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Abstract. Healthcare environments are generating a deluge of sensitive
data. Nonetheless, dealing with large amounts of data is an expensive
task, and current solutions resort to the cloud environment. Additionally,
the intersection of the cloud environment and healthcare data opens new
challenges regarding data privacy.
With this in mind, we propose MedCloudCare (MCC), a healthcare
application offering medical image viewing and processing tools while in-
tegrating cloud computing and AI. Moreover, MCC provides security and
privacy features, scalability and high availability. The system is intended
for two user groups: health professionals and researchers. The former can
remotely view, process and share medical imaging information in the DI-
COM format. Also, it can use pre-trained Machine Learning (ML) models
to aid the analysis of medical images. The latter can remotely add, share,
and deploy ML models to perform inference on DICOM images.
MCC incorporates a DICOM web viewer enabling users to view and pro-
cess DICOM studies, which they can also upload and store. Regarding
the security and privacy of the data, all sensitive information is encrypted
at rest and in transit. Furthermore, MCC is intended for cloud environ-
ments. Thus, the system is deployed using Kubernetes, increasing the
efficiency, availability and scalability of the ML inference process.

Keywords: Healthcare Application · DICOM Images · Cloud Comput-
ing · Machine Learning

1 Introduction

The vast amount of information created and ingested in clinical environments [17]
makes the analysis and collection of data with labelled ground-truth a bound-
less challenge [26]. Thus, the development of technological tools that can assist
medical professionals in accessing, processing, and interpreting that data in a
timely and accurate manner is a significant concern.

Nowadays, medical images are extensively utilised to diagnose, plan, and
guide the treatment and monitoring of disease progression [23]. In this context,
systems that enable clinicians to remotely access and evaluate patients’ medical
imaging information have been increasingly sought-after. Recently, radiologists
have collaborated with data scientists to develop web applications for radiological
* These authors contributed equally to this work
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purposes [19,26]. Web applications allow radiologists to remotely view, share and
interpret images within a browser and without additional software installed on
their machines [18,19,26]. Moreover, cloud computing is becoming an attractive
computing model for biomedical research. Hospitals and researchers are shifting
to cloud environments to facilitate large-scale data analysis and remote sharing,
and web applications are a practical way to interact with such environments [28].
For these reasons, web-based systems have been increasingly valuable for clini-
cians and researchers. Another fundamental element of the medical imaging field
is the Digital Imaging and Communications in Medicine (DICOM) standard. It
allows clinicians to view, store, and share medical images independently of their
location or the devices they use and is considered the primary standard for image
data management in healthcare [22].

There are still some technological challenges regarding medical image analysis
to be addressed. Firstly, many users have sensitive clinical data that must be
safely stored and retrieved. Therefore, data should be encrypted both at rest
and in transit. Secondly, many of the methodological tasks (image registration,
localisation, classification, detection, segmentation) involved in a medical image
analysis process often encompass manual workflows that can be tedious, prone
to observer variation and, most crucially, time-consuming. Artificial Intelligence
(AI) is frequently required to enhance these tasks. Constant improvements in
AI are helping to identify, classify, and quantify patterns in medical images. For
these reasons, some web applications allow the deployment of Machine Learning
(ML) or Deep Learning (DL) models to help diagnose clinically relevant results
[25]. Current solutions cannot solve such challenges effectively, either by not
offering privacy features or not being scalable and high available or not allowing
easy integration of new AI algorithms.

To tackle this, we propose MedCloudCare, a web-based healthcare appli-
cation. MCC integrates typical DICOM viewer features (e.g., rotation, pan, an-
notation) with state-of-the-art pre-trained AI models. Due to the large volumes
of data, MCC is intended to be deployed in cloud environments. Nonetheless, it
also can be deployed locally. Additionally, the system is built for health profes-
sionals and researchers. First, it provides a visually appealing interface for health
professionals to view and analyse patients’ data. Secondly, researchers can add,
store, deploy and test their pre-trained AI models on DICOM data.

The outline of the paper is as follows. Section 2 reviews some state-of-the-art
medical imaging applications. Section 3 describes the designed system architec-
ture, while Section 4 presents some obtained results. Finally, Section 5 outlines
the main conclusions and the work to be done.

