INTEGRATION OF REPOSITORI

José Paulo Lehand

ESIN ELEARNING SYSTEMS

Ricardo Queir8s

{CRACYINESC-Porto & DCC/FCUP, University of Porto, Portugal
Zp@dcec.fe.up.pt

2CRACS/INESC-Porto & DI/ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Interoperability.

The wide acceptance of digital reposii®today in the eLearning field raises severalaperability issues.

In this paper we present the interoperability feeguof a service oriented repository of learningects
called crimsonHex. These features are compliartt thie existing standards and we propose extensions
the IMS interoperability recommendation, adding nfamctions, formalizing message interchange and

theppsed extensions and its implementation in crimsonH

we developed a repository plugin for Moodle 2.0t ikaexpected to be included in the next releasthisf

Keywords: elLearning, Repositories, Learning Objddt4S,
Abstract:
providing also a REST interface. To validate
popular learning management system.
1 INTRODUCTION

In recent years several initiatives to integrate

crimsonHex repository, we developed a crimsonHex
plugin for the 2.0 release of the popular Moodle
LMS. Moodle 2.0 users will be able to download

eLearning systems have emerged. The goal of thesd-Os from crimsonHex repositories since this LMS is

initiatives, such as specifications and framewoiks,

to facilitate the integration between heterogeneous
systems. Learning objects (LO) are the corner stone

of interoperability in pedagogical eLearning
systems, thus the integration of repositories o LO
is particular important in this context.

This paper builds upon previous work (Leal,
2009) on the design and implementation of
crimsonHex - a service oriented repository of LOs.
The repository provides standard compliant
repository services to a broad range of elLearning
systems, exposing its functions using two alteveati
web services flavours. In this paper we highlidig t
interoperability features of crimsonHex. For sake o

expected to include the plugin described in this
paper in its distribution.

The remainder of this paper is organized as
follows: Section 2 traces the evolution of eLeagnin
systems with emphasis on the existing repositories.
In the following section we introduce the
crimsonHex repository and its application interface
Then, we provide basic implementation details of a
crimsonHex plugin for Moodle 2.0 using the
proposed IMS DRI extensions. Finally, we conclude
with a summary of the main contributions of this
work and a perspective of future research.

standard compliance these features are based on IM2 LEARNING OBJECTS

Digital Repositories Interoperability (DRI)

specification (DRI, 2003). Our experience in using
these recommendations lead us to
extensions to its set of functions and to the XML
binding that currently lacks a formal definitiono T

evaluate the proposed extensions to the IMS DRI
specification and its implementation in the

propose 5

REPOSITORIES

learning object is a digital, self-contained,

reusable unit to support learning (Beck, 2008). A
learning object can be as small as a single image o
as large as a complete online course and usually

