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Many real world data mining applications involve obtaining predictive models using data sets with strongly
imbalanced distributions of the target variable. Frequently, the least common values of this target variable
are associated with events that are highly relevant for end users (e.g. fraud detection, unusual returns
on stock markets, anticipation of catastrophes, etc.). Moreover, the events may have different costs and
benefits, which when associated with the rarity of some of them on the available training data creates
serious problems to predictive modeling techniques. This paper presents a survey of existing techniques for
handling these important applications of predictive analytics. Although most of the existing work addresses
classification tasks (nominal target variables), we also describe methods designed to handle similar problems
within regression tasks (numeric target variables). In this survey we discuss the main challenges raised by
imbalanced domains, propose a definition of the problem, describe the main approaches to these tasks,
propose a taxonomy of the methods, summarize the conclusions of existing comparative studies as well as
some theoretical analyses of some methods and refer to some related problems within predictive modeling.
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1. INTRODUCTION
Predictive modeling is a data analysis task whose goal is to build a model of an un-
known function Y = f(X1, X2, · · · , Xp), based on a training sample {〈xi, yi〉}ni=1 with
examples of this function. Depending on the type of the variable Y , we face either a
classification task (nominal Y ) or a regression task (numeric Y ). Models are obtained
through a search process guided by the optimization of some criterion. The most fre-
quent criteria are the error rate for classification and the mean squared error for re-
gression. For some real world applications it is of key importance that the obtained
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models are particularly accurate at some sub-range of the domain of the target vari-
able. Examples include diagnosis of rare diseases, forecasting rare extreme returns
in financial markets, among many others. Frequently, these specific sub-ranges of the
target variable are poorly represented in the available training sample. In these cases,
we face what is usually known as a problem of imbalanced domains, or imbalanced
data sets. Informally, in these domains the cases that are more important for the user
are rare and few exist on the available training set. The combination of the specific
preferences of the user with the poor representation of these situations creates prob-
lems at several levels. Namely, we typically need (i) special purpose evaluation met-
rics that are biased towards the performance of the models on these rare cases, and
moreover, we need means for (ii) making the learning algorithms focus on these rare
events. Without addressing these two questions, models will tend to be biased to the
most frequent (and uninteresting for the user) cases, and the results of the “standard”
evaluation metrics will not capture the competence of the models on these rare cases.

The main contributions of this work are: i) provide a general definition of the prob-
lem of imbalanced domains suitable for classification and regression tasks; ii) review
the main performance assessment measures for classification and regression tasks un-
der imbalanced domains; iii) propose a taxonomy of existing approaches to tackle the
problem of imbalanced domains both for classification and regression tasks; iv) de-
scribe the most important techniques to address this problem; (v) summarize the con-
clusions of some existing experimental comparisons; and (vi) review some theoretical
analyses of specific methods. Existing surveys address only the problem of imbalanced
domains for classification tasks (e.g. Kotsiantis et al. [2006]; He and Garcia [2009];
Sun et al. [2009]). Therefore, the coverage of performance assessment measures and
approaches to tackle both classification and regression tasks is an innovative aspect of
our paper. Another key feature of our work is the proposal of a broader taxonomy of
methods for handling imbalanced domains. Our proposal extends previous taxonomies
by including post-processing strategies. Finally, the paper also includes a summary
of the main conclusions of existing experimental comparisons of approaches to these
tasks as well as references to some theoretical analyses of specific techniques.

The paper is organized as follows. Section 2 defines the problem of imbalanced do-
mains and the type of existing approaches to address this problem. Section 3 describes
several evaluation metrics that are biased towards performance assessment on the rel-
evant cases in these domains. Section 4 provides a taxonomy of the approaches to im-
balanced domains, describing some of the most important techniques in each category.
In Section 5 we present some general conclusions of existing experimental compar-
isons of different methods. Section 6 describes the main theoretical contributions for
understanding the problem of imbalanced domains. Finally, Section 7 explores some
problems related with imbalanced domains and Section 8 concludes the paper also
including a summary of recent trends and open research questions.

2. PROBLEM DEFINITION
As we have mentioned before the problem of imbalanced domains occurs in the context
of predictive tasks where the goal is to obtain a good approximation of the unknown
function Y = f(X1, X2, · · · , Xp) that maps the values of a set of p predictor variables
into the values of a target variable. This approximation, h(X1, X2, · · · , Xp), is obtained
using a training data set D = {〈xi, yi〉}ni=1.

The problem of imbalanced domains can be informally described by the following
two assertions:

(1) the user assigns more importance to the predictive performance of the obtained
approximation h(X1, X2, · · · , Xp) on a subset of the target variable domain;
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(2) the cases that are more relevant for the user are poorly represented in the training
set, up to the point of leading to bad estimates of their conditional density by the
models.

The non-uniform importance mentioned in assertion (1) can occur in different forms,
namely: (i) by assigning different benefits to accurate predictions of the values of the
target variable; (ii) by having different costs associated with different types of predic-
tion errors; (iii) or by a mixture of both situations. This means that there is a strong
relationship between imbalanced problems and cost-sensitive learning (e.g. Elkan
[2001]). Both result from these non-uniform preference biases of the user. However,
a cost sensitive problem may not be imbalanced if the cases that are more relevant
are sufficiently represented in the training data, i.e. if assertion (2) is not true. This
means that an imbalanced problem always involves non-uniform costs/benefits, but
the opposite is not always true.

The quality of the information we have concerning the user domain preferences (item
(1) in the above list) is also of key importance as it can have an impact on: (i) the way we
evaluate and/or compare alternative models; and (ii) the process used to influence the
learning process in order to obtain models that are “optimal” according to these user
preferences. This was termed by Weiss [2013] as the “problem-definition issue”. In one
extreme the user may be able to provide information of the full utility function, u(ŷ, y),
that determines the value for the user of predicting ŷ for a true value of y. According
to Elkan [2001] this should be a positive value for accurate predictions (a benefit)
and a negative value for prediction errors (a cost). Having the full specification of this
function is the ideal setting. Unfortunately, this information is frequently difficult to
obtain in real world applications, particularly for regression tasks where the target
variable has an infinite domain. A slightly less challenging task for the user is to
provide a simpler function that assigns a relevance score to each value of the target
variable domain. We will call this the relevance function, φ(), which is a function that
maps the values of the target variable into a range of importance, where 1 corresponds
to maximal importance and 0 to minimum relevance,

φ(Y ) : Y → [0, 1] (1)
where Y is the domain of the target variable Y . This is an easier function to be defined
by the user because, among other aspects, it only depends on one variable (y), while
the utility function depends on two variables (ŷ and y). Moreover, the definition of a
utility function requires that a non-negligible amount of domain information is avail-
able whereas for the relevance function less information is needed. In effect, the utility
of predicting a value ŷ for a true value of y depends on both the relevance of each of
these values but also on the associated loss [Torgo and Ribeiro 2007; Ribeiro 2011], i.e.

u(ŷ, y) = g(φ(ŷ), φ(y), L(ŷ, y)) (2)
where L(ŷ, y) is typically the 0/1 loss for classification tasks or the squared error for
regression.

Finally, there are also applications where the available information is very informal,
e.g. “the class c is the more relevant for me”. This type of problem definition creates
serious limitations both in terms of procedures to evaluate the models, but also in
terms how to proceed to learn a model that takes this into consideration.

Let us assume the user has defined the function φ() that represents the importance
assigned to the target variable domain and has also defined a threshold tR which sets
the boundary above which the target variable values are relevant. It is important to
highlight that this threshold is not used for declaring a class or range of values irrele-
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vant. It is used for understanding which target values the user considers normal and
which are the most relevant ones. Using this threshold we can split the domain of the
target variable in two complementary subsets, YR ⊂ Y = {y ∈ Y : φ(y) > tR} and
YN = Y \ YR. In this context, DR is the subset of the training samples D where y ∈ YR
and DN is the subset of the training sample with the normal (or less important) cases,
i.e DN = D \DR.

Using the above notation we can provide a more formal definition of required condi-
tions for a predictive task to be considered an imbalanced problem:

(1) The non-uniform importance of the predictive performance of the models across
the domain of the target variable can result from:
(a) L(y, y) = L(x, x) 6=⇒ u(y, y) = u(x, x), i.e. accurate predictions may have dif-

ferent benefits;
(b) L(y1, y2) = L(x1, x2) 6=⇒ u(y1, y2) = u(x1, x2), i.e. the cost of similar errors is

not uniform;
(c) a mixture of both situations

(2) |DR| << |DN |, i.e. relevant values are poorly represented in the training set.

As we have mentioned, the problem of imbalanced domains is associated with a mis-
match between the importance assigned by the user to some predictions (1) and the
representativeness of the values involved in these predictions on the available training
sample (2). Still, it is important to stress that among the possible mismatches between
these two factors, only one type really leads to the so-called problem of imbalanced
domains. In effect, only when the more important cases are poorly represented in the
available data we have a problem. It is this lack of representativeness that causes: (i)
the “failure” of standard evaluation metrics as they are biased towards average per-
formance and will not correctly assess the performance of the models on these rare
events; (ii) the learning techniques to disregard these rare events due to their small
impact on the standard evaluation metrics that usually guide their learning process or
due to their lack of statistical significance. Other types of mismatch do not have these
consequences. If the user has a non-uniform preference bias but the data distribution
is balanced, then the second consequence does not occur as the important cases are
sufficiently represented in the data, while the first consequence is not so serious be-
cause the important cases are not rare and thus will have an impact on the standard
performance metrics1. Moreover, if the user has a uniform preference over the differ-
ent types of predictions, then even if the data distribution is imbalanced this is not a
problem given the indifference of the user to where the errors occur.

Regarding the failure of traditional evaluation metrics several solutions have been
proposed to address this problem and overcome existing difficulties, mainly for classi-
fication tasks. We will review these proposals in Section 3.

With respect to the inadequacy of the obtained models a large number of solutions
has also appeared in the literature. We propose a categorization of these approaches
that considers four types of strategies: (i) modifications on the learning algorithms,
(ii) changes on the data before the learning process takes place, (iii) transformations
applied to the predictions of the learned models and finally (iv) hybrid strategies that
combine different types of strategies. These solutions will be reviewed in Section 4.

We will now illustrate the problem of imbalanced domains with two concrete exam-
ples: one in classification and another in regression.

For imbalanced classification we use the Glass data set from the UCI ML reposi-
tory. This data set contains 213 examples, and the target variable (TYPE) includes 6
different classes (1,2,3,5,6,7). Figure 1 displays the bar chart with the frequencies of

1Though potentially not as exacerbated as one could wish.
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the classes. We have chosen this particular data set to highlight that the problem of
imbalanced domains is very relevant and challenging in the multiclass case. For illus-
tration purposes, let us assume that the lowest the class frequency, the highest the
relevance for the users of this application. The figure also shows the relevance scores
(φ) of the classes, which were computed from the frequency of each class. Suppose the
user informs us that any class value with a relevance higher than 0.5 is important.
This would mean that examples of classes 3, 5 and 6 are important for the user, and
the examples from the remaining classes are not so relevant. The number of relevant
cases (|DR|) would be 39, while the number of irrelevant cases (|DN |) would be the
remaining 174 cases. This means that the more relevant cases are not very well repre-
sented in the training sample D. Applying a standard classification algorithm to such
data set would lead to models that would have unreliable estimates of the conditional
probability of the classes 3, 5 and 6, as they are very poorly represented in the avail-
able data. This would not be a problem if those were not the classes that are more
important to the user. Moreover, using a standard evaluation metric (e.g. error rate) to
compare alternative models for this data set, could eventually lead the user to select a
model that is not the best performing model on the classes that are more relevant.
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Fig. 1. Distribution of classes in glass data set (bars) and relevance of each class (blue) inversely propor-
tional to the classes frequencies.

As an example of a regression task, we selected the Forest Fires data set2. This data
set includes 2831 examples. Figure 2 shows the distribution of the data set target vari-

2Available in the UBA R package http://www.dcc.fc.up.pt/∼rpribeiro/uba/.
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able3, the relevance function φ() automatically determined (using a method proposed
in Ribeiro [2011] for cases where high relevance is associated with low frequency) and
a boxplot of the examples target variable distribution. If we use again a relevance
threshold of 0.5 we would have |DR| = 489 and |DN | = 2342. Once again, standard
regression algorithm would have difficulties in performing well on the rare extreme
high values of the target, because of their rarity in the training set. Again, this would
be a problem given the established preference bias for this application, i.e. be accurate
at the prediction of the biggest forest fires.
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Fig. 2. Distribution of the burnt area in forest fires data set (black), relevance function automatically esti-
mated (blue) and boxplot of the examples distribution.

3. PERFORMANCE METRICS FOR IMBALANCED DOMAINS
This section describes existing approaches for performance assessment on imbalanced
problems. This is the most studied aspect of predictive modeling for these tasks. Nev-
ertheless, issues such as the error estimation procedure and the statistical tests used
on imbalanced domains are also extremely important and have been, so far, largely
neglected. These issues present challenges when considering imbalanced domains and
much research is still needed [Japkowicz 2013].

Obtaining a model from data can be seen as a search problem guided by an eval-
uation criterion that establishes a preference ordering among different alternatives.

