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Abstract. Adding to the modal description of transition structures the
ability to refer to specific states, hybrid(ised) logics provide an inter-
esting framework for the specification of reconfigurable systems. The
qualifier ‘hybrid(ised)’ refers to a generic method of developing, on top
of whatever specification logic is used to model software configurations,
the elements of an hybrid language, including nominals and modalities.
In such a context, this paper shows how a calculus for a hybrid(ised)
logic can be generated from a calculus of the base logic and that, more-
over, it preserves soundness and completeness. A second contribution
establishes that hybridising a decidable logic also gives rise to a decid-
able hybrid(ised) one. These results pave the way to the development of
dedicated proof tools for such logics used in the design of reconfigurable
systems.
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1 Introduction

1.1 Motivation

The need to master ubiquitous and increasingly complex software systems, often
of a safety–critical nature, has brought proof and verification to a central place in
Computer Science and Software Engineering. Logics, as formal reasoning frame-
works, provide tools for a rigorous specification (and analysis) of software sys-
tems, as opposed to more conventional practices in software development which
are often pre-scientific and unable to prove the absence of error designs.

Ideally, the working software engineer seeks for logics that can effectively
provide “yes–or–no” answers to queries regarding properties of the system (i.e.
decidable logics), as well as logics with a calculus providing enough syntactic
rules to derive falsehood from any false statement (i.e. a complete calculus).
The engineer also looks for logics with the right expressive power to specify the
system at hand, a job made difficult by the complex and heterogeneous nature
of current software systems which typically require a number of different logics
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to be suitably specified. For example, some form of equational logic may be used
for data type specifications, while transitional behaviour my resort to a modal or
temporal logic and fuzzy requirements may become in order to express contex-
tual constraints. Actually, this justifies the quest for methodologies in which a
specification framework can be tailored by combining whichever logics are found
suitable to deal with the different nature of the requirements in presence. As
Goguen and Meseguer put it in a landmark paper [11],

“The right way to combine various programming paradigms is to
discover their underlying logics, combine them, and then base a
language upon the combined logic.”
This line of research has been particularly active for the last twenty years.

Finger and Gabbay, for example, showed in [9] how to add a temporal dimension
to an arbitrary logic, and proved that decidability and completeness is preserved
along this process. Baltazar [2] did similar work but with respect to adding a
probabilistic dimension. Other, similar results include e.g. [6], [7], as well as a
hybridisation method [14], in whose development the current authors have been
involved, and constitutes the starting point of the work reported in the sequel.

1.2 Context

Essentially hybridisation turns a given logic, defined as an institution, into a
hybrid logic, a brand of modal logics that adds to the modal description of
transition structures the ability to refer to specific states (cf. [1,3]). This paves
the way to an expressive framework, proposed in [13], for the specification of
reconfigurable systems, i.e., systems which may evolve through different execu-
tion modes, or configurations, along their lifetime. Specification proceeds in two
steps:

– globally the system’s dynamics is represented by a transition structure
described in a hybrid language, whose states correspond to possible
configurations;

– locally each state is endowed with a structure modelling the specification of
the associated configuration.

The logic used locally, i.e. the one to be hybridised, depends on the appli-
cation requirements. Typical candidates are equational, partial algebra or first-
order logic (FOL), but one may equally resort to multivalued logics or even to
hybrid logic itself equipping, in the last case, each state with another (local)
transition system. Verification resorts to a parametrised translation to FOL
(developed in [14] and [15]), but at the cost of losing decidability and adding
extra complexity.

The generic character of this hybridisation process is achieved through its
rendering in the context of institution theory [10]. Such a theory formalises the
essence of what a logical system actually is, by encompassing syntax, semantics
and satisfaction. However, its classical definition, the one in which the hybridi-
sation method is based, does not include an abstract structure to represent a
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logic calculus. The problem was addressed in [8] with the introduction of π–
institutions, and, more recently, in [5] with the notion of an institution with
proofs, a more general version of the previous work.

1.3 Contributions and Roadmap

This paper starts by recasting the hybridisation method in the theory of institu-
tions with proofs, which makes possible the systematic generation of a calculus
when hybridising a given logic.

Then, we prove that, under certain conditions, thismethod preserves decidabil-
ity, and furthermore that the generated calculus is sound and complete whenever
the one corresponding to the base logic is. Those are the paper’s main contribu-
tions. Besides their theoretical relevance, from a pragmatic point of view they pave
the way to the development of effective verification algorithms.

The paper is organised as follows. Institutions with proofs are briefly reviewed
in Section 2. Then, Section 3 introduces the generation of an hybrid calculus from
a base one. Section 4 establishes decidability and completeness. Finally, Section
5 concludes the paper and hints at future lines of research.