comes in the form of HTML/PDF files, Flash, integration with other eLearning systems, the APl o
QuickTime movies and others (Casey, 2007). the repository adheres to the IMS DRI specification
Usually, they are described with standard metadata,The IMS DRI specifies a set of core functions and
packaged and stored in digital repositories to bean XML binding for these functions. In the
easily searchable. The need for this kind of definition _of API of crimsonHex we needeq to create
repositories is growing as more educators are eagef€W functions and to extend the XML binding with a
to (re)use digital educational contents and mori¢ of Response Specification language. The complete set
is available. of fun(_:tlo_ns of the API a_nd '_[he extension to the
A repository of LOs can be defined as a ‘system XML binding are both detailed in this section.
that stores electronic objects and meta-data about)
those objects’ (Holden, 2004). There are several3-1 Architecture
online repositories or collections of LOs worldwide . .) .
(e.g. MERLOT, Wisc-Online). The Jorum Team The architecture of the crimsonHex repository eelie
made a comprehensive survey (JORUM, 2006) of on an APl where the repository exposes a set of
the existing repositories and noticed that most of functions implemented by a core component that
these systems do not store actual LOs. They justwas designed for efficiency and reliability. Allhetr
store metadata describing LOs, including pointers t features are relegated to auxiliary components,
their locations on the Web, and sometimes theseconnected to the central component using this API.
pointers are dangling. Other eLearning systems can be plugged into the
The repositories usually offer several features repository using also this API. Thus, the architeet
including upload/download, single/federated search, of crimsonHex repository is based dhe Core
comment/review and collection management. component that exposes the main features of the
Despite these features, existent repositories prese repository, both to external services, such as the
integration and interoperability issues. For exampl LMS and the EE, and to internal components - the
the LOs in the previously cited repositories must b Web Manager and the Importer. In the remainder we
manually imported into an LMS. An evaluation focus on the Core component, more precisely, its
engine (EE) cannot query the repository and APl and we introduce a new language for message
automatically import the LOs it needs. In summary, interchange.
most of the current repositories are specialized
search engines of LOs and not adequate for3.2 Applications|nterface
interoperating with other eLearning systems, such a
an automatic evaluation engine. The IMS DRI recommends exposing the functions
Surveys (Holden, 2004) show that users are veryas SOAP web services. Although not explicitly
concerned with interoperability issues. Some major recommended, other web service interfaces may be
interoperability efforts (Hatala, 2004) were made i used, such as the Representational State Transfer
elLearning, such as NSDL, POOL, EduSource and(REST) (Fielding, 2000). We chose to expose the
IMS DRI. The IMS DRI specification was created repository functions in these two distinct flavaurs
by the IMS Global Learning Consortium (IMS GLC) SOAP web services are usually action oriented,
and provides a functional architecture and refexenc €Specially when used in Remote Procedure Call
model for repository interoperability. The IMS DRI (RPC) mode and implemented by an off-the-shelf
provides recommendations for common repository SOAP engine such as Axis. REST web services are

functions, namely the submission, search and object (resource) oriented and implemented directly

download of LOs. It recommends the use of web V&' the HTTP protocol, mostly to put and get
services to expose the repository functions based o resources. The reason to provide two distinct web

;) service flavours is to encourage the use of the
the Simple Object Access Protocol (SOAP, 2007). repository by developers g with different

interoperability requirements. A system requiring a
formal an explicit definition of the API in Web
3 CRIMSONHEX REPOSITORY Services Description Language, to use automated
tools to create stubs, will select the SOAP flavaur
In this section we introduce the crimsonHex lightweight system seeking a small memory
repository and we present its application interface footprint at the expense of a less formal definitad
(API) used both internally and externally. Inteipal the APl will select the REST flavour. The reposjtor
the API links the main components of the repository functions exposed by the Core are summarized in
Externally the API exposes the functions of the Table 1.
repository to third party systems. To promote the

Table 1: Core functions of the repository.

Function SOAP REST
Reserve XML getNextld(URL colectionl) GET URL?nextld > URL
Submit XML submit(URL loid, LO lo) PUT URL<LO

Request LO retrieve(URL loid) GET URL >LO
Search XML search(XQuery query) POST URL < XQUERY > XML

GET URL?namel=valuel&...> XML

Alert RSS getUpdates() GET URL?alert+seconds > RSS
Report XML Report(URL loid,Report rp) PUT URL < LOREPORT

Create XML Create(URL collection) PUT URL

Remove XML Remove(URL collection) DELETE URL

Satus XML getStatus() GET URL?status > XML

Each function is associated with the corresponding « error element, containing an error message

operations in both SOAP and REST. The lines - client systems will search for this element
formatted in italics correspond to the new funcsion to verify the existence of errors;

added to the DRI specification, to improve the .« response element, describing a successful
repository communication with other eLearning execution of the function - it's composed by
systems. an human readable response message and,
To describe the responses generated by the for some functions, by aresources
repository we defined Response Specification as a element that groups a set of resources
new XML document type formalized in XML defined individually irresource elements.
Schema. A resource element contains an identification