2 Related Work

This section reviews some state-of-the-art medical imaging applications.
ePAD [7] is a platform for visualisation, annotation, and quantitative analysis of
medical images. Another extensible research platform is 3D Slicer [1], a desktop
application requiring local installation, which is massively adopted for imaging
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research. RayPlus [27] is a web application for medical image processing devel-
oped by Yuan et al. MedCloudCare distinguishes itself from these applications
by offering a cloud-based alternative with security and privacy guarantees.

In the scope of web applications offering AI capabilities, Tesseract-MI sup-
ports the deployment of AI models while providing image viewing and report-
ing [24]. However, Tesseract-MI only supports the deployment of static and pre-
defined AI models and requires a connection to a DICOM server to view images
since it does not allow users to upload DICOM files in the application. Mehrtash
et al. developed DeepInfer [3] as an extension of 3D Slicer. It uses Docker to en-
able users to run different DL models on their data on a local machine. Similarly,
the TOMAAT framework allows users to serve their DL applications over the
cloud [15]. Nevertheless, DeepInfer and TOMAAT applications require a client
with a specific interface to connect with the server to deploy the DL models.

Distinctively, MCC allows users to upload DICOM files in the application and
add and deploy their own AI models, which they can select and apply to those
images. Furthermore, it has a visually appealing user interface (UI) while manag-
ing multi-users with distinct roles and permissions and having privacy features,
scalability and high availability. Moreover, MCC intends to offer straightforward
integration of AI models in the medical image analysis workflow, requiring min-
imal software installation to assure compatibility with clinical standards.

3 MedCloudCare

The proposed solution intends to provide four main features: user authentication;
DICOM image viewing, processing and storage; sharing of imaging data and
models between users; and addition and deployment of pre-trained models.

This section describes MedCloudCare’s proof-of-concept (PoC) architec-
ture (Figure 1). The latter follows the client-server model. The components exe-
cuted on the server-side create the backend (Django API, PostgreSQL database,
Orthanc server and Kubernetes cluster), and the elements executed on the client-
side provide the UI, therefore, encompass the frontend (e.g., the OHIF viewer).

React Frontend

PostgreSQL
Database

OHIF
Viewer

DICOM Server

Django Backend API

Kubernetes
Cluster

ML Model
API

ML Model
API

...

Fig. 1: MedCloudCare Architecture Components.
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3.1 React Frontend

The client-side of MCC was developed using the JavaScript programming lan-
guage, particularly with the React web framework [14]. It is executed in a
browser, allowing users to access the backend services by sending API (Ap-
plication Programming Interface) requests. Since the application is intended for
medical and research use, the UI offers different functionalities according to the
type of user. Nevertheless, when the application starts, the UI is common to all
users, showing an authentication page where they can create an account and sign
in. The authentication process can be performed using the users’ email or social
networks (namely, Google, Facebook, Linkedin, GitHub and Spotify). Once the
users are successfully authenticated, they have access to the following features:

– Image Storage with Orthanc: the Orthanc DICOM server is currently con-
sidered the ubitiquous open-source solution for DICOM image data storage.
One of its main strengths lies in its built-in REST API. Such an API gives
full programmatic access to all core features of Orthanc, namely, the capa-
bility to upload, transfer and retrieve images [10];

– Image Viewing and Processing with OHIF : the Open Health Imaging Foun-
dation (OHIF) viewer addresses the demand for open-source web imaging
applications [28]. It is based on web technologies, including JavaScript, Re-
act [14], and the Cornerstone.js library [2], and can be used as a Single
Page Application embedded into third-party applications. It is standards-
conforming and relies on DICOMweb [4] for data exchange and connectiv-
ity to image archives, e.g., Orthanc. The UI components of the viewer are
provided in an independent React library so that developers can customise
the UI or use its components in their applications. In reality, the OHIF
Viewer has been adopted in various clinical research platforms (e.g., Pre-
cision Imaging Metrics [13], XNAT [16]) and commercial applications (e.g.,
OsiriX [11]) [28]. With this in mind, MCC incorporated a customised version
of OHIF to provide DICOM image viewing and processing capabilities;