3Approximated through a kernel density estimator.
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The main problem with imbalanced domains is the user preference towards the per-
formance on cases that are poorly represented in the available data sample. Standard
evaluation criteria tend to focus the evaluation of the models on the most frequent
cases, which is against the user preferences on these tasks. In fact, the use of tradi-
tional metrics in imbalanced domains can lead to sub-optimal classification models [He
and Garcia 2009; Weiss 2004; Kubat and Matwin 1997] and may produce misleading
conclusions since these measures are insensitive to skewed domains [Ranawana and
Palade 2006; Daskalaki et al. 2006]. As such, selecting proper evaluation metrics plays
a key role in the task of correctly handling data imbalance. Adequate metrics should
not only provide means to compare the models according to the user preferences, but
can also be used to drive the learning of these models.

As we have mentioned, there are several ways of expressing the user preference bi-
ases. In case we have the highest quality information, in the form of an utility function
u(ŷ, y), the best way to evaluate the learned models would be by the total utility of its
predictions, given by

U =

ntest∑
i=1

u(ŷi, yi) (3)

When the full information on the operating context is not available we have to re-
sort to other evaluation metrics. In this section, we provide an exhaustive description
of most of the metrics that have been used in the context of imbalanced domains prob-
lems.

We have organized the performance assessment measures into scalar (numeric) and
graphical-based (graphical or scalar based in graphical information) metrics. Scalar
metrics present the results in a more succinct way (a single number reflects the per-
formance of the learner) but also have drawbacks. If the user knows the deployment
setting of the learned model, then scalar metrics may be adequate. However, if the
deployment context is not known in advance, then the graphical-based metrics may
be more useful [Japkowicz 2013]. Graphical-based measures allow the visualization or
synthesis of the performance of an algorithm across all operating conditions. We must
also emphasize that using different evaluation metrics may lead to different conclu-
sions (e.g. Van Hulse et al. [2007]) which is problematic and reinforces the need for
finding suitable metrics that are capable of assessing correctly the user goals.

Table I summarizes the main references concerning performance assessment pro-
posals for imbalanced domains in classification and regression.

Table I. Metrics for classification and regression, corresponding sections and main bibliographic references

Task type (Section) Main References

Classification (3.1)

Bradley [1997]; Kubat et al. [1998]; Provost et al. [1998]; Drummond
and Holte [2000]; Estabrooks and Japkowicz [2001]; Ferri et al.
[2005]; Davis and Goadrich [2006]; Ranawana and Palade [2006];
Cohen et al. [2006]; Wu et al. [2007]; Weng and Poon [2008]; Garcı́a
et al. [2008]; Batuwita and Palade [2009]; Garcı́a et al. [2009, 2010];
Hand [2009]; Ferri et al. [2009]; Sokolova and Lapalme [2009];
Thai-Nghe et al. [2011]; Ferri et al. [2011a]; Batuwita and Palade
[2012]

Regression (3.2)

Zellner [1986]; Cain and Janssen [1995]; Christoffersen and Diebold
[1997]; Bi and Bennett [2003]; Crone et al. [2005]; Torgo [2005];
Torgo and Ribeiro [2007]; Lee [2008]; Torgo and Ribeiro [2009];
Ribeiro [2011]; Hernández-Orallo [2013]; Branco [2014]
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3.1. Metrics for Classification Tasks
Let us start with some notation. Consider a test set with n examples each belonging to
one of c ∈ C different classes. For each test case, xi, with a true target variable value
yi = f(xi), a classifier outputs a predicted class, ŷi = h(xi). This predicted class is
typically the class with highest estimated conditional probability, ŷi = argmaxy P̂ (Y =
y |X = xi), but other decision thresholds (or decision rules, mostly for multiclass tasks)
can be used4. Let I() be an indicator function that returns 1 if its argument is true and
0 otherwise. Let nc =

∑n
i=1 I(yi = c) represent the total number of examples that

belongs to class c. The prior probability of class c can be estimated as p(Y = c) = nc

n .
The estimated conditional probability of example xi belonging to class c is given by
P̂ (Y = c |X = xi), or in a simplified way P̂ (c |xi).

3.1.1. Scalar Metrics.

Two-Class Problems.
Consider a binary classification task with a negative (Y = −) and a positive class

(Y = +). The confusion matrix for a two-class problem presents the results obtained
by a given classifier (cf. Table II). This table provides for each class the instances that
were correctly classified, i.e. the number of True Positives (TP) and True Negatives
(TN), and the instances that were wrongly classified, i.e. the number of False Positives
(FP) and False Negatives (FN).

Table II. Confusion matrix for a two-class problem.
Predicted Total

Positive Negative
(Y = +) (Y = −)

True Positive (Y = +) TP=
∑n

i=1 I(yi = +)I(ŷi = +) FN = n+ − TP n+ =

n∑
i=1

I(yi = +)

Negative (Y = −) FP = n− − TN TN=

n∑
i=1

I(yi = −)I(ŷi = −) n− =

n∑
i=1

I(yi = −)

Total
n∑

i=1

I(ŷi = +)

n∑
i=1

I(ŷi = −) n

Accuracy (cf. Equation 4) and its complement error rate are the most frequently used
metrics for estimating the performance of learning systems in classification problems.
For two-class problems, accuracy can be defined as follows,

accuracy =
TP + TN

TP + FN + TN + FP
(4)

Considering a user preference bias towards the minority (positive) class examples,
accuracy is not suitable because the impact of the least represented, but more impor-
tant, examples is reduced when compared to that of the majority class. For instance,
if we consider a problem where only 1% of the examples belong to the minority class,
a high accuracy of 99% is achievable by predicting the majority class for all examples.
Yet, all minority class examples, the rare and more interesting cases for the user, are
misclassified. This is worthless when the goal is the identification of the rare cases.

4For crisp classifiers we can assume that the probability is 1 for the predicted class and 0 for the remaining
classes.
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The metrics used in imbalanced domains must consider the user preferences and,
thus, should take into account the data distribution. To fulfill this goal several per-
formance measures were proposed. From Table II the following measures (cf. Equa-
tions 5-10) can be obtained,

true positive rate (recall or sensitivity) : TPrate =
TP

TP+FN (5)

true negative rate (specificity ) : TNrate =
TN

TN+FP (6)

false positive rate : FPrate =
FP

TN+FP (7)

false negative rate : FNrate =
FN

TP+FN (8)

positive predictive value (precision ) : PPvalue =
TP

TP+FP (9)

negative predictive value : NPvalue =
TN

TN+FN (10)

However, as some of these measures exhibit a trade-off and it is impractical to si-
multaneously monitor several measures, new metrics have been developed, such as the
Fβ [Rijsbergen 1979], the geometric mean [Kubat et al. 1998] or the receiver operating
characteristic (ROC) curve [Egan 1975].

The Fβ is defined as a combination of both precision and recall, as follows:

Fβ =
(1 + β)2 · recall · precision
β2 · precision+ recall

(11)

where β is a coefficient set by the user to adjust the relative importance of recall with
respect to precision (if β = 1 precision and recall have the same weight, large values of
β will increase the weight of recall whilst values less than 1 will give more importance
to precision). The majority of the papers that use Fβ for performance evaluation under
imbalanced domains adopt β = 1, which corresponds to giving the same importance to
precision and recall.

The Fβ is commonly used and is more informative than accuracy about the effec-
tiveness of a classifier on predicting correctly the cases that matter to the user (e.g.
Estabrooks and Japkowicz [2001]). This metric value is high when both the recall (a
measure of completeness) and the precision (a measure of exactness) are high.

An also frequently used metric when dealing with imbalanced data sets is the geo-
metric mean (G-Mean) which is defined as:

G-Mean =

√
TP

TP + FN
× TN

TN + FP
=

√
sensitivity × specificity (12)

G-Mean is an interesting measure because it computes the geometric mean of the
accuracies of the two classes, attempting to maximize them while obtaining good bal-
ance. This measure was developed specifically for assessing the performance under im-
balanced domains. However, with this formulation equal importance is given to both
classes. In order to focus the metric only on the positive class, a new version of G-Mean
was proposed. In this new formulation, specificity is replaced by precision.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 1.
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Several other measures were proposed for dealing with some particular disadvan-
tages of the previously mentioned metrics. For instance, a metric called dominance
[Garcı́a et al. 2008] (cf. Equation 13) was proposed to deal with the inability of G-Mean
to explain how each class contributes to the overall performance.

dominance = TPrate − TNrate (13)

This measure ranges from −1 to +1. A value of +1 represents situations where per-
fect accuracy is achieved on the minority (positive) class, but all cases of the majority
class are missed. A value of −1 corresponds to the opposite situation.

Another example is the index of balanced accuracy (IBA) [Garcı́a et al. 2009, 2010]
(cf. Equation 14) which quantifies a trade-off between an index of how balanced both
class accuracies are and a chosen unbiased measure of overall accuracy.

IBAα(M) = (1 + α · dominance)M (14)

where (1 + α · dominance) is the weighting factor and M represents any performance
metric. IBAα(M) depends on two user-defined parameters: M and α. The first one, M ,
is an assessment measure previously selected by the user, and the second one, α, will
give more or less importance to dominance.

Another interesting metric, named mean class-weighted accuracy (CWA), was pro-
posed by Cohen et al. [2006]. This metric tries to overcome the limitation of Fβ of
not taking into account the performance on the negative class. At the same time, it
also tries to deal with the drawback of G-Mean which does not allow to give more im-
portance to the minority class. CWA metric (cf. Equation 15) tries to deal with both
problems by providing a mechanism for the user to define the weights to be used.

CWA = w · sensitivity + (1− w) · specificity (15)

with 0 ≤ w ≤ 1 as the user-defined weight of the positive class.
Other metrics created with similar objectives include optimized preci-

sion [Ranawana and Palade 2006], adjusted geometric mean [Batuwita and Palade
2009, 2012] or B42 [Thai-Nghe et al. 2011].

Multi-class Problems.
Although most metrics were proposed for handling two-class imbalanced tasks, some

proposals also exist for the multi-class case.
Accuracy is among the metrics that were extended for multi-class problems. Equa-

tion 16 presents the definition of accuracy for multi-class tasks as an average of the
accuracy of each class. However, for the reasons that we have already mentioned, this
is not an appropriate choice for imbalanced domains.

accuracy =

∑n
i=1 I(yi = ŷi)

n
(16)

The extension to multi-class of the precision and recall concepts is not an easy task.
Several ways of accomplishing this were proposed in the literature. If we focus on
a single class c, Equations 17 and 18 provide the recall and precision for that class,
respectively. Equation 19 represents the corresponding Fβ score.

recall(c) =

n∑
i=1

I(yi = c)I(ŷi = c)

nc
(17)
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precision(c) =

∑n
i=1 I(yi = c)I(ŷi = c)∑n

i=1 I(ŷi = c)
(18)

Fβ(c) =
(1 + β)2 · recall(c) · precision(c)
β2 · precision(c) + recall(c)

(19)

However, using recall(c) and precision(c) in multi-class problems is not a practical
solution. If we consider a problem with 5 classes we would obtain 10 different scores
(a precision and a recall value for each class). In this case, it is not easy to compare
the performance of different classifiers. In order to obtain a single aggregated value for
precision or recall in a certain test set, two main strategies can be used: micro or macro
averaging which we will represent through the use of indexes µ and M , respectively.
Equations 20 to 22 provide the definitions of precision and recall considering both
micro (µ) and macro (M ) averaging strategies.

Recµ = Precµ =

∑n
i=1 I(yi = ŷi)

n
(20)

RecM =

∑
c∈C recall(c)

|C|
(21)

PrecM =

∑
c∈C precision(c)

|C|
(22)

We must highlight that macro averaging measures assign an equal weight to all
existing classes, while for micro averaging based metrics more importance is assigned
to classes with higher frequencies. Therefore, micro averaging measures are usually
considered unsuitable for imbalanced domains because of the mismatch between the
examples distribution and the relevance φ() assigned by the user.

Regarding the Fβ measure, several different proposals were made to provide an ex-
tension for multi-class problems. Equation 23, proposed by Ferri et al. [2009], averages
the Fβ values obtained for each class.

MFβ =

∑
c∈C Fβ(c)

|C|
(23)

Two other proposals regarding an extension of Fβ to multi-class tasks exist: one
using the micro averaged values of recall and precision and a similar one that uses the
macro averaged values [Sokolova and Lapalme 2009]. Equations 24 and 25 show these
definitions.

MFβµ =
(1 + β2) · Precµ ·Recµ
β2 · Precµ +Recµ

(24)

MFβM =
(1 + β2) · PrecM ·RecM
β2 · PrecM +RecM

(25)

The macro-averaged accuracy (MAvA), presented by Ferri et al. [2009], is obtained
with an arithmetic average over the recall of each class as follows:
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MAvA =

∑
c∈C recall(c)

|C|
(26)

The MAvA measure assigns equal weights to the existing classes. Sun et al. [2006]
presented the MAvG metric, a generalization of the G-Mean for more than two classes
(cf. Equation 27). The MAvG is the geometric average of the recall score in each class.

MAvG = |C|

√∏
c∈C

recall(c) (27)

Finally, we highlight that the CWA measure (cf. Equation 15) presented for two-
class problems, was generalized for multi-class [Cohen et al. 2006] as follows:

CWA =
∑
c∈C

wc · recall(c) (28)

where 0 ≤ wc ≤ 1 and
∑
c∈C wc = 1. In this case it is the user responsibility to specify

the weights wc assigned to each class.
Although some effort has been made regarding scalar metrics for multi-class evalua-

tion there is still a big gap regarding assessment measures for multi-class imbalanced
domains. This is still an open problem, with only few solutions proposed and present-
ing more challenges than binary classification.

