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Abstract. Transposable Elements (TE) are sequences of DNA that move and
transpose within a genome. TEs, as mutation agents, are quite important for their
role in both genome alteration diseases and on species evolution. Several tools
have been developed to discover and annotate TEs but no single one achieves
good results on all different types of TEs. In this paper we evaluate the perfor-
mance of several TEs detection and annotation tools and investigate if Machine
Learning techniques can be used to improve their overall detection accuracy. The
results of an in silico evaluation of TEs detection and annotation tools indicate
that their performance can be improved by using machine learning classifiers.
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1 Introduction

Transposable Elements (TE), also known as transposons, are sequences of DNA that
move and transpose within a genome. TE’s role as mutation agents is important in
both genome alteration diseases and on species evolution [3]] [4] [[12] [8][9][2]. Several
methods have been developed to discover and annotate Transposable Elements. In [1]
an extensive list of TE detection methods is surveyed. These methods have been classi-
fied in four main categories [1]]: De novo; Structure-based; Comparative Genomic; and
Homology-based. Although there are different tools, based on these methodologies, for
detecting transposable elements there is not any single tool achieving good results on
different types of TEs.

In this paper we evaluate existing TE detection tools using in silico data and study
if Machine Learning techniques can be used to combine several TE detection tools
predictions in order to improve the overall detection accuracy.

The remainder of the paper is organised as follows. Section 2| explains the data gen-
eration process for evaluation the TEs detection tools. In Section[3]we present an empir-
ical evaluation of the TEs detection tools. In Section[4] we explain the ML experiments
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to improve the performance of detecting TEs. Finally, in Section [5] we draw some
conclusions.

2 In Silico Data

In order to evaluate the TE detection tools it is essential to have curated data sets of
genome sequences. Table [Tl summarizes the data used (namely TEs, genes, repetitive
elements, etc) to assemble ’artificial’ sequences. The set of 'real’ genes was obtained
from FlyBase [13]] (Drosophila melanogaster). The ’real’ TEs were obtained from Rep-
base [7]] and from Gydb [11]. Other variables considered in the simulation were muta-
tions, either point mutations or indel mutations, the length, composition and abundance
of TE.

Table 1. Data used to produce simulated sequences

Element type Number
Autonomous LTR Retrotransposons 2248
Non autonomous LTR Retrotransposons 379
DIRS 14
Non-LTR Retrotransposons 140
Autonomous non-LTR Retrotransposons 604

TEs Non autonomous non-LTR Retrotransposons 384
TIR 1247
DNA Transposons 628
Helitrons 139
Politrons 24

Genes 15458
Repetitive Elements 147

The simulation parameters included the length of the sequence to be produce, per-
centage of genes included in the sequence in relation to its total length, percentage of
TEs included in the sequence in relation to its total length, percentage of repetitive ele-
ments (no transposons included) that should be included in the sequence in relation to
its total length. rate of insertions, deletions and replacements. Producing sequences us-
ing different combinations of these parameter’s values allowed us to generate a diverse
set of DNA sequences. The output data of a simulation is a set of sequences, written in
FASTA [10] format, and an annotation file containing all TEs and repetitive elements lo-
cations inside each sequence. A simulated sequence consists of genes, transposons and
other repetitive elements filled with random nucleotides in the gaps between them. The
quantity of TEs, genes and repetitive elements are defined by the parameters referred
above.

3 Evaluation of Transposon Detection Tools

Each TE detection tool analyzes all the sequences (of a given data set) and produces as
a result the annotations of the TEs. The general accuracy was computed based on the
predicted location of TEs and the “true” locations generated by the simulator.



Boosting the Detection of Transposable Elements Using Machine Learning 87

In this study we have evaluated five tools that we next briefly describe.

PILER]] [5] is a de novo TE detection tool that adopts a heuristic-based approach
to de novo repeat annotation that exploits characteristic patterns of local alignments
induced by certain classes of repeats. The PILER algorithm is designed to analyze as-
sembled genomic regions and find only repeat families whose structure is characteristic
of known subclasses of repetitive sequences.