– Addition and Deployment of AI models: MCC provides an interface com-
ponent that enables the application to use pre-trained, out-of-the-box AI
models. To that matter, users need to add models to the application. First,
they must fill out a form with information about their AI model. Secondly,
if the information is correct, users are redirected to a code editor where they
can submit the algorithm’s code and upload the corresponding pre-trained
model files. Finally, all the algorithm files are zipped and sent to the back-
end. As mentioned, the application offers distinct functionalities according
to the type of user: researcher or health professional. Both groups can view
DICOM images using OHIF and upload studies to Orthanc. Nevertheless,
from an AI perspective, the possibilities differ. Users with the researcher
role may add AI models to the application to perform inference on the im-
ages they have uploaded. Deploying a model in order to perform inference
means that users have trained a model, tested its performance, and decided
to use it to make predictions on new data [21], in this case, DICOM images.
This way, researchers test their models on new and undisclosed data. On the
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other hand, instead of adding and deploying models, healthcare professionals
are perhaps more interested in using available models to aid them in image
analysis. With this in mind, MCC enables researchers to add and test their
AI models on DICOM images while allowing health professionals to apply
models made available in the application and see the outcome results;

– Sharing of Imaging Data and AI Models: from a healthcare point of view,
there are potential benefits for patients’ well-being when health professionals
can share patients’ medical imaging data. Such data not only includes the
image itself. It also comprises measurements and annotations that the health
professional user may perform in the patients’ study. The ability to share
such information with other health professionals that use the application
may facilitate the analysis of that data, accelerate the diagnosis procedure
and help achieve more accurate clinical results. From a biomedical research
perspective, if investigators can get practical insights from their models and
make them available to other users, the impact of the models is significantly
enhanced. Also, if the model owner concedes access permission to other re-
search users of the application, they can cooperate in editing, improving and
testing such a model. With this in mind, MCC allows the creation of user
groups, enabling the sharing of studies between health professional users and
models between researchers, respectively.

3.2 Django Backend API

The server-side software architecture was implemented using Django, a Python
web framework [5]. Since medical data is increasing exponentially, such archi-
tecture intends to be efficient, highly available and scalable. Besides, health pro-
fessionals want to view, store, share and process images independently of their
location or devices and with minimum downtime. Django comprises the main
endpoint API whose methods allow tasks such as storing data in the database
or processing the data model entities of Figure 2. Each method corresponds to
a service, which can be called through Django’s REST API.

The chosen database was PostgreSQL [12] since it has plenty of features
to help developers build applications and administrators protect data integrity.
The database comprises four entities: User, Study, Model and Patient. Each user
(researcher or health professional) can upload several DICOM studies to the ap-
plication. However, each study only belongs to one user (the one who uploaded
it). Likewise, every researcher can upload various AI models, but each model
only belongs to one user. The latter, however, does not imply that the owner of
the study (or model) cannot share that entity with other users. The patient en-
tity can also have several studies associated, but each study only belongs to one
patient. Database attributes regarding users’ and patients’ sensitive clinical in-
formation were encrypted using 256-bit AES encryption. These include the user’s
password, medical certificate, code for two-factor authentication, patient’s name
and all keys and initialisation vectors for the AES cypher. AES is employed as
the chief encryption primitive, which uses the permutation method in a specified
number of rounds allowing better security, especially against brute force attacks.
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Moreover, an instance of Orthanc was created to store the DICOM studies infor-
mation in an encrypted state. The metadata related to the physician, hospital,
and study modality were encrypted for enhanced privacy and security.