3.1.2. Graphical-based Metrics .

Two-Class Problems.
Two popular tools used in imbalanced domains are the receiver operating charac-

teristics (ROC) curve (cf. Figure 3) and the corresponding area under the ROC curve
(AUC) [Metz 1978]. Provost et al. [1998] proposed ROC and AUC as alternatives to
accuracy. The ROC curve allows the visualization of the relative trade-off between
benefits (TPrate) and costs (FPrate). The performance of a classifier for a certain dis-
tribution is represented by a single point in the ROC space. A ROC curve consists
of several points each one corresponding to a different value of a decision/threshold
parameter used for classifying an example as belonging to the positive class.

However, comparing several models through ROC curves is not an easy task unless
one of the curves dominates all the others [Provost and Fawcett 1997]. Moreover, ROC
curves do not provide a single-value performance score which motivates the use of
AUC. The AUC allows the evaluation of the best model on average. Still, it is not biased
towards the minority class. The area under the ROC curve (AUC) is given by a definite
integral. Several ways exist to evaluate the AUC, being the trapezoidal method the
most widely used. This method obtains the value of AUC through the use of trapezoids
built with linear interpolation of the ROC curve points.

Another interesting property of the AUC regards the equivalence between the AUC
and the probability that, given two randomly chosen examples, one from each class,
the classifier will rank the positive example higher than the negative[Fawcett 2006].
This is also known as the Wilcoxon test of ranks. Using this property, the AUC can be
determined by the following Equation:

AUC(c, c′) =

∑n
i=1 I(yi = c)

∑n
t=1 I(yt = c′)L(P̂ (c |xi), P̂ (c |xt))

nc · nc′
(29)

where c and c′ are the two classes of the problem and L is a function defined as follows:
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Fig. 3. ROC curve of three classifiers: A, B and random.

L(x, y) =


1 if x > y

0.5 if x = y

0 if x < y

(30)

AUC has become a very popular metric in the context of imbalanced domains. How-
ever, one of the problems that affects AUC concerns the crossing of ROC curves, which
may produce misleading estimates. This issue results from using a single metric for
summarizing a ROC curve. Another important problem of AUC, highlighted by Hand
[2009], regards the existence of variations in the evaluation of AUC depending on the
classifier used. This is a more serious problem because this means that the AUC eval-
uates different classifiers through the use of different measures. Hand [2009] showed
that the evaluation provided by AUC can be misleading but has also proposed an al-
ternative for allowing fairer comparisons: the H-measure. The H-measure is a stan-
dardized measure of the expected minimum loss obtained for a given cost distribution
defined between the two classes of the problem. Hand [2009] proposes the use of a
beta(x; 2, 2) distribution for representing the cost. The advantages pointed for using
this distribution are two-fold: it allows a general comparison of the results obtained
by different researchers, and it gives less weight to the more extreme values of cost.
Although the coherence of AUC was questioned by Hand, a possible coherent interpre-
tation for this measure was also presented by Ferri et al. [2011b]. Despite surrounded
with some controversy, the AUC is still one of the most used measures under imbal-
anced domains. To provide a better adaptation of this metric to these domains, several
AUC variants were proposed for two-class problems.
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A version of the AUC which incorporates probabilities is Prob AUC [Ferri et al. 2005]
defined in Equation 31. The Prob AUC tries to overcome the problem of AUC measure
which only considers the ranking of the examples disregarding the probabilities asso-
ciated with them.

Prob AUC(c, c′) =

∑n
i=1

I(yi=c)P̂ (c |xi)
nc

−
∑n
i=1

I(yi=c
′)P̂ (c′ | xi)
nc′

+ 1

2
(31)

The Scored AUC, presented by Wu et al. [2007], is a measure similar to Prob AUC
that also includes probabilities in its definition (cf. Equation 32). This variant has
also the goal of obtaining a score more robust to variations in the rankings that occur
because of small changes in the probabilities.

Scored AUC(c, c′) =

∑n
i=1 I(yi = c)

∑n
t=1 I(yt = c′)L(P̂ (c |xi)P̂ (c |xt)) · (P̂ (c |xi)− P̂ (c′ |xt))

nc · nc′

(32)
A weighted version of the AUC, WAUC, was proposed by Weng and Poon [2008] for

dealing with imbalanced data sets. This new measure assumes that the area near the
top of the graph is more relevant. Therefore, instead of summing the areas to obtain
the AUC giving the same importance to all, WAUC progressively assigns more weight
to the areas closer to the top of the ROC curve.

Precision-recall curves (PR curves) are recommended for highly skewed domains
where ROC curves may provide an excessively optimistic view of the perfor-
mance [Davis and Goadrich 2006]. PR curves have the recall and precision rates repre-
sented on the axes. A strong relation between PR and ROC curves was found by Davis
and Goadrich [2006]. Figure 4 shows both curves for the imbalanced hepatitis data
set 5. The results displayed were obtained with an SVM model considering the minor-
ity class as the relevant one.

Another relevant tool for two-class problems are cost curves (Figure 5) that were
introduced by Drummond and Holte [2000]. In these curves the performance (i.e. the
expected cost normalized to [0, 1]) is represented in the y-axis. The x-axis (also normal-
ized to [0, 1]) displays the probability cost function which is defined as follows:

PCF (+) =
p(+)C(−|+)

p(+)C(−|+) + p(+)C(+|−)
(33)

where p(c1) represents the probability of a given class c1 and C(c1|c2) represents the
cost of misclassifying an example of a class c2 as being of class c1. There is a relation of
duality between ROC and cost curves. In fact, a point in the ROC space is represented
by a line in the cost space and a line on ROC space is represented by a point in cost
space.

Brier Curves [Ferri et al. 2011a] are a graphical representation that can be used
with probabilistic binary classifiers that try to overcome an optimistic view of perfor-
mance provided by cost curves. Brier curves and cost curves are complementary in the
sense that these two curves used together are able to condense most of the information
relative to a classifier performance.

Multi-class Problems.
Dealing with multi-class problems using graphical-based metrics is a much more

complex task. A possible way for obtaining ROC curves with c different classes is to use

5This data set is available in UCI repository (https://archive.ics.uci.edu/ml/datasets/Hepatitis).
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the one-vs-all strategy. In this method, each class is considered as the positive class at a
time and all the other classes are joined as the negative class. However, as the number
of classes increases, the complexity of constructing the ROC curve grows exponentially.
For the simpler case of three classes a ROC surface was proposed [Mossman 1999].

The AUC was also adapted to multi-class problems (e.g. Ferri et al. [2009]). Several
proposals exist to accomplish this adaptation (cf. Equations 34 to 39) each one making
different assumptions. AUNU and AUNP use the approach one vs all to compute the
AUC of a |C|-class problem transforming it into |C| two-class problems. Each one of
the classes is considered the positive class and all the others are aggregated into one
negative class. In AUNU classes are assumed to be uniformly distributed and in AUNP
the prior probability of each class is taken into account. AU1U and AU1P compute
the AUC of all pairs of classes, which corresponds to |C|(|C| − 1) two-class problems.
The first measure considers that the classes are uniformly distributed and the latter
incorporates the prior probability of the classes. Finally, Scored AUC and Prob AUC
were also extended to a multi-class setting with SAUC (cf. Equation 38) and PAUC
(cf. Equation 39), respectively. These two variants also consider all the combinations
of pairs of classes (|C|(|C| − 1)).

AUNU =

∑
c∈CAUC(c, restc)

|C|
(34)

where restc is the aggregation of all the problem classes with the exception of class c.

AUNP =
∑
c∈C

p(c) ·AUC(c, restc) (35)

AU1U =

∑
c∈C

∑
c′ ∈C\{c}AUC(c, c

′)

|C|(|C| − 1)
(36)

AU1P =

∑
c∈C

∑
c′ ∈C\{c} p(c) ·AUC(c, c′)
|C|(|C| − 1)

(37)

SAUC =

∑
c∈C

∑
c′ ∈C\{c} Scored AUC(c, c

′)

|C|(|C| − 1)
(38)

PAUC =

∑
c∈C

∑
c′ ∈C\{c} Prob AUC(c, c

′)

|C|(|C| − 1)
(39)

Comparative studies involving some of the metrics proposed for the multi-class
imbalanced context (e.g. Alejo et al. [2013]; Sánchez-Crisostomo et al. [2014]) con-
cluded that these metrics do not always reflect correctly the performance in the minor-
ity/majority classes. This means that these metrics may not be reliable when assessing
the performance in multi-class problems.

3.2. Metrics for Regression Tasks
3.2.1. Scalar Metrics.
Very few efforts have been made regarding evaluation metrics for regression tasks

in imbalanced domains. Performance measures commonly used in regression, such as
Mean Squared Error (MSE) and Mean Absolute Error (MAE)6 (cf. Equations 40 and

6Also known as Mean Absolute Deviation (MAD).
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41) are not adequate to these specific problems. These measures assume a uniform
relevance of the target variable domain and evaluate only the magnitude of the error.

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (40)

MAE =
1

n

n∑
i=1

|yi − ŷi| (41)

Although the magnitude of the numeric error is important, for tasks with imbal-
anced domains of the target variable, the metrics should also be sensitive to the errors
location within the target variable domain, because as in classification tasks, users of
these domains are frequently biased to the performance on poorly represented values
of the target. This means that the error magnitude must have a differentiated impact
depending on the values of the target domain where the error occurs.

In the area of finance several attempts have been made for considering differentiated
prediction costs through the proposal of asymmetric loss functions [Zellner 1986; Cain
and Janssen 1995; Christoffersen and Diebold 1996, 1997; Crone et al. 2005; Granger
1999; Lee 2008]. However, the proposed solutions, such as LIN-LIN or QUAD-EXP er-
ror metrics, all suffer from the same problem: they can only distinguish between over-
and under-predictions. Therefore, they are still unsuitable for addressing the problem
of imbalanced domains with a user preference bias towards some specific ranges of
values.

Another alternative is the concept of utility-based regression [Ribeiro 2011; Torgo
and Ribeiro 2007]. This concept is based on the assumption that the user assigns a
non-uniform relevance to the values of the target variable domain. In this context, the
usefulness of a prediction depends on both the numeric error of the prediction (which
is provided by a certain loss function L(ŷ, y)) and the relevance (importance) of the
predicted ŷ and true y values. As within classification tasks, we have a problem of im-
balanced domains if the user assigns more importance to predictions involving values
of the target variable that are rare (i.e. poorly represented in the training sample).
The proposed framework for utility-based regression provides means for easy speci-
fication of an utility function, u(ŷ, y), for regression tasks. This means that we can
use this framework to evaluate and/or compare models using the total utility of their
predictions as indicated in Equation 3.

This utility-based framework was also used by Torgo and Ribeiro [2009] and Ribeiro
[2011] to derive the notions of precision and recall for regression in tasks with non-
uniform relevance of the target values. Based on this previous work, Branco [2014]
proposed the following measures of precision and recall for regression,

precision =

∑
φ(ŷi)>tR

(1 + u(ŷi, yi))∑
φ(ŷi)>tR

(1 + φ(ŷi))
(42)

recall =

∑
φ(yi)>tR

(1 + u(ŷi, yi))∑
φ(yi)>tR

(1 + φ(yi))
(43)

where φ(yi) is the relevance associated with the true value yi, φ(ŷi) is the relevance
of the predicted value ŷi, tR is a user-defined threshold signalling the cases that are
relevant for the user, and u(ŷi, yi) is the utility of making the prediction ŷi for the true
value yi, normalized to [−1, 1].
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3.2.2. Graphical-based Metrics.
Following the efforts made within classification, some attempts were made to adapt

the existing notion of ROC curves to regression tasks. One of these attempts is the ROC
space for regression (RROC space) [Hernández-Orallo 2013] which is motivated by the
asymmetric loss often present on regression applications where both over-estimations
and under-estimations entail different costs. RROC space is defined by plotting the
total over-estimation and under-estimation on the x-axis and y-axis, respectively (cf.
Figure 6). RROC curves are obtained when the notion of shift is used, which allows
adjusting the model to an asymmetric operating condition by adding or subtracting a
constant to the predictions. The notion of dominance can also be assessed by plotting
the curves of different regression models, similarly to ROC curves in classification
problems. Other evaluation metrics were explored, such as the Area Over the RROC
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Fig. 6. RROC curve of three models: A, B and C.

curve (AOC) which was shown to be equivalent to the error variance. In spite of the
relevance of this approach, it only distinguishes over from under predictions.

Another relevant effort towards the adaptation of the concept of ROC curves to re-
gression tasks was made by Bi and Bennett [2003] with the proposal of Regression
Error Characteristic (REC) curves that provide a graphical representation of the cu-
mulative distribution function (cdf) of the error of a model. These curves plot the error
tolerance and the accuracy of a regression function which is defined as the percentage
of points predicted within a given tolerance ε. REC curves illustrate the predictive per-
formance of a model across the range of possible errors (cf. Figure 7). The Area Over the
Curve (AOC) can also be evaluated and is a biased estimate of the expected error of a
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model [Bi and Bennett 2003]. REC curves, although interesting, are still not sensitive
to the error location across the target variable domain.
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Fig. 7. REC curve of three models: A, B and C.

To address this problem Regression Error Characteristic Surfaces (RECS) [Torgo
2005] were proposed. These surfaces incorporate an additional dimension into REC
curves representing the cumulative distribution of the target variable. RECS show
how the errors corresponding to a certain point of the REC curve are distributed across
the range of the target variable (cf. Figure 8). This tool allows the study of the behavior
of alternative models for certain specific values of the target variable. By zooming on
specific regions of REC surfaces we can carry out two types of analysis that are highly
relevant for some application domains. The first involves checking how certain values
of prediction error are distributed across the domain of the target variable, which tells
us where errors are more frequent. The second type of analysis involves inspecting the
type of errors a model has on a certain range of the target variable that is of particular
interest to us, which is very relevant for imbalanced domains.