The advantage of this approach is to enable clientsf the collection absolute path (attribud€ol) and
systems to achieve more information from the server g, identification of the LO itself (attributéLo).

and be able to standardize the parsing and validati In the remainder of this section we enumerate the
of the HTTP responses. Figure 1 depicts the Core functions of the repository, describing bdté t
elements of the new language and their types. request and response data. For sake of simpligty w
The schema defines two top level elemerdsult illustrate the requests using the REST interfaneesi

and rss . The former will be used by all the these can be used as command lines in a Linux
functions except the Alert function that returns a System shell.

feed compliant with the Really Simple Syndication _) _
(RSS) 2.0 specification. Theesult element The Register/Reserve function requests a unique

contains the following child components: ID from the repository. We separated this function
. base-u 1l attribute, defining a base URL from Submit/Store in order to allow the inclusioh o

for the relative URLS in the response: the ID in the meta-data of the LO itself. This I® i
o P ’ an URL that must be used for submitting or
* request element, containing the full yetrieving an LO. The producer may use this URL as
request URL and an human readable requestan |D with the guarantee of its uniqueness and with
message, the advantage of being a network location from
where the LO can be downloaded.

€| result (resultType]
[o] R e
base-url string
source string
[e] request [L.1] requestType message string
< [&] error [0.1] errorType
[€] response [0.1] responseType &) errerType
message string

[&] responseType

resourcesType
[€] resources resourcesType [] resourceType
[€] resource [0.7] resourceType

£l . -
= L fE any [1.% idCol string
idlo string

Figure 1: Response specification schema.

This action is performed by sending a GET After creating the XQuery file you can use the
HTTP request to the server, as in the next example. following POST request.

GET http://server/ch/lo?nextld > URL POST http://server/ch/lo < XQUERY

The HTTP response includes an XML file Alternatively, you can use a GET request with
complying with the Response Specification and the searched fields and respective values as part o
containing all the details of the response gendrate the URL query string, as in the following example.
by the Core. Nevertheless, in this particular figrct
and for convenience of programmers using REST, GET http://server/ch/lo?author=Manzoor
the HTTP Location header contains the URL

returned by the server. Queries using the GET method are convenient
for simple cases but for complex queries the
Location: http://server/ch/lo/3 programmer must resort to the use of XQuery and

the POST method. In both approaches the result is a
The Submit/Store function uploads an LO to a valid XML document such as the following.
repository and makes it available for future access
This operation receives as argument an IMS CP <result base-url="http://server/ch/lo/">
compliant file and an URL generated by the Reserve <request
function. This operation validates the LO confogmit source="http://server/ch/lo/"
to the IMS Package Conformance and stores the LO message="Querying repository" />
in the internal database. To send the LO to theeser <response message="3 LOs found...">
we could use, in the REST flavour, the PUT or the <resources>
POST HTTP methods. An example using the POST <resource idCol=""idLo="5">

syntax is the following. Hashmat the Brave Warrior
</resource>
POST http://server/ch/lo/3 < LO <resource idCol=""idLo="123">
Summation of Four Primes
The repository responds with submission status </resource>
data compliant with the Response Specification. <resource idCol="graphs/" idLo="2">
InCircle
The Search/Expose function enables the </resource>

elLearning systems to query the repository using the </resources>

XQuery language, as recommended by the IMS </response>

DRI. This approach gives more flexibility to the </result>

client systems to perform any queries supported by . .