The application has two central users: the health professional and the re-
searcher. Everyone whose intentions are only investigational-driven can be a
researcher. In turn, for someone to authenticate as a health professional, must
provide a medical certificate, whose validation is done manually by the applica-
tion administrator. Through the application’s authentication system REST API,
a user can authenticate himself and ensure that no one can enter his account
without the proper credentials. Such authentication system was implemented
using Djoser, a library that provides a set of Django Rest Framework views to
handle actions such as registration, login, logout, password reset and account
activation. When a user signs in, he has an access token, which refreshes itself
from time to time, allowing him to remain authenticated. Also, social networks
authentication was incorporated with the help of Python Social Auth, using the
OAuth2.0 protocol. All API methods are protected as, when a call occurs, an
API key (access token) is required to get a valid response from that method. Fur-
thermore, two-factor authentication was enabled to allow better security overall.
Therefore, besides providing his credentials, the user needs to insert a secret key,
which can be present in a third-party tool such as Google Authenticator.

Insert Studies

Search studies

Add groups

See groups

PostgreSQL

See ML algorithms

Test ML algortihms

See ML results

Visualize images

Add ML algorithms

Insert patient

REST API

Entities

User

Model

Patient

Study

N

1

N

1
N

1

User authentication

Fig. 2: Backend API.

3.3 Machine Learning Modelling

Machine Learning model deployment is the method by which a model is inte-
grated into an existing production environment to make decisions based on data.
One of the typical ways to deploy an ML model is to create a web service for
prediction. Usually, the first step is to create an ML model, train it and validate
its performance. Second, the model needs to be persisted. Persistence can be
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achieved by storing the trained model in a file. Finally, the pre-trained model
can be served using a web framework [20]. MCC focus on this last stage of the
model’s life cycle – using the pre-trained model to make predictions on new data,
in this case, medical images.

For that matter, AI models need to be added to the application. In this
case, the application accepts algorithms written in Python. To add a model,
researchers first need to fill out a form with information about the algorithm,
e.g., name, description, model architecture, and task (image segmentation, object
localisation, image processing, lesion detection or classification). In the second
step, they are redirected to a code editor where they can submit the algorithm’s
code and upload the corresponding pre-trained model files (Figure 3a).

(a) (b)

Fig. 3: UI of a researcher. Code editor.

The editor also includes a template that users should follow to submit their
code. Such a template uses three key Python modules: "InferTask", "InferType",
and "Application". Each algorithm is seen as an inference task, so it must corre-
spond to a class that inherits the "InferTask" module. Each task has a "type".
For instance, if the model performs image segmentation, its type is "SEGMEN-
TATION". Each "type" is defined as shown in Figure 3a. Finally, the "main.py"
file needs another class that must inherit the "Application" module. The latter
is what turns the algorithm’s code into code that can run on MCC.

The "run" method (Figure 3b) is mandatory, and it should contain all the
code that the user wants to run, i.e., the workflow of the algorithm. All the
other methods or functions possibly added to the algorithm’s class should be
called here. To apply the algorithm, the backend will specifically look for the
"run" method and execute its code. Finally, the output will be written in the
appropriate format to be displayed in the viewer.

When a "Publish" button is clicked, all the algorithm’s files are zipped and
sent to the backend, which, first, validates the files, that is, checks if there are no
missing files, if the code template was respected and, then, stores the algorithm
in the database. In parallel, a Docker [6] image based on the model API is
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created for that algorithm. It will be used for the creation of the correspondent
deployment with Kubernetes [8].

Once the model is submitted, it is available for the user to perform inference
on DICOM images. Since AI is incorporated as a second reader functionality, it is
required that AI predictions are available in the same image viewing environment
as the images and accessible through a simple click. The user has a choice of
multiple models to select from, and the series of images that the user is viewing
at that moment is used as input to the chosen model. Once a model is selected,
the unique identifier of that series is sent to the backend, which requests those
images from Orthanc and caches them. Moreover, the model zip file is retrieved
from the database, unzipped, and an instance of the algorithm’s class is created.
Ultimately, the "run" method of that instance is executed, and once the output
is returned, it is sent to the viewer, which displays it.

It is worth mentioning that the AI workflow of the application is based on the
open-source MONAI Label project, which provides a framework for developing
and deploying AI applications [9].

