 6 id+ id× (bag × bag)

≡ { (41) ; any f 6 id [12] ; let bag ′ = bag · inord }

bag ′ 6 id× (bag × bag)

≡ { bag ′ loses more information than id× (bag × bag) }

true

In the last step we can easily observe that, while from (a, (bag x , bag y)) we can
obtain bag ′ (a, (x , y)), the converse is false: bag ′ merges the multisets of x and
y too quickly. Thus bag ′ is less injective than id× (bag × bag).

Downto the multiset level. Finally, we have to check (24), for Λ = id + Υ =
id+ wpl?:

FPerm · Λ = Λ · FPerm

≡ { Perm = ker bag ; F (R◦) = (FR)◦ }

ker (F bag) · Λ = Λ · ker (F bag)

≡ { FR = id+ id× (R × R) ; kernel of the sum (42); Λ = id+ wpl? }

ker (id× (bag × bag)) · wpl? = wpl? · ker (id× (bag × bag))

⇐ { (36), assuming that condition q exists }

wpl = wp(id× (bag × bag), q)

Thus we have to find post-condition q ensured by id × (bag × bag) with wpl as
weakest-precondition. We proceed as before:

wpl (a, (x , y)) = q (a, (bag x , bag y))

≡ { unfold wpl }

q (a, (bag x , bag y)) =

{
〈∀ b : b εT x : b 6 a〉
〈∀ b : b εT y : a 6 b〉

≡ { assume εB such that εT = εB · bag }

q (a, (bag x , bag y)) =

{
〈∀ b : b εB (bag x) : b 6 a〉
〈∀ b : b εB (bag y) : a 6 b〉

⇐ { substitution }

q (a, (b1, b2)) =

{
〈∀ b : b εB b1 : b 6 a〉
〈∀ b : b εB b2 : a 6 b〉

�

14 J.N. Oliveira

Finally, multiset membership εB = ∈·support can be obtained by taking multiset
supports, whereby we land in standard set membership (∈). Thus we have a
chain of memberships, from sets, to multisets, to finite lists and finally to binary
(search) trees.

Note how this last proof of the check-list goes down to the very essence of
sorting as a metaphorism: the attribute of a finite list which any sorting function
is bound to preserve is the multiset (bag) of its elements.

7 Conclusions and future work

This paper identifies a pattern of relational specification, termed metaphorism,
in which some kernel information of the input is preserved at the same time some
form of optimization takes place towards the output. Text processing, sorting
and representation changers are given as examples of metaphorisms. It then
addresses the problem of refining metaphorisms into recursive programs.

The kind of metaphorism refinement proposed is known as changing the vir-
tual data structure, whereby divide & conquer strategies can be introduced. The
paper gives sufficient conditions for such implementations to be calculated in
general, and gives the derivation of quicksort as example. This derivation can be
regarded as a generalization of the reasoning about the same algorithm given in
[1].

Altogether, the paper shows how such divide & conquer refinement strategies
consist of replacing the “outer metaphor” of the starting specification (metapho-
rism) by a more implicit but more interesting “inner metaphor”, which is at the
heart of the implementation. In the quicksort example, the “outer metaphor”
relates lists which permute each other, while the “inner metaphor” relates lists
with binary search trees.

This research can be framed into the area of investigating how to manage
or refine specification vagueness (non-determinism) by means of the “shrinking”
combinator proposed in references [9, 13]. The pattern of shrinking addressed in
the current paper is, however, far too restrictive: what is expected in general is
shrinking over preorders which measure progress with respect to some other at-
tribute, e.g. reducing the number of “out-of-order” entries in sorting, as presented
in the introduction. Note how such metaphorisms expose the variant/invariant
duality essential to program correctness and termination proofs, in their own
way: there are two main attributes in the game, one is to be preserved (the
essence of the metaphor, cf. invariant) while the other is to be mini(maxi)mized
(the essence of the optimization, cf. variant).

This paper is intended as starting point for future work in exploiting the
metaphorism concept in program derivation. Candidate case studies in program
refactoring or text processing already pose significant challenges when compared
to the sorting example given in the current paper. Comparative work is also
welcome, in particular checking what benefits can be expected from regarding
representation changers [5] from the metaphorism perspective, or (back to sort-

Metaphorisms in Programming 15

ing) checking how the ideas of this paper combine with the work on parametric
permutation functions by Henglein [4].

From the linguistics perspective, metaphorisms are formal metaphors and
not exactly cognitive metaphors. But computer science is full of these as well,
as its terminology (e.g. “stack”, “pipe”, “memory”, “driver”) amply shows. If a
picture is worth a thousand words, perhaps a good metaphor is worth a thousand
axioms?