4. STRATEGIES FOR HANDLING IMBALANCED DOMAINS
Imbalanced domains raise significant challenges when building predictive models. The
scarce representation of the most important cases leads to models that tend to be more
focused on the normal examples, neglecting the rare events. Several strategies have
been developed to address this problem, mainly in a classification setting. Even when
considering solely the existing solutions for classification tasks, these are mostly biased
towards binary classification. Proposals exist specifically for the multiclass case but in
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a much lower number. The effectiveness and applicability of these strategies depends
on the information the user is able to provide on his preference biases - the so-called
“problem-definition issue” [Weiss 2013] mentioned in Section 2. We propose to group
the existing approaches to learn under imbalanced domains into the following four
main categories:

— Data Pre-processing;
— Special-purpose Learning Methods;
— Prediction Post-processing;
— Hybrid Methods.

Data pre-processing approaches include solutions that pre-process the given imbal-
anced data set, changing the data distribution to make standard algorithms focus on
the cases that are more relevant for the user. These methods have the following advan-
tages: (i) can be applied with any existing learning tool; and (ii) the chosen models are
biased to the goals of the user (because the data distribution was previously changed
to match these goals), and thus it is expected that the models are more interpretable in
terms of these goals. The main inconvenient of this strategy is that it may be difficult
to relate the modifications in the data distribution with the information provided by
the user concerning the preference biases. This means that mapping the given data
distribution into an optimal new distribution according to the user goals is typically
not easy.

Special-purpose learning methods comprise solutions that change the existing al-
gorithms to be able to learn from imbalanced data. The following are important ad-
vantages: (i) the user goals are incorporated directly into the models; and (ii) it is
expected that the models obtained this way are more comprehensible to the user. The
main disadvantages of these approaches are: (i) the user is restricted to the learning
algorithms that have been modified to be able to optimize his goals, or has to develop
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new algorithms for the task; (ii) if the target loss function changes, the model must
be relearned, and moreover, it may be necessary to introduce further modifications in
the algorithm which may not be straightforward; (iii) it requires a deep knowledge of
the learning algorithms implementations; and (iv) it may not be easy to translate the
user preferences into a suitable loss function that can be incorporated into the learning
process.

Prediction post-processing approaches use the original data set and a standard
learning algorithm, only manipulating the predictions of the models according to the
user preferences and the imbalance of the data. As advantages, we can enumerate
that: (i) it is not necessary to be aware of the user preference biases at learning time;
(ii) the obtained model can, in the future, be applied to different deployment scenar-
ios (i.e. different loss functions), without the need of re-learning the models or even
keeping the training data available; and (iii) any standard learning tool can be used.
However, these methods also have some drawbacks: (i) the models do not reflect the
user preferences; (ii) the models interpretability may be jeopardized as they were ob-
tained optimizing a loss function that is not in accordance with the user preference
bias at deployment time.

Table III shows a summary of the main advantages and disadvantages of each type
of strategy. Figure 9 provides a general overview of the main approaches within these
strategies, which will be reviewed in Sections 4.1, 4.2 and 4.3, including solutions for
both classification and regression tasks. Hybrid solutions will be addressed in Sec-
tion 4.4. Hybrid methods combine approaches of different strategies trying to take
advantage of their best characteristics.

Strategies for
Imbalanced Domains

Data
Pre-processing

Special-purpose
Learning Methods

Prediction
Post-processing

Hybrid
Methods

Distribution
Change

Weighting the
Data Space

Threshold Method

Cost-sensitive
Post-processing

Fig. 9. Main strategies for handling imbalanced domains.

4.1. Data Pre-processing
Pre-processing strategies consist of methods of using the available data set in a way
that is more in accordance with the user preference biases. This means that instead
of applying a learning algorithm directly to the provided training sample, we will first
somehow pre-process this data according to the goals of the user. Any standard learn-
ing algorithm can then be applied to the pre-processed data set.

Existing data pre-processing approaches can be grouped into two main types:

— distribution change: change the data distribution with the goal of addressing the
issue of the poor representativeness of the more relevant cases; and
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Table III. Main advantages and disadvantages of each type of strategy for imbalanced domains.

Strategy Advantages Disadvantages

Data
Pre-processing

• can be applied to any
learning tool
• the chosen models are
biased to the goals of the user
• models more interpretable
according to the user goals

• difficulty of relating the
modifications in the data
distribution and the user
preferences

Special-purpose
Learning Methods

• user goals are incorporated
directly into the models
• models obtained are more
comprehensible to the user

• user is restricted in his
choice of the learning
algorithms that have been
modified to be able to optimize
his goals
• models must be relearned if
the target loss function
changes
• changes in the loss function
may require further
modifications in the algorithm
• requires a deep knowledge
of the learning algorithms
implementations
• not easy to map the user
specification of his preferences
into a loss function

Prediction
Post-processing

• it is not necessary to be
aware of the user preferences
biases at learning time
• the obtained model can, in
the future, be applied to
different deployment scenarios
without the need of
re-learning the models or even
keeping the training data
available
• any standard learning tool
can be used

• the models do not reflect the
user preferences
• models interpretability may
be jeopardized as they were
obtained optimizing a loss
function that is not in
accordance with the user
preference bias

— weighting the data space: modify the training set distribution using information
concerning misclassification costs, such that the learned model avoids costly errors.

Table IV summarizes the main bibliographic references for data pre-processing
strategy approaches.

4.1.1. Distribution Change.
Applying a method that changes the data distribution to obtain a more balanced one

is an effective solution to the imbalance problem [Estabrooks et al. 2004; Batuwita and
Palade 2010a; Fernández et al. 2008, 2010].

However, changing the data distribution may not be as easy as expected. Deciding
what is the optimal distribution for some user preference biases is not straightfor-
ward, even in cases where a complete specification of the utility function, u(ŷ, y), is
available. A frequently used approach consists of trying to balance the data distribu-
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Table IV. Pre-processing strategy approaches, corresponding sections and main bibliographic references

Approaches (Section) Main References

Distribution
Change
(4.1.1)

Stratified Sampling

Random Under/Over-sampling

Chawla et al. [2002]; Chang et al. [2003]; Drummond
and Holte [2003]; Chen et al. [2004]; Estabrooks et al.
[2004]; Tao et al. [2006]; Wang and Yao [2009];
Seiffert et al. [2010]; Wallace et al. [2011]; Torgo et al.
[2013]

Distance Based Chyi [2003]; Mani and Zhang [2003]; Błaszczyński
and Stefanowski [2015]

Data Cleaning Based Kubat and Matwin [1997]; Laurikkala [2001]; Batista
et al. [2004]; Naganjaneyulu and Kuppa [2013]

Recognition Based

Japkowicz [2000]; Chawla et al. [2004]; Raskutti and
Kowalczyk [2004]; Lee and Cho [2006]; Zhuang and
Dai [2006a,b]; Bellinger et al. [2012]; Wagstaff et al.
[2013]

Cluster Based Jo and Japkowicz [2004]; Cohen et al. [2006]; Yen and
Lee [2006, 2009] Sobhani et al. [2014]

Evolutionary Sampling

Del Castillo and Serrano [2004]; Garcı́a et al. [2006];
Doucette and Heywood [2008]; Drown et al. [2009];
Garcı́a and Herrera [2009]; Maheshwari et al. [2011];
Garcı́a et al. [2012]; Yong [2012]; Galar et al. [2013]

Synthesizing New Data

Lee [1999, 2000]; Chawla et al. [2002, 2003]; Batista
et al. [2004]; Han et al. [2005]; Liu et al. [2007]; He
et al. [2008]; Bunkhumpornpat et al. [2009]; Hu et al.
[2009]; Wang and Yao [2009]; Menardi and Torelli
[2010]; Maciejewski and Stefanowski [2011]; Zhang
et al. [2011]; Barua et al. [2012]; Bunkhumpornpat
et al. [2012]; Martı́nez-Garcı́a et al. [2012]; Ramentol
et al. [2012a,b]; Verbiest et al. [2012]; Nakamura
et al. [2013]; Torgo et al. [2013]; Gao et al. [2014]; Li
et al. [2014]; Zhang and Li [2014];Bellinger et al.
[2015]; Sáez et al. [2015]

Combination of Methods

Liu et al. [2006]; Mease et al. [2007]; Li et al. [2008];
Stefanowski and Wilk [2008]; Chen et al. [2010];
Jeatrakul et al. [2010]; Napierała et al. [2010];
Songwattanasiri and Sinapiromsaran [2010];
Bunkhumpornpat et al. [2011]; Vasu and Ravi [2011];
Sharma et al. [2012];Yang and Gao [2012]; Ng et al.
[2014]

Weighting the Data Space
(4.1.2) Zadrozny et al. [2003]

tion (e.g. make the classes have the same frequency). However, for some classifiers
such as C4.5, Ripper or Naive Bayes, it was proved that a perfectly balanced distribu-
tion does not always provide optimal results [Weiss and Provost 2003]. In this context,
some solutions were proposed to find the right amount of change in the distribution to
be applied for a data set [Weiss and Provost 2003; Chawla et al. 2005, 2008]. For the
case of extreme class imbalance, where the number of normal examples (DN ) is much
larger than the number of rare examples (DR), other class balancing methods are rec-
ommended such as 2:1 or 3:1 (majority:minority) [Khoshgoftaar et al. 2007]. These
results were obtained based on experiments with 11 different types of classifiers.

For binary classification problems, changing the class distribution of the training
data may improve classifiers performance on an imbalanced context because there is
a connection with non-uniform misclassification costs. This equivalence between the
two concepts of altering the data distribution and the misclassification cost ratio is
well-known and was first pointed out by Breiman et al. [1984]. However, as mentioned
by Weiss [2013], this equivalence does not hold in many real-world situations due to
some of its assumptions on data availability.

The existing approaches for changing the data distribution can be of three types:
stratified sampling, synthesizing new data, or combinations of the previous meth-
ods. Stratified sampling includes strategies that remove and/or add examples to the
original data set. These are based on a diverse set of techniques such as: random
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under/over-sampling, distance methods, data cleaning approaches, clustering algo-
rithms or evolutionary algorithms. Approaches that synthesize new data are differ-
ent because they involve the generation of new artificially generated examples that
are added to the original data set. Finally, it is also possible to combine the previ-
ously described approaches. We now briefly describe the most significant techniques
for changing the data distribution.

Two of the most simple approaches for data sampling that can be applied are under-
and over-sampling. The first one removes data from the original data set reducing
the sample size, while the second one adds data increasing the sample size. In ran-
dom under-sampling, a random set of majority class examples are discarded. This
may eliminate useful examples leading to a worse performance. Oppositely, in ran-
dom over-sampling, a random set of copies of minority class examples is added to the
data. This may increase the likelihood of overfitting, specially for higher over-sampling
rates [Chawla et al. 2002; Drummond and Holte 2003]. Moreover, it may decrease the
classifier performance and increase the computational effort.

Random under-sampling was also used in the context of ensembles. Namely, it was
combined with boosting [Seiffert et al. 2010], bagging [Chang et al. 2003; Tao et al.
2006; Wang and Yao 2009; Wallace et al. 2011] and was applied to both classes in
random forests in a method named Balanced Random Forest (BRF) [Chen et al. 2004].
An interesting theoretically-based motivation was provided in Wallace et al. [2011]
for using bagging with balanced bootstrap samples obtained through random under-
sampling. This theoretical approach is further explored in Section 6.

For regression tasks, Torgo et al. [2013] perform random under-sampling of the com-
mon values as a strategy for addressing the imbalance problem. This method uses a
relevance function and a user defined threshold to determine which are the common
and uninteresting values that should be under-sampled.

Despite the potential of randomly selecting examples, under- and over-sampling
strategies can also be carried out by other, more informed, methods. For instance,
under-sampling can be accomplished through the use of distance evaluations [Chyi
2003; Mani and Zhang 2003]. These approaches perform under-sampling based on a
certain distance criterion that determines which are the examples from the majority
class to include in the training set. Several proposals exist, ranging between the ex-
treme cases of selecting the majority class examples that are closer to the minority
class examples, or choosing the negative examples with the farthest distance to the
positive examples. These strategies are very time consuming which is a major disad-
vantage, specially when dealing with large data sets.

Under-sampling can also be achieved through data cleaning methods. The main goal
of these methods is to identify possibly noisy examples or overlapping regions and then
decide on the removal of examples. One of those methods uses Tomek links [Tomek
1976] which consist of points that are each other’s closest neighbors, but do not share
the same class label. This method allows for two options: only remove Tomek links
examples belonging to the majority class or eliminate Tomek links examples of both
classes [Batista et al. 2004]. The notion of Condensed Nearest Neighbour Rule (CNN)
[Hart 1968] was also applied to perform under-sampling [Kubat and Matwin 1997].
CNN is used to find a subset of examples consistent with the training set, i.e., a subset
that correctly classifies the training examples using a 1-nearest neighbor classifier.
CNN and Tomek links methods were combined in this order by Kubat and Matwin
[1997] in a strategy called One-Sided-Selection (OSS), and in the reverse order in a
proposal of Batista et al. [2004].