the repository's data. To write queries in XQuéwy t | heReport/Store function associates a usage report
programmers of the client systems need to know thel® @n existing LO. This function is invoked by the
repository's database schema. These queries arkMS to submit a final report, summarizing the use
based on both the LO manifest and its usage reports®f @n LO by a single student. This report includes
and can combine the two document types. The clientP0th general data on the student's attempt to solve
developer needs also to know that the database i€ Programming exercise (e.g. data, number of
structured in collections. A collection is a kinlao ~ €valuations, success) and particular data on the
folder containing several resources and sub-folders Student's ~ characteristics ~ (e.g. gender, age,
From the XQuery point of view the database is a instructional Ievgl). With this data, the LM_S wile
collection of manifest files. For each manifesefil @Ple to dynamically generate presentation orders
there is a nested collection containing the usageP@sed on previous uses of LO, instead of fixed
reports. As an example of a simple search, supposdresentation orders. This function is an extension
you want to find all the titles of LOs in the root the IMS DRI.

collection whose author is Manzoor. The XQuery) -
file would contain the data. The Alert/Expose function notifies users of changes

in the state of the repository using a RSS feedhWi
decl are namespace imsmd = “http:/...”; this option a user can have up-to-date information
for $p in /imsmd:lom through a feed reader. Next, we present an example

where contains($p//imsmd:author, Manzoor’) of a GET HTTP request.
return $p/limsmd:title//text()

GET http://server/ch/lo?alert+seconds > RSS <result base-url="http://server/ch/lo/" ...>
<request

The repository responds with an RSS document. source="http://server/ch/lo/123"

message="Deleting a LO" />

The Create function adds new collections to the <response message="LO deleted">

repository. To invoke this function in the REST <resource idCol=""idLo="123" />

interface the programmer must use the PUT request </response>

method of HTTP. The only parameter is the URL of ~/resul”

the collection. The Status function returns a general status of the

repository, including versions of the components,
their capabilities and statistics. This functioresis

. .) the GET request method of HTTP, as in the
The following is an example of the repository following example.

response to a create function.

PUT http://server/ch/lo/newCol

GET http://server/ch/lo?status
<result base-url="http://server/ch/lo/" ...>
<request The repository responds with status data

source="http://server/ch/lo/newCol" compliant with the Response Schema Specification.
message="Creating new collection" />

<response message="Collection created">
<resource idCol="newCol" idLo=""/>

</response> 4 I NT EG RATI ON WI TH
</result> M OODL E

TheRemove function removes an existent collection
or learning object. This function uses the DELETE
request method of HTTP. The only parameter is an
URL identifying the collection or LO, as in the
following example.

To validate the interoperability features of the
crimsonHex repository we integrated it with
Moodle, arguably the most popular LMS nowadays.
In this section we present the new APIs for Moodle
2.0 plugins and we provide basic implementation
details of a plugin for crimsonHex repositories.

The development of this plugin was straightforward.
In terms of programming effort we spent half a day
to produce approximately 100 new lines of code.
This quick and simple integration benefited frora th
new interoperability features of the repository.

DELETE http://server/ch/lo/123

The following is an example of the repository
response to a remove function.

Choose a file... X

| View as list | 6 Federated search
b}
CIAmes 9 @ Search @ Refresh RL(
Preview Preview Preview Preview Preview Preview
W merot
- InCircle Maior Loja Iniciais
< youtube 9
Sh
Preview o N "
Nrssmsrm Search in "local crimsonHex' x
Hashmat Title:
88 Mooshak crimsonHex Brave Warr| ||
Author: 9
Language:

Figure 2: crimsonHex plugin interface.

The beta version of Moodle 2.0 is due in crimsonHex is available for test and download et th
February 2010 and will include support for differen site of the project (crimsonHex, 2009).
types of repositories. Several APl are already Adding authoring features to the crimsonHex is the
available to enable the development of plugins by next step in this research. Creating LOs with

third parties, including: metadata of good quality is a challenge since the
File API for managing internal repositories; typical author of eLearning content usually ladks t
Repository API for browsing and retrieving files knowledge of metadata standards. This is also an
from external repositories; interoperability issue since the LMS is where
Portfolio API for exporting Moodle content t0 g earing content is tested and used in first place
external repositories. but repositories are the appropriate place to ptemo