3.4 Docker and Kubernetes for ML inference

Machine learning models can take quite a long time to predict a result, and,
during that time, the user may want to navigate through the application while
waiting for the response. Thus, deployment is perhaps one of the most over-
looked topics in the Machine Learning world. Accordingly, for the application
to have high availability, scalability and efficiency, technologies such as Docker
and Kubernetes are extremely valuable. Docker takes away repetitive, mundane
configuration tasks and is used throughout the development lifecycle for fast,
easy and portable application development. Kubernetes, in turn, is utilised for
automating deployment, scaling, and management of containerised applications
using Docker runtime. Such implementation allows the user to update or roll
back the version of his models. If he wants to change the model itself, a new
image will be created for that model, and the deployment will be updated so
that pods can run a container with that updated image. A pod is the smallest
and most basic deployable object in Kubernetes. It represents a single instance
of a running process (docker container) in the cluster.

As described earlier, each model has its API and runs in a container, where
all its dependencies are stored. A Kubernetes cluster with one node was created
to orchestrate numerous containers. In such node, each container is allocated to
a unique pod and three pod replicas, called a deployment, are constantly running
each model API and return the response to the frontend. Each deployment has
its service, and each service is exposed to the outside via an ingress. Ingress is a
controller that redirects to a specific service depending on the path provided in
the URL. Thus, depending on the model that the user selects, the ingress will
redirect to the appropriate service, which, in turn, redirects to one of the three
pods of the deployment that runs the model API (Figure 4).
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Fig. 4: Kubernetes Cluster Architecture and Pipeline.

4 Results

The proposed web application is in the proof-of-concept stage. Nevertheless, it
has been validated from a technical perspective through a set of experiments,
such as testing the performance of the backend in terms of scalability, availability,
latency, privacy and security; and the efficiency of PostgreSQL database and
Orthanc server querying.

The first step that any user must go through to use the application is to
authenticate himself with the correct credentials (email and password) as shown
in Figure 5 or pass the two-factor authentication phase.

Fig. 5: Sign in page.

Furthermore, both groups of users, researchers and health professionals, can
access a list (Figure 6) where all the studies they have uploaded (or to which
they have been granted access) are displayed. Those studies can be filtered by the
information of some DICOM tags, namely, patient name or ID, study modality
and date. On this page, users can also upload more studies using the "+" button
on the right side of the screen.
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Fig. 6: UI. Example of a researcher screen displaying a study list.

Besides a study list, researchers also have access to a model list, where all
the ML models they have access to are displayed. It also allows them to pick a
model and be redirected to a page where they can edit its information and code.

When users click on one of the studies from Figure 6, they are redirected to
the OHIF viewer, where they can view the corresponding DICOM images. As
mentioned, since AI is incorporated as a second reader functionality, it is required
that AI predictions are available in the same image viewing environment as the
DICOM images. Therefore, users have access to a panel where they can select
and run AI models. Figure 7 shows an example of a user screen where the user
chose a model that performed the automatic segmentation of the spleen in a CT
series. As noted, sensitive patient information in the DICOM studies must be
private and secure. For that matter, data is encrypted at rest in the Orthanc
server and at transit over HTTPS. Figure 7 presents an example of a DICOM
study in which the metadata tags were encrypted with 256-bit AES encryption.

Fig. 7: UI. Example of a user screen displaying images and applying AI to them.
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5 Conclusions and Future Work

MedCloudCare enables healthcare professionals to remotely access and evalu-
ate patients’ medical imaging information, which is encrypted to assure security
and privacy regarding sensitive information. This platform provides a method
for enhancing treatment adherence as it allows health professionals to share
medical images and quickly and correctly analyse them. It is also possible to
measure biomedical parameters and identify, classify, and quantify patterns in
those images with the help of AI.

From a biomedical research perspective, MCC provides research users with
a way to add and use pre-trained ML or DL models. The fact that they can test
their AI models on medical images and see the result can help them understand
if those models have the desired quality.

Additionally, MCC was tested using trials that allow the validation from a
technical point of view, assuring that there are no errors. However, besides all the
core features and functionalities, there is still work to be done. A core function
is the need to encrypt the pixel data of the DICOM files and not only their
metadata. Finally, MCC requires validation in third-party cloud infrastructures,
namely Google Cloud Platform (GCP). This step will be focused on using the
Google Kubernetes Engine (GKE) and will be automated using Terraform.
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