Recognition-based methods as one-class learning or autoencoders offer the pos-
sibility to perform the most extreme type of under-sampling where all the exam-
ples from the minority class are removed. In this type of approach, and contrary
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to discrimination-based inductive learning, the model is learned using only exam-
ples of one class, and no counter examples are included. This lack of examples from
the other class(es) is the key distinguishing feature between recognition-based and
discrimination-based learning.

One-class learning tries to set up boundaries which surround the majority class con-
cept. This method starts by measuring the similarity between the majority class and
an object. Classification is then performed using a threshold on the obtained similar-
ity score. One-class learning methods have the disadvantage of requiring the tuning of
the threshold imposed on the similarity. In fact, this is a sensitive issue because if we
choose a too narrow threshold the majority class examples are disregarded. However,
too wide thresholds may lead to including examples from the minority class. Therefore,
establishing an efficient threshold is vital with this method. Also, some learners actu-
ally need examples from more than one class and are unable to adapt to this method.
Despite all these possible disadvantages, recognition-based learning algorithms have
been shown to provide good prediction performance in most domains. Developments
made in this context include one-class SVMs (e.g. Schölkopf et al. [2001]; Manevitz and
Yousef [2002]; Raskutti and Kowalczyk [2004]; Zhuang and Dai [2006b,a]; Lee and Cho
[2006]) and the use of an autoencoder (or autoassociator) (e.g. Japkowicz et al. [1995];
Japkowicz [2000]).

An innovative recognition based-method for large data sets was proposed by
Wagstaff et al. [2013] that aims at both facilitating the discovery of novel observa-
tions and at providing an explanation for the detected cases. This is achieved through
an incremental Singular Value Decomposition (SVD) method that allows the selection
of examples with high novelty which is measured by reconstruction error.

Imbalanced domains can influence the performance and the efficiency of clustering
algorithms [Xuan et al. 2013]. However, due to their flexibility, several approaches
appeared for dealing with imbalanced data sets using clustering methods. For in-
stance, the cluster-based oversampling (CBO) algorithm proposed by Jo and Japkow-
icz [2004] addresses both the imbalance problem and the problem of small disjuncts.
Small disjuncts are subclusters of a certain class which have a low coverage, i.e., clas-
sify only few examples [Holte et al. 1989]. CBO consists of clustering the training data
of each class separately with the k-means technique and then performing random over-
sampling in each cluster. All majority class clusters are over-sampled until they reach
the cardinality of the largest cluster of this class. Then the minority class clusters are
over-sampled until both classes are balanced maintaining all minority class subclus-
ters with the same number of examples. Several other proposals based on clustering
techniques exist (e.g. Yen and Lee [2006, 2009]; Cohen et al. [2006]). Recently, cluster-
ing techniques were also combined with ensembles Sobhani et al. [2014]. This proposal
starts by clustering the majority class examples. Then, several classifiers are trained
in balanced data sets that use all the minority class examples and at least one major-
ity class example from each previously determined cluster. A majority voting scheme
is used to obtain the final class label.

Another approach for data sampling concerns the use of Evolutionary Algorithms
(EA). These algorithms started to be applied to imbalanced domains as a strategy to
perform under-sampling through a prototype selection (PS) procedure (e.g. Garcı́a et al.
[2006]; Garcı́a and Herrera [2009]).

Garcı́a et al. [2006] made one of the first contributions with a new evolutionary
method proposed for balancing the data set. The presented method uses a new fitness
function designed to perform a prototype selection process. Some proposals have also
emerged in the area of heuristics and metrics for improving several genetic program-
ming classifiers performance in imbalanced domains [Doucette and Heywood 2008].
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However, EA have been used for more than under-sampling. More recently, Genetic
Algorithms (GA) and clustering techniques were combined to perform both under and
over-sampling [Maheshwari et al. 2011; Yong 2012]. Evolutionary under-sampling has
also been combined with boosting [Galar et al. 2013].

Another important approach for dealing with the imbalance problem as a pre-
processing step, is the generation of new synthetic data. Several methods exist for
building new synthetic examples. Most of the proposals are focused on classification
tasks. Synthesizing new data has several known advantages [Chawla et al. 2002;
Menardi and Torelli 2010], namely: (i) reduces the risk of overfitting which is intro-
duced when replicas of the examples are inserted in the training set; (ii) improves the
ability of generalization which was compromised by the over-sampling methods. The
methods for synthesizing new data can be organized in two groups: (i) one that intro-
duces perturbations, and (ii) another that uses interpolation of existing examples.

Lee [1999] proposed an over-sampling method that produces noisy replicates of the
rare cases while keeping the majority class unchanged. The synthetic examples are
generated by adding normally distributed noise to the minority class examples. This
simple strategy was tested with success, and a new version was developed by Lee
[2000]. This new approach generates, for a given data set, multiple versions of training
sets with added noise. Then, an average of multiple model estimates is obtained.

Recently, Bellinger et al. [2015] proposed a new method for generating synthetic
sample named DEAGO. This proposal is based on the capabilities of recontruction of
denoising autoencoders [Vincent et al. 2010]. The denoising autoencoders are neural
networks that are able to reconstruct at the output layer clean versions of the net-
work input. DEAGO generates synthetic samples with Gaussian noise added which
are then used as input of the denoising autoencoders. This proposal was evaluated for
the gamma-ray spectral domain.

Another framework, named ROSE (Random Over Sampling Examples), for dealing
with the problem of imbalanced classification was presented by Menardi and Torelli
[2010] based on a smoothed bootstrap re-sampling technique. ROSE generates a more
balanced and completely new data set from the given training set combining over-
and under-sampling. One observation is drawn from the training set by giving the
same probability to both existing classes. A new example is generated in the neighbor-
hood of this observation, using a width for the neighborhood determined by a chosen
smoothing matrix.

Zhang and Li [2014] use a random walk based approach as an over-sampling strat-
egy to generate new examples from the minority class. This approach allows the ex-
tension of the classification border.

A famous method that uses interpolation is the synthetic minority over-sampling
technique - SMOTE [Chawla et al. 2002]. SMOTE over-samples the minority class
by generating new synthetic data. This technique is then combined with a certain per-
centage of random under-sampling of the majority class that depends on a user defined
parameter. Artificial data is created using an interpolation strategy that introduces a
new example along the line segment joining a seed example and one of its k minority
class nearest neighbors. The number of minority class neighbors (k) is another user
defined parameter. For each minority class example a certain number of examples is
generated according to a predefined over-sampling percentage.

SMOTE algorithm has been applied with several different classifiers and was also
integrated with boosting [Chawla et al. 2003] and bagging [Wang and Yao 2009].

Nevertheless, SMOTE generates synthetic examples with the positive class label
disregarding the negative class examples which may lead to overgeneralization [Yen
and Lee 2006; Maciejewski and Stefanowski 2011; Yen and Lee 2009]. This strategy
may be specially problematic in the case of highly skewed class distributions where
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the minority class examples are very sparse, thus resulting in a greater chance of
class mixture.

Some of the drawbacks identified in SMOTE algorithm motivated the appearance
of several variants of this method. We can identify three main types of variants:
(i) application of some pre- or post-processing before or after the use of SMOTE;
(ii) apply SMOTE only in some selected regions of the input space; or (iii) in-
troducing small modifications to the SMOTE algorithm. Most of the first type of
SMOTE variants start by applying the SMOTE algorithm and, afterwards, use a post-
processing mechanism for removing some data. Examples of this type of approaches
include: SMOTE+Tomek [Batista et al. 2004], SMOTE+ENN [Batista et al. 2004],
SMOTE+FRST [Ramentol et al. 2012b] or SMOTE+RSB [Ramentol et al. 2012a]. An
exception is the Fuzzy Rough Imbalanced Prototype Selection (FRIPS) [Verbiest et al.
2012] method that pre-processes the data set before applying the SMOTE algorithm.
The second type of SMOTE variants only generates synthetic examples in specific re-
gions that are considered useful for the learning algorithms. As the notion of what is
a good region is not straightforward, several strategies were developed. Some of these
variants focus the synthesizing effort on the borders between classes while others try
to find which are the harder to learn instances and concentrate on these ones. Exam-
ples of these approaches are: Borderline-SMOTE [Han et al. 2005], ADASYN [He et al.
2008], Modified Synthetic Minority Oversampling Technique (MSMOTE) [Hu et al.
2009], MWMOTE [Barua et al. 2012], FSMOTE [Zhang et al. 2011], among others. Re-
garding the last type of SMOTE variants, some modifications are introduced in the way
SMOTE generates the synthetic examples. For instance, the synthetic examples may
be generated closer or further apart from a seed depending on some measure. The fol-
lowing proposals are examples within this group: Safe-Level-SMOTE [Bunkhumporn-
pat et al. 2009], Safe Level Graph [Bunkhumpornpat and Subpaiboonkit 2013], LN-
SMOTE [Maciejewski and Stefanowski 2011] and DBSMOTE [Bunkhumpornpat et al.
2012].

For regression problems only one method for generating new synthetic data was
proposed. Torgo et al. [2013] have adapted the SMOTE algorithm to regression tasks.
Three key components of the SMOTE algorithm required adaptation for regression: (i)
how to define which are the relevant observations and the “normal” cases; (ii) how to
generate the new synthetic examples (i.e. over-sampling); and (iii) how to determine
the value of the target variable in the synthetic examples. Regarding the first issue,
a relevance function and a user-specified threshold were used to define DR and DN

sets. The observations in DR are over-sampled, while cases in DN are under-sampled.
For the generation of new synthetic examples the same interpolation method used
in SMOTE for classification was applied. Finally, the target value of each synthetic
example was calculated as an weighted average of the target variable values of the
two seed examples. The weights were calculated as an inverse function of the distance
of the generated case to each of the two seed examples.

Finally, several other interesting methods have appeared which combine some of the
previous techniques [Stefanowski and Wilk 2008; Bunkhumpornpat et al. 2011; Song-
wattanasiri and Sinapiromsaran 2010; Yang and Gao 2012]. For instance, Jeatrakul
et al. [2010] presents a method that uses Complementary Neural Networks (CMTNN)
to perform under-sampling and combines it with SMOTE. The combination of strate-
gies was also applied to ensembles (e.g. Liu et al. [2006]; Mease et al. [2007]; Chen
et al. [2010]). An interesting approach that combines clustering with recognition-based
methods was proposed by Sharma et al. [2012]. This method starts by applying a clus-
tering algorithm and then, in each determined cluster a one-class learner is trained.
The final model is obtained by combining the predictions of all the one-class learners
trained.
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Some attention has also been given to SVMs, leading to proposals such as the one of
Kang and Cho [2006] where an ensemble of under-sampled SVMs is presented. Multi-
ple different training sets are built by sampling examples from the majority class and
combining them with the minority class examples. Each training set is used for train-
ing an individual SVM classifier. The ensemble is produced by aggregating the outputs
of all individual classifiers. Another similar approach is the EnSVM [Liu et al. 2006]
which adopts a rebalance strategy combining the over-sampling strategy of SMOTE
algorithm and under-sampling to form a number of new training sets while using all
the positive examples. Then, an ensemble of SVMs is built.

Several ensembles have been adapted and combined with approaches for changing
the data distribution to better tackle the problem of imbalanced domains. Essentially,
for every type of ensembles, some attempt has been made. For a more complete review
on ensembles for the class imbalance problem see Galar et al. [2012].

4.1.2. Weighting the Data Space.
The strategy of weighting the data space is a way of implementing cost-sensitive

learning and thus can be an effective method for handling imbalanced domains when
information on the costs of errors is available. In fact, misclassification costs are ap-
plied to the given data set with the goal of selecting the best training distribution.
Essentially, this method is based on the fact that changing the original sampling dis-
tribution by multiplying each case by a factor that is proportional to its importance
(relative cost), allows any standard learner to accomplish expected cost minimization
on the original distribution. Although it is a simple technique and easy to apply, it also
has some drawbacks. There is a risk of model overfitting and it is also possible that the
real cost values are unavailable which can introduce the extra difficulty of exploring
effective cost setups.

This approach has a strong theoretical foundation, building on the Translation Theo-
rem derived by Zadrozny et al. [2003]. Namely, to obtain a modified distribution biased
towards the costly classes, the training set distribution is modified with regards to
misclassification costs.

Zadrozny et al. [2003] presented two different ways of accomplishing this conversion:
in a transparent box or in a black box way. In the first, the weights are provided to the
classifier while for the second a careful subsampling is performed according to the
same weights. The first approach cannot be applied to an arbitrary learner, while the
second one results in severe overfitting if sampling with replacement is used. Thus, to
overcome the drawbacks of the latter approach, the authors have presented a method
called cost-proportionate rejection sampling which accepts each example in the input
sample with probability proportional to its associated weight.

4.2. Special-purpose Learning Methods
The approaches at this level consist of solutions that modify existing algorithms to
provide a better fit to the user preferences. The task of developing a solution based
on algorithm modifications is not an easy one. It requires a deep knowledge of both
the learning algorithm and also of the user preference biases. In order to perform a
modification on a selected algorithm, it is essential to understand why it fails when the
distribution does not match the user preferences. Moreover, any adaptation requires
information on the full utility function, which is frequently hard to obtain. On the
other hand, these methods have the advantage of being very effective in the contexts
for which they were designed.