BLAT [15] is a mRNA/DNA alignment tool. It uses an index of all non-overlapping
K-mers in a given genome to find regions likely to be homologous to the query se-
quence. It performs an alignment between homologous regions and stitches together
these aligned regions into larger alignments.

CENSORA [6] was designed to identify and eliminate fragments of DNA sequences
homologous to any chosen reference sequences. It uses BLAST to identify matches
between input sequences and a reference library of known repetitive sequences. The
length and number of gaps in both the query and library sequences are considered along
with the length of the alignment in generating similarity scores. This tool reports the
positions of the matching regions of the query sequence along with their classification.

RepeatMaskeIE] [14] discovers repeats and removes them to prevent complications
in downstream analysis sequence assembly and gene characterization. Identification of
repeats by RepeatMasker is based entirely upon shared similarity between library repeat
sequences and query sequences. The output of the program is a detailed annotation of
the repeats that are present in the query sequence as well as a modified version of the
query sequence in which all the annotated repeats have been masked.

LTR Findeffi [[1'7]] predicts locations and structure of full-length LTR retrotransposons
accurately by considering common structural features. LTR FINDER identifies full-
length LTR element models in genomic sequence. This program reports possible LTR
retrotransposons models at different confidence levels.

In Table [2] the average accuracy of each tool regarding each TE type is presented.
LTR Finder achieved poorer results in finding most types of TEs. Overall both Censor
and RepeatMasker were the most accurate tools in finding different types of TEs.

4 Machine Learning to Improve TEs Detection Tools

Based on the experimental results of the TEs detection tools evaluation (Section[3)) we
have investigated if Machine Learning (ML) algorithms could improve TEs detection.
We have used a two step process for TEs detection using ML: i) determine if a certain
item (subsequence) in the sequence is or not a TE (TE detection); and ii) if the item
has been classified as a TE then we determine its boundaries (TE annotation). The first
step is concerned with the choice of the best tools to identify a TE with some given
characteristics. The second step aims at choosing a tool that minimizes the error of an
inferred TE boundary.

1 http://www.drive5.com/piler/

2 http://www.girinst.org/downloads/software/censor/
3 http://www.repeatmasker.org/

4 http://tlife.fudan.edu.cn/ltr_finder/
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Table 2. Accuracy (%) per TE type

Non Aut. LTR Retrotransposons
Aut. Non-LTR Retrotransposons
Non Aut. Non-LTR Retrotransposons

Aut. LTR Retrotransposons
Non-LTR Retrotransposons

DIRS
TIRS
DNA TEs
Helitrons
Politrons

All

Tool
BLAT 26.69 18.12 2.72 23.12 19.68 37.69 20.46 13.67 21.92 11.14 19.61
Censor 61.49 82.68 81.43 71.1 74.02 68.45 78.85 82.9 52.13 20.86 67.38
LTR Finder 0.17 022 0.1 002 0 0 0 0 0 0 0.05
PILER 0.51 38.05 36.33 37.46 46.6 10.24 28.27 25.63 41.94 23.56 28.66
Repeat Masker 51.66 58.1 31.1 43.88 51.71 55.63 57.66 57.14 42.23 4.62 45.28

The Rapidminerﬁ software which uses Weka [16] algorithm implementations was
used to build the classifiers. The algorithms considered: Weka’s implementation of Neu-
ral networks using 500 training cycles and 0.3 of learning rate; Bayes Network; Ran-
dom Forest classifier to build an ensemble of decision trees; Decision Trees based on the
C4.5 algorithm. The classifiers performance was estimated by measuring the accuracy
in a 10 fold cross-validation procedure.

The classification of a potential TE candidate as a TE or not is a typical classifica-
tion problem. In these terms, we used a data set containing 325000 examples, equally
distributed in terms of TE types and in terms of being real TEs or false positives.
The features used as the input for the models were the discretized TE length (using
Equal-depth Binning in 50 categories), the TE type, the tool that made the prediction
(FOUNDTOOL), and a IS TE feature as the class. The IS TE feature is a boolean which
indicates whether a given example is or is not a TE. Table 3] shows the results obtained
for the different ML algorithms considered. The best results were achieved with Deci-
sion Trees with an average accuracy of 98%, although the difference to Random Forest
is not significantly different.