We chose the Repository API for testing the
integration features of the crimsonHex repositary i
Moodle. The goal of this particular API is to supipo
the development of plugins to import content from
external repositories. The Repository APl is
organized in two parts: Administration, for

content reuse as LOs. We plan to continue using
Moodle's repository APIs for that purpose, in

particular the Portfolio API. A plugin using thisPA

will enable the content author to upload learning
content to crimsonHex and create a new LO with the

administrators to configure their repositories, :and €SSential metadata. Them, using the authoring
File picker, for teachers to interact with the 4aalie features of crimsonHex, the content author will be
repositories. Each with its own graphical user assisted inrefining the LO metadata.
interface (GUI). In Figure 2 we present the file
picker GUI of the crimsonHex plugin. On the left
panel are listed the available repositories amnddfi REFERENCES
by the administrator. Two crimsonHex repository
instancgs are marked with label 1..Label 2marksth |oq jp. Queirés, R., 2009. CrimsonHex: a Service
default listing of the selected repository. Pregsfre Oriented Repository of Specialised Learning Objects.
“Preview” link marked with 3 presents a preview of In: ICEIS 2009: 11th International Conference on
the respective LO. Pressing the “Search” link pops- Enterprise Information Systems, Milan.
up a simple search form, marked as 4 in Figure 2.IMS DRI - IMS Digital Repositories Interoperability,
For federated search in all available crimsonHex 2003. Core Functions Information Model,
repositories is used the text box marked as 5. URL: http://mww.imsglobal.org/digitalrepositories.
Beck, Robert J., 2008. What Are Learning Objects?
Learning Objects, Center for International Education,
University of Wisconsin-Milwaukee.
5 CONCLUSIONSAND FUTURE Casey, J., McAlpine, M., 2007. Writing and Using
WORK Reusable Educational Materials - A Beginners Guide.
CETIS Educational Content Special Interest Group.
URL: http://zope.cetis.ac.uk/educational-content/.

of crimsonHex - a repository of learning objects Holden, C., 2004. What We Mean When We Say
Th feat pd . yd b d g tr{ IMS “Repositories” User Expectations of Repository
ese features were designe ased on the Systems. InAcademic ADL Co-Lab.

Digital Repository Interoperability and we propose j;orum team, 2006. E-Learning Repository Systems
several extensions to this specification. These Research WatcHechnical report.
extensions include new functions and a formal Hatala, M., Richards, G., Eap, T., Willms, J., 2004e
definition of a response specification for the EduSource Communication Language: Implementing
complete function set. To evaluate the proposed Open Network for Learning Repositories and Services
extensions we implemented a plugin for 2.0 release In: ACM symposium on Applied computing.
of Moodle that uses the new interoperability feasur SOAP (Simple Object Access Protocol), Version 1.2,
of crimsonHex. 2007. Part 0: Primer, "2 edition. URL:
The main contributions of this work are the http://www.w3.0rg/TR/2007/REC-soap12-part0-
proposed extensions to the IMS DRI specification, 20070427/. . ,
the improved interoperability features and a plugin Fielding, R., 2000. Architectural Styles and the iDeof
to be included in the Moodle 2.0 distribution. The l(;l_etworlg-baseSRL- Sﬁftvv?/re ArCh't.eCIj“rfsf.’ F;Qd
improved interoperability of crimsonHex is expected Issertation. URL: ~ http:/www.ics.ucl.edu/~fielding
. /pubs/dissertation/rest_arch_style.htm.

to support the development of new eLearning tools _ . ¥ : b 2009. URL:

iri ter interoperability with repositaie crimsonkex -~ project web _site, ' ’
requiring grea ; A - : http://www.dcc.fc.up.pt/crimsonHex.
The repository plugin will facilitate the use of
crimsonHex by Moodle users. In its current status

In this paper we present the interoperability fezgu