Existing solutions for dealing with imbalanced domains at the learning level are
focused on the introduction of modifications in the algorithm preference criterion. Ta-
ble V summarizes the main bibliographic references for this type of approaches.
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Table V. Special-purpose Learning Methods, corresponding section and main bibliographic references

Strategy type (Section) Main References

Special-purpose Learning Methods
(4.2)

Joshi et al. [2001]; Barandela et al. [2003]; Maloof
[2003]; Ribeiro and Torgo [2003]; Tan et al. [2003];
Torgo and Ribeiro [2003]; Wu and Chang [2003];
Akbani et al. [2004]; Chen et al. [2004]; Huang et al.
[2004]; Wu and Chang [2005]; Imam et al. [2006];
Tang and Zhang [2006]; Zhou and Liu [2006]; Alejo
et al. [2007]; Sun et al. [2007]; Cieslak and Chawla
[2008]; Li et al. [2009]; Song et al. [2009]; Tang et al.
[2009]; Batuwita and Palade [2010b]; Liu et al.
[2010]; Wang and Japkowicz [2010]; Hwang et al.
[2011]; Oh [2011]; Ribeiro [2011]; Cieslak et al.
[2012]; Rodrı́guez et al. [2012]; Weiguo et al. [2012];
Xiao et al. [2012]; Cao et al. [2013]; Castro and
de Pádua Braga [2013]

The incorporation of benefits and/or costs (negative benefits) in existing algorithms,
as a way to express the utility of different predictions, is one of the known approaches
to cope with imbalanced domains. This includes the well known cost-sensitive algo-
rithms for classification tasks which directly incorporate costs in the learning process.
In this case, the goal of the prediction task is to minimize expected cost, knowing that
misclassified examples may have different costs.

The research literature includes several works describing the adaptation of differ-
ent classifiers in order to make them cost-sensitive. For decision trees, the impact of
the incorporation of costs under imbalanced domains was addressed by Maloof [2003].
Regarding support vector machines, several ways of integrating costs have been con-
sidered such as assigning different penalties to false negatives and positives [Akbani
et al. 2004] or including a weighted attribute strategy [Yuanhong et al. 2009] among
others [Weiguo et al. 2012]. Regarding neural networks, the possibility of making them
cost-sensitive has also been considered (e.g. Zhou and Liu [2006]; Alejo et al. [2007];
Oh [2011]). A Cost-Sensitive Multilayer Perceptron (CSMLP) algorithm was proposed
by Castro and de Pádua Braga [2013] for asymmetrical learning of MLPs via a mod-
ified (backpropagation) weight update rule. Cao et al. [2013] present a framework for
improving the performance of cost-sensitive neural networks that uses Particle Swarm
Optimization (PSO) for optimizing misclassification cost, feature subset and intrinsic
structure parameters. Alejo et al. [2007] propose two strategies for dealing with im-
balanced domains using RBF neural networks which include a cost function in the
training phase.

Ensembles have also been considered in the cost-sensitive framework to handle im-
balanced domains. Several ensemble methods have been successfully adapted to in-
clude costs during the learning phase. However, boosting was the most extensively
explored. AdaBoost is the most representative algorithm of the boosting family. When
the target class is imbalanced, AdaBoost biases the learning (through the weights)
towards the majority class, as it contributes more to the overall accuracy. Several pro-
posals appeared which modify AdaBoost weight update process by incorporating cost
items so that examples from different classes are treated unequally. Important pro-
posals in the context of imbalanced domains are: RareBoost [Joshi et al. 2001], AdaC1,
AdaC2 and AdaC3 [Sun et al. 2007], and BABoost [Song et al. 2009]. All of them mod-
ify the AdaBoost algorithm by introducing costs in the used weight updating formula.
These proposals differ in how they modify the update rule. Wang and Japkowicz [2010]
proposes an ensemble of SVMs with asymmetric misclassification costs. The proposed
system works by modifying the base classifier (SVM) using costs and uses boosting as
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the combination scheme. Random Forests have also been adapted to better cope with
imbalanced domains undergoing a cost-sensitive transformation. Chen et al. [2004]
proposes a method called Weighted Random Forest (WRF) for dealing with highly im-
balanced domains based on the Random Forest algorithm. WRF strategy operates by
assigning a higher misclassification cost to the minority class. For an extensive review
on ensembles for handling class imbalance see Galar et al. [2012].

Several other solutions exist that also modify the preference criteria of the algo-
rithms while not relying directly on the definition of a cost/cost-benefit matrix. Re-
garding SVMs, several proposals try to bias the algorithm so that the hyperplane is
further away from the positive class because the skew associated with imbalanced
data sets pushes the hyperplane closer to the positive class. Wu and Chang [2003] ac-
complish this with an algorithm that changes the kernel function. Fuzzy Support Vec-
tor Machines for Class Imbalance Learning (FSVM-CIL) was a method proposed by
Batuwita and Palade [2010b]. This algorithm is based on an SVM variant for handling
the problem of outliers and noise called FSVM [Lin and Wang 2002] and improves it
for also dealing with imbalanced data sets. Potential Support Vector Machine (P-SVM)
[Mangasarian and Wild 2001] differs from standard SVM learners by defining a new
objective function and constraints. An improved P-SVM algorithm [Li et al. 2009] was
proposed to better cope with imbalanced data sets.

k-NN learners were also adapted to cope with the imbalance problem. Barandela
et al. [2003] present a weighted distance function to be used in the classification phase
of k-NN without changing the class distribution. This method assigns different weights
to the respective classes and not to the individual prototypes. Since more weight is
given to the majority class, the distance to minority class examples becomes much
lower than the distance to examples from the majority class. This biases the learner to
find their nearest neighbor among examples of the minority class.

A new decision tree algorithm - Class Confidence Proportion Decision Tree (CCPDT)
- was proposed by Liu et al. [2010]. CCPDT is robust and insensitive to class distribu-
tion and generates rules that are statistically significant. The algorithm adopts a new
proposed measure, called Class Confidence Proportion (CCP), which forms the basis of
CCPDT. CCP measure is embedded in the information gain and used as the splitting
criterion. In this algorithm, a new approach, using Fisher exact test, to prune branches
of the tree that are not statistically significant is presented.

Hellinger distance was introduced as a decision tree splitting criterion to build
Hellinger Distance Decision Trees (HDDT) [Cieslak and Chawla 2008]. This proposal
was shown to be insensitive towards class imbalanced domains. More recently, Cies-
lak et al. [2012] recommended the use of bagged HDDTs as the preferred method for
dealing with imbalanced domains when using decision trees.

For regression tasks, some works have addressed the problem of imbalanced do-
mains by changing the splitting criterion of regression trees (e.g. Torgo and Ribeiro
[2003]; Ribeiro and Torgo [2003]).

The Kernel Boundary Alignment algorithm (KBA) is proposed in Wu and Chang
[2005]. This method adjusts the boundary towards the majority class by modifying the
kernel matrix generated by a kernel function according to the imbalanced domain.

An ensemble method for learning over multi-class imbalanced data sets, named en-
semble Knowledge for Imbalance Sample Sets (eKISS), was proposed by Tan et al.
[2003]. This algorithm was specifically designed to increase classifiers sensitivity with-
out losing the corresponding specificity. The eKISS approach combines the rules of the
base classifiers to generate new classifiers for final decision making.

Recently, more sophisticated approaches were proposed as the Dynamic Classifier
Ensemble method for Imbalanced Data (DCEID) presented by Xiao et al. [2012].
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DCEID combines dynamic ensemble learning with cost-sensitive learning and is able
to adaptively select the more appropriate ensemble approach.

For regression problems, one work exists that is able to tackle the problem of imbal-
anced domains through an utility-based algorithm. The utility-based Rules (ubaRules)
approach was proposed by Ribeiro [2011]. ubaRules is an utility-based regression rule
ensemble system designed for obtaining models biased according to a specific utility
function. The system main goal is to obtain accurate and interpretable predictions in
the context of regression problems with non-uniform utility. It consists in two main
steps: generation of different regression trees, which are converted to rule ensembles,
and selection of the best rules to include in the final ensemble. An utility function is
used as criterion at several stages of the algorithm.

4.3. Prediction Post-processing
For dealing with imbalanced domains at the post-processing level, we will consider two
main types of solutions:

— threshold method: uses the ranking provided by a score, that expresses the degree
to which an example is a member of a class, to produce several learners by varying
the threshold for class membership;

— cost-sensitive post-processing: associates costs to prediction errors and mini-
mizes the expected cost.

Table VI summarizes the main bibliographic references of post-processing strategy
approaches.

Table VI. Post-processing strategy approaches, corresponding sec-
tions and main bibliographic references

Approaches (Section) Main References

Threshold Method
(4.3.1) Maloof [2003]; Weiss [2004]

Hernández-Orallo et al. [2012]

Cost-sensitive Post-processing
(4.3.2) Hernández-Orallo [2012, 2014]

4.3.1. Threshold Method.
Some classifiers are named soft classifiers because they provide a score which ex-

presses the degree to which an example is a member of a class. Together with a thresh-
old, this score can be used to generate other classifiers. This can be accomplished by
varying the threshold for an example belonging to a class [Weiss 2004]. A study of this
method [Maloof 2003] concluded that the operations of moving the decision threshold,
applying a sampling strategy, and adjusting the cost matrix produce classifiers with
the same performance.

The proposal of Hernández-Orallo et al. [2012] explores several threshold choice
methods and provides an interesting interpretation for a diversity of performance met-
rics. The threshold choice methods are categorized according to the operating condi-
tions. Guidelines are provided regarding the performance metric that should be used
based on the information available on the threshold choice method.

4.3.2. Cost-sensitive Post-processing.
Several methods exist for making models cost-sensitive in a post hoc manner. This

technique was mainly explored in classification tasks and aims at changing the model
predictions for making it cost-sensitive (e.g. Domingos [1999]; Sinha and May [2004]).
This means that this technique could potentially be applicable to imbalanced domains.
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Table VII. Hybrid strategies, corresponding sections and main bibliographic ref-
erences

Strategy type (Section) Main References

Hybrid Strategies
(4.4)

Estabrooks and Japkowicz [2001];
Kotsiantis and Pintelas [2003];
Estabrooks et al. [2004]; Phua et al.
[2004]; Yoon and Kwek [2005];
Ertekin et al. [2007a,b]; Zhu and Hovy
[2007]; Liu et al. [2009]; Ghasemi
et al. [2011a,b]; Ertekin [2013]; Mi
[2013]; Barnab-Lortie et al. [2015]

However, to the best of our knowledge, these methods have never been applied or eval-
uated on these tasks.

In regression, introducing costs at a post-processing level has only recently been
proposed [Bansal et al. 2008; Zhao et al. 2011]. It is an issue still under-explored with
few limited solutions. Similarly to what happens in classification, no progress was yet
made for evaluating these solutions in imbalanced domains. However, one interest-
ing proposal called reframing [Hernández-Orallo 2012, 2014] was recently presented.
Although not developed specifically for imbalanced domains, this framework aims at
adjusting the predictions of a previously built model to different deployment contexts.
Therefore, it is also potentially suitable for being applied to the problem of imbalanced
domains. The notion of reframing was established as the process of applying a previ-
ously built model to a new operating context by the proper transformation of inputs,
outputs and patterns. The reframing framework acts at a post-processing level, chang-
ing the obtained predictions by adapting them to a different distribution.

The reframing method essentially consists of two steps:

— the conversion of any traditional crisp regression model with one parameter into
a soft regression model with two parameters, seen as a normal conditional density
estimator (NCDE), by the use of enrichment methods;

— the reframing of an enriched soft regression model to new contexts by an instance-
dependent optimization of the expected loss derived from the conditional normal
distribution.

4.4. Hybrid Methods
In recent years, several methods involving the combination of some of the basic ap-
proaches described in the previous sections, have appeared in the research literature.
Due to their characteristics, these methods can be seen as hybrid methods to handle
imbalanced domains. They try to capitalize on some of the main advantages of the
different approaches we have described previously.

Existing hybrid approaches combine the use of pre-processing approaches with
special-purpose learning algorithms. Table VII summarizes the main bibliographic ref-
erences concerning these hybrid strategies.

One of the first hybrid strategies was presented by Estabrooks and Japkowicz [2001]
and Estabrooks et al. [2004]. The motivation for this proposal is related to the fact that
a perfectly balanced data may not be optimal and that the right amount of over/under-
sample to apply is difficult to determine. To overcome these difficulties, a mixture-of-
experts framework was proposed in an architecture with three levels: a classifier level,
an expert level and an output level. The system has two experts in the expert level:
an under-sampling expert and an over-sampling expert. The architecture incorporates
10 classifiers on the over-sampling expert and another 10 classifiers on the under-
sampling expert. All these classifiers are trained in data sets sampled at different
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rates of over- and under-sampling, respectively. At the classifier level, an elimination
strategy is applied for removing the learners that are considered unreliable according
to a predefined test. Then, a combination scheme is applied both at the expert and
output levels. These combination schemes use the following simple heuristic: if one of
the classifiers decides that the example is positive so does the expert, and if one of the
two experts decides that the example is positive so does the output level. This strategy
is clearly heavily biased towards the minority (positive) class.

A different idea involving sampling and the combination of different learners was
proposed by Kotsiantis and Pintelas [2003]. The proposed approach uses a facilitator
agent and three learning agents each one with its own learning system. The facilitator
starts by filtering the features of the data set. The filtered data is then passed to the
three learning agents. Each learning agent samples the data set, learns using the
respective system (Naive Bayes, C4.5 and 5NN) and returns the predictions for each
instance back to the facilitator agent. Finally, the facilitator makes the final prediction
according to majority voting.

In the proposal of Phua et al. [2004] sampling is performed and, afterwards, stacking
and boosting are used together. The applied sampling strategy partitions the data set
into eleven new data sets which include all the minority class examples and a portion of
the majority class examples. The proposed system uses three different learners (Naive
Bayes, C4.5 and back-propagation classifier) each one processing the eleven partitions
of the data. Bagging is used to combine the classifiers trained by the same algorithm.
Then stacking is used to combine the multiple classifiers generated by the different
algorithms identifying the best mix of classifiers.