Table 3. TE detection: accuracy using different classification algorithms

Algorithm  Accuracy (%)
Neural Network 69.01
Naive Bayes Net 96.30
Random Forest 98.90

Decision Trees 98.92

3 http://www.rapidminer.com/
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The sensitivity of the tools for the level of mutations present in the sequences ana-
lyzed was also a theme that we wanted to clarify. The results (not shown) suggest that
BLAT and PILER tools are influenced by mutations present in the DNA sequences. On
the other hand, the performance of Censor, LTR Finder and RepeatMasker were not
affected significantly by the level of mutations.

Finding the Best TE Annotation Tool. Which tool minimizes the predicted location
error for a given TE candidate? To answer this question we used a set of 129 198 exam-
ples of TE elements equally distributed between the different TE classes. “bestTool” is
the class label and we have used the following features: TE type; set of tools that have
detected the TE in stepl; number of such tools that have detected the TE in step 1; and
the class of the tools that have detected the TE in step 1. The bestTool feature is the
name of the tool with the minimum location error.

We tested different model generation algorithms, all subjected to a 10 fold cross-
validation process, to assess their performance. In Table [] the results obtained with the
different learner algorithms are compared. Again, the model with highest accuracy was
produced with Decision Trees. Table[3lpresents the confusion matrix of this model. This
classifier has a high accuracy and can perform well with the tested artificial data. It is
also worth to mention that the LTR Finder tool was never used in this context as the
location error performance of this tool is considerable lower than the others.

Applying machine learning to construct classifiers in the TE detection scope
can further improve the accuracy of TE detection and annotation. In all the different
problems, the approach that produced best results was Decision Trees (W-J48 Weka
implementation).

Table 4. TE annotation: Classification algorithms model comparison. ZeroR measures the major-
ity class percentage and is used as a base line value.

Algorithm  Accuracy (%)
Ridor 96.43 (0.10)
Naive Bayes Net 96.37 (0.18)
Random Forest  96.56 (0.14)
Decision Trees  96.56 (0.14)

ZeroR 76.55

5 Conclusions

In this paper we have assessed a set of computational tools for detecting Transpos-
able Elements. The results obtained suggest that both Censor and RepeatMasker are
the most accurate tools in detecting TEs. In a particular category, Politron TEs, the
PILER tool obtained the best results. The LTR Finder tool has achieved, by far, the
worse results in this comparison with very low accuracy in the detection of TE. BLAT
and RepeatMasker had some problems detecting DIR TEs. On the other hand, Censor
scored exceptionally well in this TE category. Politron TEs were also a problem for
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Table 5. TE annotation: confusion matrix for the Decision Trees model

True True True True True Class
BLAT Censor LTR Finder PILER RepeatMasker Prediction

Predicted BLAT 98902 0 0 0 0 100.0 %
Predicted Censor 1911 23427 0 0 0 92.5 %
Predicted LTR Finder 1 0 0 0 4 0.0 %
Predicted PILER 140 71 0 0 85 0.0 %
Predicted RepeatMasker 834 1395 0 0 2428 52.1 %

Class Recall 97.2 % 94.1 % 0.0 % 0.0 % 96.6 %

tools like RepeatMasker, Censor and BLAT. In this case, PILER performed especially
well, outscoring all the other tools.

In terms of inference of TE boundaries, except for the LTR Finder performance, all
the tools performed acceptably well. The biggest issues occurred on the detection of the
boundaries of Politron TEs and PILER had some trouble in detecting DIR TEs.

Using different TE tools’ predictions from simulated data sets, we generated two
classifiers that predict: i) if a given TE candidate is a TE or not, and ii) if it was a TE,
predict which tool to use to minimize the boundaries error of that TE.

All in all, we presented evidence that ML models can be used to boost the detec-
tion and annotation of existing TE computational tools. Further research is needed to
confirm the results in real data.
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