Acknowledgements

The author wishes to thank the anonymous referees for their comments and sug-
gestions. This work is funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT - Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) within project
FCOMP-01-0124-FEDER-020537.

References

[1] R. Bird and O. de Moor. Algebra of Programming. Series in Computer
Science. Prentice-Hall International, 1997.

[2] H. Doornbos, R. Backhouse, and J. van der Woude. A calculational ap-
proach to mathematical induction. TCS, 179(1–2):103–135, 1997.

[3] P.J. Freyd and A. Scedrov. Categories, Allegories, volume 39 of Mathemat-
ical Library. North-Holland, 1990.

[4] F. Henglein. What is a sorting function? J. Logic and Algebraic Program-
ming (JLAP), 78(5):381–401, 2009.

[5] G. Hutton and E. Meijer. Back to basics: Deriving representation changers
functionally. Journal of Functional Programming, 6(1):181–188, 1996.

[6] D.E. Knuth. The Art of Computer Programming. Addison/Wesley, 2nd
edition, 1997/98. 3 volumes. First edition’s dates: 1968 (volume 1), 1969
(volume 2) and 1973 (volume 3).

[7] D. Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst.,
19(3):427–443, 1997.

[8] G. Lakoff and M. Johnson. Metaphors we live by. University of Chicago
Press, Chicago, 1980.

[9] S.-C. Mu and J.N. Oliveira. Programming from Galois connections. JLAP,
81(6):680–704, 2012.

[10] J.N. Oliveira. Extended Static Checking by Calculation using the Pointfree
Transform. volume 5520 of LNCS, pages 195–251. Springer-Verlag, 2009.

[11] J.N. Oliveira. On the ’A’ that links the ’M’ s of maths, music and maps,
2013. Contributed talk to the 2013 CEHUM Autumn Colloquium XV
(Maths and Comp. Science Panel), U. Minho, Braga, 21-23 Nov. 2013.

[12] J.N. Oliveira. A relation-algebraic approach to the “Hoare logic” of func-
tional dependencies. JLAP, 83(2):249–262, 2014.

16 J.N. Oliveira

[13] J.N. Oliveira and M.A. Ferreira. Alloy meets the algebra of programming:
A case study. IEEE Trans. Soft. Eng., 39(3):305–326, 2013.

[14] I.A. Richards. The Philosophy of Rhetoric. Oxford University Press, 1936.
[15] D. Swierstra and O. de Moor. Virtual data structures. In B. Möller,

H. Partsch, and S. Schuman, editors, Formal Program Development, vol-
ume 755 of LNCS, pages 355–371. Springer, 1993.

A Background — basic definitions and results of relation
algebra

Relational folds: this paper relies on basic properties of relational folds over a

type T defined by initial algebra T FT
inoo on functor F, namely fusion

S · (|R|) = (|Q |) ⇐ S · R = Q · FS (27)

and cancellation,

(|R|) · in = R · F (|R|) (28)

both stemming from universal property :

X = (|R|) ≡ X · in = R · FX (29)

Shunting rules for function f , where R, S are arbitrary binary relations:

f · R ⊆ S ≡ R ⊆ f ◦ · S (30)

R · f ◦ ⊆ S ≡ R ⊆ S · f (31)

Top relation — the topmost relation of its type can be defined by

!◦ · ! = > (32)

where ! :A→ 1 is the constant function which maps every argument to the unique
element of singleton type 1.

Pre/post restrictions where Φ and Ψ are partial identities:

R · Φ = R ∩ > · Φ (33)

Ψ ·R = R ∩ Ψ · > (34)

Weakest pre-conditions: let p? and q? be the partial identities for predicates
p and q , respectively, and wp(f , q) denote the weakest precondition for function
f to ensure post-condition q , that is: wp(f , q) x = q (f x). Then the following
properties hold (proofs in Appendix B):

f · p? = q? · f ≡ p = wp(f , q) (35)

ker f · p? = p? · ker f ⇐ p = wp(f , q) (36)

Metaphorisms in Programming 17

“Shrinking” — let B A
X ,Soo and B B

Roo be binary relations in universal
property [9]:

X ⊆ S �R ≡ X ⊆ S ∧ X · S◦ ⊆ R (37)

Coproducts: coproduct notation C A + B
[R ,S]oo denotes the junction of re-

lations C A
Roo and C B

Soo (coproduct). Direct sum R + S is the same
as [i1 ·R , i2 · S], where i1 and i2 are the injections associated to datatype sums.