Other approaches combine pre-processing techniques with bagging and boosting, si-
multaneously, composing an ensemble of ensembles. EasyEnsemble and BalanceCas-
cade algorithms [Liu et al. 2009] are examples of this type of approach. Both algo-
rithms use bagging as the main ensemble method and use AdaBoost for training each
bag. As for the pre-processing technique, both construct balanced bags by randomly
under-sampling examples from the majority class. In EasyEnsemble algorithm all Ad-
aBoost iterations can be performed simultaneously because each AdaBoost ensemble
uses a previously determined subset of the data. All the generated classifiers are com-
bined for a final solution. On the other hand, in the BalanceCascade algorithm, after
the AdaBoost learning, the majority examples correctly classified with higher confi-
dence are discarded from further iterations.

Wang [2008] presents an approach that combines the SMOTE algorithm with
Biased-SVM [Veropoulos et al. 1999]. The proposed approach applies the Biased-SVM
in the imbalanced data and stores the obtained support vectors from both classes. Then
SMOTE is used to over-sample the support vectors with two alternatives: using only
the obtained support vectors or using the entire minority class. A final classification is
obtained with the new data using the biased-SVM.

Active learning is a semi-supervised strategy in which the learning algorithm is able
to interactively obtain information from the user. Although this method is traditionally
used with unlabelled data, it can also be applied when all class labels are known. In
this case, the active learning strategy provides the ability of actively selecting the
best, i.e. the most informative, examples to learn from. Active Learning by itself is
a technique that is able to deal with moderate imbalanced distributions. However,
when a more severe imbalance occurs in the data, special techniques developed for
active learning that incorporate a preference towards the least represented and more
relevant cases (DR) should be used [Attenberg and Ertekin 2013].

Several approaches for imbalanced domains based on active learning have been pro-
posed [Ertekin et al. 2007a,b; Zhu and Hovy 2007; Ertekin 2013]. These approaches
are concentrated on SVM learning systems and are based on the fact that, for this type
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of learners, the most informative examples are the ones closest to the hyperplane. This
property is used to guide under-sampling by selecting the most informative examples,
i.e., choosing the examples closer to the hyperplane.

More recent developments try to combine active learning with other techniques to
further improve the learner’s performance. Ertekin [2013] presents a novel adaptive
over-sampling algorithm named Virtual Instances Resampling Technique Using Active
Learning (VIRTUAL), that combines the benefits of over-sampling and active learning.
Contrary to traditional sampling methods, which are applied before the training stage,
VIRTUAL generates synthetic examples for the minority class during the training pro-
cess. Therefore, the need for a separate pre-processing step is discarded. In the context
of learning with SVMs, VIRTUAL outperforms competitive over-sampling techniques
both in terms of generalization performance and computational complexity. Mi [2013]
developed a method that combines SMOTE and active learning with SVMs.

Some efforts have also been made for integrating active learning with other classi-
fiers. Hu [2012] proposed an active learning method for imbalance data using the Lo-
calized Generalization Error Model (L-GEM) of radial basis function neural networks
(RBFNN).

Ghasemi et al. [2011a,b] presented a new approach that also uses active learning
methods but only requires examples from the majority class. In these works several
scoring functions for selecting the most informative examples were experimented.

A proposal considering the integration of active learning and one-class classifiers
was also presented by Barnab-Lortie et al. [2015].

Still, we must highlight that, overall, active learning-based methods tend to show a
degradation in performance as the imbalance of the domain increases [Attenberg and
Ertekin 2013].

Finally, a strategy using a clustering method based on class purity maximization is
proposed by Yoon and Kwek [2005]. This method generates clusters of pure majority
class examples and non-pure clusters based on the improvement of the clusters class
purity. When the clusters are formed, all minority class examples are added to the
non-pure clusters and a decision tree is built for each cluster. An unlabelled example
is clustered according to the same algorithm. If it falls on a non-pure cluster, the deci-
sion tree committee votes the prediction, but if it falls on a pure majority class cluster
the final prediction is the majority class. If the committee votes for a majority class
prediction, then that will be the final prediction. On the other hand, if it is a minor-
ity class prediction, then the example will be submitted to a final classifier which is
constructed using a neural network.

5. STUDIES ON THE EFFECTIVENESS OF THE METHODS
The task of evaluating and comparing all the proposed solutions for handling the prob-
lem of imbalanced domains is not simple. First of all, there is a huge amount of pro-
posals to deal with imbalanced domains. Secondly, the impact of the strategies on dif-
ferent learning algorithms is not uniform (e.g. Van Hulse et al. [2007]), meaning that
any conclusions are frequently algorithm-dependent. Finally, there is also the issue of
assessing the impact in performance of different levels of imbalance in the domain and
of different data set characteristics such as separability of data or the training set size.

The main questions that we would like to answer regarding the performance assess-
ment under imbalanced domains are:

— Which data characteristics contribute to further hinder the performance under im-
balanced domains?

— Can we find approaches that generally provide the best improvement in the perfor-
mance for these domains?
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— Is the performance of the used learning algorithms affected in different degrees
under imbalanced domains?

— How does the different degree of imbalance in the data distribution affects the per-
formance?

Japkowicz and Stephen [2002] conducted one of the first studies to address these
questions in a classification setting. This work appeared in an early stage of the devel-
opment of these approaches and therefore only five strategies were compared (random
under/over-sampling, under/over-sampling at random but focused in parts of the in-
put space far/close to the decision boundary and finally change the misclassification
costs of the classes). Unfortunately, most of the conclusions of this paper were based
on comparisons of the error rate as the performance assessment measure, which is an
unsuitable measure for these domains. The main conclusions were the following:

— When using decision trees:
— the impact of the imbalanced domain increases as the data separability decreases;
— by increasing the training set size, the impact of the imbalance in the domain is

reduced;
— the imbalance of the domain is only a problem when small disjuncts are present

in the data;
— oversampling generally outperforms undersampling;
— changing the misclassification cost of the classes generally performs better than

random or focused oversampling.
— Decision trees were found to be the classifier most sensitive to the problem of im-

balanced domains, multi-layer perceptrons came next showing less sensitivity and,
finally, support vector machines are identified as showing no sensitivity at all to this
problem.

Batista et al. [2004] highlighted the importance of the contribution of other factors,
such as small sample size and class overlap, in the performance degradation when
learning under imbalanced data sets. This work uses only decision trees and compares
10 pre-processing strategies using AUC. In general, it is concluded that oversampling-
based strategies have more advantages than undersampling.

The results obtained in the two previously mentioned works do not always agree
with other works on this issue where oversampling is reported to be ineffective when
using decision trees (e.g. Drummond and Holte [2003]). In fact, random undersampling
is nowadays generally considered as one of the most efficient approaches to deal with
imbalanced domains.

More recently, a new experimental design was proposed [Batista et al. 2012; Prati
et al. 2014] to overcome the difficulty in assessing the capability of recovering from the
losses in performance caused by imbalance. One of the main conclusion of this work is
in agreement with the previously mentioned papers regarding the poor sensitivity of
support vector machines to the imbalance in the domain. These were found to be the
classifiers least affected by imbalanced domains, only presenting some sensitivity to
the most severely imbalanced domains.

The authors used real data sets and for each data set several training set distri-
butions were generated with the same number of examples and different degrees of
imbalance. The performance loss was measured relatively to the perfectly balanced
distribution using the following metric,

L =
B − I
B

(44)
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where B represents the performance on the perfectly balanced distribution and I the
performance obtained on the imbalanced distribution. The AUC was the metric se-
lected for these experiments.

For all degrees of imbalance in the distribution some degradation in performance
was observed. As expected, this is more pronounced at higher levels of imbalance. In
this study, the following five strategies were analysed: random oversampling, SMOTE,
borderline-SMOTE, ADASYN and Metacost. One of the main conclusions for highly
imbalanced domains (1/99, 5/95 and 10/90) is the general failure of all considered
strategies. SMOTE was found not to be so competitive as expected when compared
to random oversampling. Moreover, the results obtained for borderline-SMOTE and
ADASYN did not showed a clear advantage compared to standard SMOTE. Regarding
Metacost, its performance was also quite poor when compared to the other strategies
considered in the study.

López et al. [2013] compared three types of classifiers (SVM, decision tree and k-
NN) on 66 data sets using the AUC metric. The approaches tested were clustered
into: pre-processing (SMOTE, SMOTE+ENN, borderline-SMOTE, safe-level-SMOTE,
ADASYN, SPIDER2 and DBsmote), cost-sensitive learning (Weighted-Classifier which
simply introduces weights on the training set, Metacost, and the cost-sensitive clas-
sifier from the Weka environment) and ensemble-based techniques (AdaBoost-M1,
AdaC2, RusBoost, smoteBagging and EasyEnsemble).

The main conclusions from this study were:

— regarding pre-processing strategies, SMOTE and SMOTE+ENN are the best per-
formers; Borderline-SMOTE and ADASYN also present a robust performance on
average;

— for the tested cost-sensitive learning methods, Metacost and Weighted-Classifier
were the ones that presented the best performance;

— SmoteBagging was the best ensemble method tested; RusBoost and EasyEnsemble
also performed well;

— For decision trees and k-NN, the best performing strategy was smoteBagging, while
for SVMs SMOTE obtained the best performance closely followed by the remaining
evaluated pre-processing strategies.

We must highlight that some results in López et al. [2013] disagree with the ones
presented by Batista et al. [2012], in particular with respect to the Metacost approach.
Another problem with these two latter works is the fact that both dropped from evalu-
ation the random undersampling method which was shown to be quite competitive in
other studies.

Recently, Stefanowski [2016] studied the impact of several data characteristics in
the performance of both learning algorithms and pre-processing strategies. These data
characteristics, called data difficulty factors, include the class overlap problem, the
existence of small disjuncts and some characteristics of the minority class examples.
Stefanowski [2016] proposes a categorization of the minority class cases with respect
to their local characteristics into the following four types: safe, borderline, rare and
outliers. Then, Stefanowski [2016] studies the relation between the dominant type of
minority examples in a data set and both the performance obtained by several learning
algorithms and pre-processing strategies.

As a final remark, we stress that in all these cases, only binary classification tasks
have been considered and usually only one measure is used to assess the perfor-
mance. This entails some limitations in the conclusions. Particularly, because it was
shown that different assessment measures may provide different evaluation results
(e.g. Van Hulse et al. [2007]). Moreover, these papers always assumed that the best
is to perfectly balance the distribution which has also been shown not to be the most
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favorable setting in terms of performance (e.g. Weiss and Provost [2003]; Khoshgoftaar
et al. [2007]).

6. THEORETICAL ADVANCES
The problem of imbalanced domains is a relevant problem with important applica-
tions in a wide range of fields. The scientific community has been producing several
approaches to this problem as we have surveyed in the previous sections. These pro-
posals typically solve the problem in a particular domain or on a small set of tasks.
However, many of the developed techniques fail under different imbalanced problems.
An important question that arises then is: Why and when will a particular technique
developed for the problem of imbalanced domains fail or succeed? The reasons behind
this unstable behavior are not understood, and we believe that only with more efforts
regarding the theoretical foundations of imbalanced domains we will be able to answer
this question. The lack of a theoretical understanding of the problem is holding back
the evolution of the solutions.

In spite of its relevance, the fact is that only a few theoretical contributions have
been produced by the research community. While the range of approaches for han-
dling imbalanced problems is increasing, the work on the theoretical foundations of
the problem is scarce. We consider that one of the reasons for this is related with the
lack of a precise definition of the problem, that includes the diversity of applications of
imbalanced domains.

The lack of a precise definition of the problem frequently leads to some misconcep-
tions being widely spread throughout the scientific community. One example is the
equivalence between sampling methods and misclassification costs. This connection
was first established by Breiman et al. [1984]. However, for real-world applications,
Weiss [2013] has shown that the equivalence frequently does not hold. Consider, for
instance, a binary classification problem with 1100 examples and an imbalanced do-
main with a class distribution of 10:1. This means that the positive class consists of
100 examples and the negative class is formed by 1000 cases. Let us set the cost of
false negatives to 10 and the cost of false positives to 1. In this case, we have theoret-
ically a situation of equivalence between the definition of misclassification costs and
a balanced domain. A balanced domain could be obtained by under-sampling the neg-
ative class (multiplying it by 1

10 ), or by over-sampling the minority class (multiplying
it by 10). However, when performing under-sampling potentially useful data may be
discarded and, when performing over-sampling there is the risk of overfitting if repli-
cas are introduced. The equivalence would only hold if new minority class examples
were available from the original distribution. Even the generation of synthetic exam-
ples from the minority class would not be sufficient to hold the equivalence because
these new examples are not drawn from the original distribution and are only approx-
imations of that distribution. This means that, the equivalence would only hold in
real-world scenarios if new minority class examples were available for training. But,
if this was possible, then the problem of imbalanced domains would not exist, because
extra new data would be available as needed.

Regarding further theoretical contributions, we must highlight that this equivalence
was further explored by Elkan [2001]. A theorem was proved, for binary classification
tasks, that established a general formula regarding how to resample the negative class
examples to obtain optimal cost-sensitive decisions using a standard non cost-sensitive
learning algorithm. In spite of being more general, this formulation also suffers from
the problems mentioned above on real-world applications.

A theoretical analysis of imbalance was presented by Wallace et al. [2011] and used
to support a new proposal for tackling the problem of imbalanced domains. The analy-
sis tries to answer a question raised by several researchers (e.g. Van Hulse et al. [2007])
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and that is still not well understood: Why does under-sampling often presents a better
performance when compared to other, sometimes more complex, techniques? The fact
is that, empirically, under-sampling tends to outperform other approaches (ranging
from simple random over-sampling to the generation of new synthetic examples). Still,
several problems exist with random under-sampling strategy: it involves discarding
potentially relevant information and it is a high-variance strategy. It is exactly by fo-
cusing on the latter problem that Wallace et al. [2011] proposed their solution: the use
of bagging because it is a variance-reduction technique. The authors present a theo-
retical analysis and are able to establish the necessary and sufficient conditions for
obtaining a suboptimal separator of the positive and negative distributions. Among
other results, the authors show that by increasing the degree of imbalance there is a
decrease in the probability of a weighted empirical cost minimization being effective.
The theoretical framework developed justifies that, in the majority of imbalanced do-
mains, the use of bagging with classifiers induced over balanced bootstrap sets is the
best option.

More recently, Dal Pozzolo et al. [2015] also contributed for the theoretical advances
regarding imbalanced domains. The focus of this work was also in the under-sampling
strategy. In this paper, the authors study two aspects that are consequences of apply-
ing under-sampling: the potentially increase of variance (due to the reduction in the
number of examples), and the warping effect produced in the posterior data distribu-
tion (due to the modification introduced in the prior probabilities). The first aspect may
be addressed by averaging strategies to reduce the variability (as suggested by Wal-
lace et al. [2011]), while for the second issue it is necessary to calibrate the probability
of the new priors. Dal Pozzolo et al. [2015] analyse the interaction between under-
sampling and the ranking error of the posterior probability, and the following formula
was obtained:

β

(p+ β(1− p))2
>

√
vs
v

(45)

where β is the under-sampling rate, p is the posterior probability of the testing point
and v and vs are the variances of the classifier before and after sampling. If the formula
is satisfied then under-sampling is effective. However, it is difficult to determine when
the condition holds because it implies knowing the posterior probability and requires
the estimation of the ratio of variances before and after under-sampling.

Still, this is an useful theoretical condition for understanding the under-sampling
technique and some of the results obtained when applying it. In fact, the inequality of
Equation 45 can explain why there are several contradictory results because it shows
that there is a dependency between a good effect of under-sampling and some task
related aspects (such as the degree of imbalance and the classifier variance).

In summary, it seems that the research community is finally understanding the im-
portance of studying the theoretical foundations of the problem of imbalance domains.
However, much remains to be done regarding theoretical foundations for this difficult
problem, and easy heuristic solutions keep appearing at a fast rate.

7. PROBLEMS THAT HINDER PREDICTIVE MODELING UNDER IMBALANCED DOMAINS
In this section we describe some problems that frequently coexist with imbalanced do-
mains and further contribute to degrade the performance of predictive models. These
problems have been addressed mainly within a classification setting. Problems such as
small disjuncts, class overlap and small sample size, usually coexist with imbalanced
classification domains and are also identified as possible causes of classifiers perfor-
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mance degradation [Weiss 2004; He and Garcia 2009; Sun et al. 2009; Stefanowski
2016].

We will briefly describe some works that address the relationship between imbal-
anced domains and the following problems: (i) class overlapping or class separability,
(ii) small sample size and lack of density in the training set, (iii) high dimensionality
of the data set, (iv) noisy data, (v) small disjuncts and (vi) data shift.

The overlap problem occurs when a given region of the data space contains an iden-
tical number of training cases of each class. In this situation, a learner will have an
increased difficulty in distinguishing between the classes present on the overlapping
region. In the last decade, some attention was given to the relationship between these
two problems [Prati et al. 2004a; Garcı́a et al. 2006]. The combination of imbalanced
domains with overlapping regions causes much more difficulties than expected when
considering their effects individually [Denil and Trappenberg 2010]. Recent works
[Alejo Eleuterio et al. 2011; Alejo et al. 2013] presented combinations of solutions for
handling, simultaneously, both the class imbalance and the class overlap problem.

The small sample problem is also related with imbalanced domains. In effect, hav-
ing too few examples from the minority class will prevent the learner from capturing
their characteristics and will hinder the generalization capability of the algorithm. The
relation between imbalanced domains and small sample problems was addressed by
Japkowicz and Stephen [2002] and Jo and Japkowicz [2004], where it was highlighted
that minority class examples are easier to learn as their number increases.

The small sample problem may trigger problems such as rare cases [Weiss 2005],
which bring an additional difficulty to the learning system. Rare examples are ex-
tremely scarce cases that are difficult to detect and use for generalization. The small
sample problem may also be accompanied by a variable class distribution that may not
match the target distribution.

Some imbalanced domains have a high number of predictor variables. The main
challenge here is to adequately select features that contain the key information of
the problem. Feature selection is recommended [Wasikowski and Chen 2010] and is
also pointed as the solution for addressing the class imbalance problem [Mladenic and
Grobelnik 1999; Zheng et al. 2004; Chen and Wasikowski 2008; Van Der Putten and
Van Someren 2004; Forman 2003]. Several proposals exist for handling the imbalance
problem in conjunction with the high dimensionality problem, all using a feature se-
lection strategy [Zheng et al. 2004; Del Castillo and Serrano 2004; Forman and Cohen
2004; Chu et al. 2010]. In imbalanced domains, noisy data has a greater impact on the
least represented classes [Weiss 2004]. Recently, Seiffert et al. [2011] concluded that,
generally, class noise has a more significant impact on learners than imbalance. The
interaction between the levels of imbalance and noise is a relevant issue and the two
aspects should be studied together.

One of the most studied related problems is the problem of small disjuncts which is
associated to the imbalance in the subclusters of each class in the data set [Japkowicz
2001; Jo and Japkowicz 2004]. When a subcluster has a low coverage, i.e., it classi-
fies few examples, it is called small [Holte et al. 1989]. Small disjuncts are a problem
because the learners are typically biased towards classifying large disjuncts and there-
fore they will tend to overfit and misclassify the cases in the small disjuncts. Due to
the importance of these two problems, several works address the relation between the
problem of small disjuncts and the class imbalance problem (e.g. Japkowicz [2003];
Weiss and Provost [2003]; Jo and Japkowicz [2004]; Pearson et al. [2003]; Japkowicz
[2001]; Prati et al. [2004b]), although the connection between the two problems is not
yet well understood [Jo and Japkowicz 2004]. Weiss [2010] analyses the impact of sev-
eral factors on small disjuncts and in the error distribution across disjuncts. Pruning
was not considered an effective strategy for dealing with small disjuncts in the pres-
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ence of class imbalance [Prati et al. 2004b; Weiss 2010]. Weiss [2010] also concluded
that even with a balanced data set, errors tend to be concentrated towards the smaller
disjuncts. However, when there is class imbalance, the error concentration increases.
Moreover, the increase in the class imbalance also increases the error concentration.
Thus, class imbalance is partly responsible for the problem with small disjuncts, and
artificially balancing the data distribution, causes a decrease in the error concentra-
tion.

The data shift problem has also deserved the attention of the research community.
The problem of data shift occurs when there is a difference in the distribution of the
train and test sets. The data shift occurs frequently, and it usually leads to a small per-
formance degradation. However, on imbalanced domains severe performance losses
may happen caused by this problem. López et al. [2013] mentions two different per-
spectives of this problem under imbalanced domains: intrinsic and induced data shift.
The first one regards shifts in the data distribution that are already present in the
data. This is an unexplored issue that still has no solution. As for induced data shift,
it is related with the evaluation techniques used which may introduce this problem
by themselves. Moreno-Torres et al. [2012] mentions that sample selection bias may
occur due to a non-uniform random selection and this may produce the data shift prob-
lem. This may happen when using, for instance, the well known k-fold cross validation
procedure. López et al. [2014] present a new validation procedure, named distribution
optimally balanced stratified cross-validation, that tries to maintain the data distribu-
tion across all the partitions, trying to avoid inducing data shift.

The co-occurrence of the problems we have mentioned with imbalanced domains
tends to further degrade the classifiers performance and therefore this relationship
should not be ignored. We emphasize that these problems have been studied only in
the context of classification tasks. It would be important to generalise these studies to
regression tasks as these issues may also have a negative impact when happening in
conjunction with imbalanced domains in these contexts.

8. CONCLUSIONS
Imbalanced domains pose important challenges to existing approaches to predictive
modeling. In this paper we propose a formulation of the problem of predictive model-
ing with imbalanced data sets, including both classification and regression tasks. We
present a survey of the state of the art solutions for obtaining and evaluating predic-
tive models for both classification and regression tasks. We propose a new taxonomy
for the existing approaches grouping them into: (i) data pre-processing, (ii) special-
purpose learning methods, (iii) prediction post-processing and (iv) hybrid strategies.

For the last decade, the problem of predictive modeling under imbalanced domains
has been focused on classification tasks. Existing proposals were developed specifically
for classification problems, and existing surveys presented this topic only from a clas-
sification perspective. More recently, the research community started to address this
problem within other contexts such as regression [Torgo et al. 2013], ordinal classifi-
cation [Pérez-Ortiz et al. 2014], multi-label classification [Charte et al. 2015b], asso-
ciation rules mining [Luna et al. 2015], multi-instance learning [Wang et al. 2013b]
and data streams [Wang and Abraham 2015]. It is now recognized that imbalanced
domains are a broader and important problem posing relevant challenges in several
contexts.

We present a summary of recent theoretical contributions on the study of imbalanced
domains. This is certainly one of the most important open problems in this area. The
relevance of the problem has pushed the community to provide an huge amount of
heuristic solutions. Still, it is necessary to understand why, when and how they work,
and to achieve this we need further theoretical advances.
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We briefly describe some problems that are strongly related with imbalanced do-
mains, highlighting works that explore the relationship of these other problems with
imbalance data sets. The issue of the coexistence of other problems that may hinder
the learners performance has been addressed solely for classification tasks and this is
mostly an unexplored question for other tasks.

With the goal of understanding the current research directions in this area we iden-
tify a few recent trends:

— Wallace and Dahabreh [2012, 2014] have raised the issue of the reliability of prob-
ability estimates when using data sets with imbalanced domains. Although much
was done for other domains, this had never been considered for the case of imbal-
anced domains. A proposal was presented for the assessment of this problem and an
approach for solving it was also provided.

— Recently, a few papers have appeared that focus their contribution on the theoretical
analysis of the properties of some approaches to imbalanced domains. This is a very
important issue because it will provide a better understanding of the many existing
approaches.

— Regarding performance assessment, the issue of correct experimental procedures
for obtaining reliable estimates on data sets with imbalanced domains was recently
raised [Japkowicz and Shah 2011; Raeder et al. 2012; López et al. 2014].

— The study of the problem of imbalanced domains has been extended to other data
mining tasks. This is the case of regression tasks (e.g Torgo et al. [2013]), multi-
class tasks (e.g. Alejo et al. [2014]; Fernández-Baldera et al. [2015]), learning from
data streams (e.g. Ghazikhani et al. [2014]; Wang and Abraham [2015]), ordinal tar-
get variables (e.g.Baccianella et al. [2009]; Sánchez-Monedero et al. [2013]; Pérez-
Ortiz et al. [2014]), multi-label classification (e.g. Tahir et al. [2012]; Charte et al.
[2015b,a]), multi-instance learning (e.g. Wang et al. [2013b,a]) and mining associa-
tion rules (e.g. Mangat and Vig [2014]; Luna et al. [2015]).

Finally, in terms of the open research issues within imbalanced domain problems,
we consider the following to be the most relevant ones:

— Establishing the optimal way of translating the user preference biases into concrete
settings of the different approaches to the problem (e.g. what is the right amount of
under-sampling for some given user preferences?).

— More thorough and extensive experimental comparisons among the different ap-
proaches. Although some comparison studies exist, mainly for data pre-processing
strategies within a classification setting, not much exists involving comparisons
among the main different types of approaches (pre-processing, special-purpose
learning methods, post-processing and hybrid). Moreover, there is still no compari-
son of the performance of the approaches across different task types (classification
and regression).

— Creating a repository of benchmark data sets for this problem. In fact, although
several open-access data set repositories exist, no collection of problems with im-
balanced domains is currently available for the research community. This is an im-
portant issue whose resolution could provide a common baseline for comparison of
different solutions in a fair and unified way [He and Ma 2013].

— Establishing what are the adequate metrics for evaluating and comparing different
methods of addressing imbalanced domain problems. Currently, different papers se-
lect different metrics for comparing the methods, this being often the reason for
some contradictory results.

— Further theoretical analysis of the existing proposals needs to be carried out. The
knowledge about many of the existing approaches is still mostly based on collected
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experimental evidence across some concrete data sets. Further understanding of the
properties, advantages and limitations of the methods is necessary.

— Extension and/or development of approaches that can cope with other tasks apart
from binary classification. Most of the existing work on imbalanced domains is fo-
cused on binary classification tasks. Recent studies have shown that similar imbal-
ance problems exist in other tasks.
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César Ferri, José Hernández-Orallo, and Peter A Flach. 2011b. A coherent interpreta-
tion of AUC as a measure of aggregated classification performance. In Proceedings
of the 28th International Conference on Machine Learning (ICML-11). 657–664.
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José Manuel Martı́nez-Garcı́a, Carmen Paz Suárez-Araujo, and Patricio Garcı́a Báez.
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