Injectivity preorder: the kernel of a relation R,

ker R
def
= R◦ ·R (38)

measures the injectivity of R. As in [12] we capture this by introducing a preorder
on relations which compares their injectivity

R 6 S ≡ ker S ⊆ ker R (39)

and satisfies, among many others, the following properties:

[R ,S] 6 R + S (40)

R + S 6 P + Q ≡ R 6 P ∧ S 6 Q (41)

Moreover:

ker (R + S) = ker R + ker S (42)

ker (R × S) = ker R × ker S (43)

B Proofs of auxiliary results

Proof of (5), where f = (|k |):

ker f = (|ker f · in|)

≡ { inline definition f = (|k |) ; ker f = f ◦ · f }

(|k |)◦ · (|k |) = (|(|k |)◦ · (|k |) · in|)

⇐ { fusion (27) }

(|k |)◦ · k = (|k |)◦ · (|k |) · in · F (|k |)◦

≡ { cancellation (28) }

(|k |)◦ · k = (|k |)◦ · k · F (|k |) · F (|k |)◦

⇐ { factor (|k |)◦ · k out (Leibniz) ; functor F }

id = F ((|k |) · (|k |)◦)

≡ { f = (|k |) ; img f = f · f ◦ = id assuming f surjective }

id = F id

18 J.N. Oliveira

≡ { functor F: F id = id }

true

�

Proof of Theorem 1:

R · h = R · h · (F R)

≡ { R · h ⊆ R · h · (F R) holds by id ⊆ F R, since id ⊆ R }

R · h · (F R) ⊆ R · h

≡ { the lower R can be cancelled, since R is an equivalence (see below) }

h · (F R) ⊆ R · h
�

The last step can be justified by assuming the function kR which maps every
object to its equivalence class, as dictated by R. Then R = ker kR and, for any
suitably typed relations X and Y :

R ·X ⊆ R ·Y
≡ { inline R = ker kR }

ker kR ·X ⊆ ker kR ·Y
≡ { ker kR = k◦R · kR ; shunting (30) }

kR · k◦R · kR ·X ⊆ kR ·Y

≡ { f · f ◦ · f = f (difunctionality) }

kR ·X ⊆ kR ·Y
≡ { shunting (30) ; R = ker kR }

X ⊆ R ·Y
�

Proof of (16):

X ⊆ R � (Φ · >)

≡ { (37) }

X ⊆ R ∧X ·R◦ ⊆ Φ · >
≡ { (32) ; shunting (31) ; converses }

X ⊆ R ∧X · (! ·R)◦ ⊆ Φ · !◦

≡ { assume R entire }

X ⊆ R ∧X · !◦ ⊆ Φ · !◦

Metaphorisms in Programming 19

≡ { shunting (31) ; (32) }

X ⊆ R ∧X ⊆ Φ · >
≡ { (34) }

X ⊆ Φ ·R
�

Proof that (23) is equivalent to (21), where g abbreviates (|k |):

h · F (ker g) ⊆ ker g · h

≡ { F (R◦) = (FR)◦; shunting (30) ; kernel (38) }

ker (F g) ⊆ h◦ · g◦ · g · h

≡ { kernel (38) ; injectivity preorder (39) }

g · h 6 F g

�

Proof of (35): abbreviating wp(f , q) by w , p = wp(f , q) is the same as p? = w?
= f ◦ · q? · f ∩ id = dom (q? · f), where domR denotes the domain of definition
of relation R.
Step (⇒): f · p? = q? · f is stronger than f · p? ⊆ q? · f which immediately
grants p? ⊆ w?. So we only have to ensure w? ⊆ p?:

w? ⊆ p?

≡ { w? = f ◦ · q? · f ∩ id }

f ◦ · q? · f ∩ id ⊆ p?

≡ { f · p? = q? · f assumed }

f ◦ · f · p? ∩ id ⊆ p?

≡ { trivia }

(f ◦ · f ∩ id) · p? ⊆ p?

⇐ { monotonicity }

f ◦ · f ∩ id ⊆ id

≡ { R ∩ S ⊆ S }

true

�

20 J.N. Oliveira

Step (⇐): p? ⊆ w? is equivalent to f · p? ⊆ q? · f . We are left with:

q? · f ⊆ f · p? ⇐ p? = w?

≡ { substitution }

q? · f ⊆ f · w?

≡ { R · domR = R }

(q? · f) · dom (q? · f) ⊆ f · w?

≡ { w? = dom (q? · f) }

q? · f · w? ⊆ f · w?

⇐ { q? ⊆ id; monotonicity }

true

�

Proof of (36):

ker f · p?

= { kernel (38) ; (35) since p = wp(f , q) is assumed }

f ◦ · q? · f
= { converses ; partial identities }

(q? · f)◦ · f

= { again (35) ; converses ; kernel (38) }

p? · ker f

�

	 Metaphorisms in Programming
	J.N. Oliveira