2 Background

We first recall the notion of an institution [10]. As already mentioned, it for-
malises the essence of a logical system, encompassing syntax, semantics and
satisfaction. Put forward by J. Goguen and R. Burstall in the late seventies,
its original aim was to develop as much as Computer Science as possible in a
general uniform way independently of particular logical systems. This has now
been achieved to an extent even greater than originally thought, with the theory
of institutions becoming the most fundamental mathematical theory underly-
ing algebraic specification methods, and also increasingly used in other areas of
Computer Science. Formally,

Definition 1. An institution is a tuple (SignI ,SenI ,ModI , (|=I
Σ)Σ∈|SignI |),

where:

– SignI is a category whose objects are signatures and arrows signature mor-
phisms,

– SenI : SignI → Set, is a functor that, for each signature Σ ∈ |SignI |,
returns a set of sentences over Σ,

– ModI : (SignI)op → Cat, is a functor that, for each signature Σ ∈ |SignI |,
returns a category whose objects are models over Σ,

– |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ), or simply |=, if the context is clear, is a sat-

isfaction relation such that, for each signature morphism ϕ : Σ → Σ′,

ModI(ϕ)(M ′) |=I
Σ ρ iff M ′ |=I

Σ′ SenI(ϕ)(ρ), for any
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M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ). Graphically,

Σ

ϕ

!!

ModI(Σ)
|=I

Σ
SenI(Σ)

SenI(ϕ)
!!

Σ′ ModI(Σ′)

ModI(ϕ)

""

|=I
Σ′

SenI(Σ′)

Intuitively, this property means that satisfaction is preserved under change of
notation.

Definition 2. Consider an institution I and signature Σ ∈ |SignI |. We say
that a sentence ρ ∈ SenI(Σ) is Σ–valid (or simply, valid) if for each model
M ∈ |ModI(Σ)|, M |=I

Σ ρ. Usually we prefix such sentences by |=I
Σ or, simply

by |=I or just |=.

Definition 3. An institution I has the negation property if, for any signature
Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ), there is a sentence, ¬ρ ∈ SenI(Σ),
such that for any model M ∈ |ModI(Σ)|, M |=I

Σ ρ iff M ̸|=I
Σ ¬ρ.

If this property holds, satisfiability of sentences may be rephrased as follows,

Definition 4. Consider institution I with the negation property and a signature
Σ ∈ |SignI |. For any sentence ρ ∈ SenI(Σ),

ρ is Σ–unsatisfiable iff ¬ρ is Σ–valid.

Similarly,

Definition 5. An institution I has the explicit satisfaction property, if for any
signature Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ), satisfiability of ρ entails the
existence of a model M ∈ |ModI(Σ)| such that M |=I

Σ ρ.

Note that this last property holds in the most common logics used in speci-
fication, e.g., propositional, fuzzy, equational, partial and first-order.

Definition 6. An institution I has the conjunction property if, for any sig-
nature Σ ∈ |SignI | and sentences ρ, ρ′ ∈ SenI(Σ), there is sentence ρ ∧ ρ′ ∈
SenI(Σ), such that for any model M ∈ |ModI(Σ)|, M |=I

Σ ρ ∧ ρ′ iff M |=I
Σ ρ

and M |=I
Σ ρ′

Note that with the conjunction property we are able to define a sentence (ρ∧
¬ρ) ∈ SenI(Σ), denoted by ⊥, that is not satisfied by any model of |ModI(Σ)|.

An institution for which both the negation and conjunction properties hold,
is said to have the typical boolean connectives.

In order to better grasp this rather abstract concept of an institution let us
analyse some typical examples.

Example 1. Many sorted first order logic (FOL)
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– Signatures. SignFOL is a category whose objects are triples (S, F, P ), con-
sisting of a set of sort symbols S, a family, F = (Fw→s)w∈S∗,s∈S , of function
symbols indexed by their arity, and a family, P = (Pw)w∈S∗ , of relational
symbols also indexed by their arity.
A signature morphism in this category is a triple (ϕst,ϕop,ϕrl) : (S, F, P ) →
(S′, F ′, P ′) such that if σ ∈ Fw→s, then ϕop(σ) ∈ F ′

ϕst(w)→ϕst(s)
, and if

π ∈ Pw then ϕrl(π) ∈ P ′
ϕst(w).

– Sentences. For each signature object (S, F, P ) ∈ |SignFOL|,
SenFOL(S, F, P ) is the smallest set generated by:

ρ ∋ ¬ρ | ρ ∧ ρ | t = t | π(X) | ∀x : s . ρ′

where t is a term of sorts with the syntactic structure σ(X) for σ ∈ Fw→s

and X a list of terms compatible with the arity of σ. π ∈ Pw and X is a list of
terms compatible with the arity of π. Finally, ρ′ ∈ SenFOL(S, F *{x}→s, P ).
SenI(ϕ), for ϕ a signature morphism, is a function that, given a sentence
ρ ∈ SenI(S, F, P ), replaces the signature symbols in ρ under the mapping
corresponding to ϕ.

– Models. For each signature (S, F, P ) ∈ |SignFOL|,ModFOL(S, F, P ) is the
category with only identity arrows and whose objects are models with a
carrier set |Ms|, for each s ∈ S; a function Mσ : |Mw| → |Ms|, for each
σw→s ∈ Fw→s; a relation Mπ ⊆ |Mw|, for each π ∈ Pw.

– Satisfaction. Satisfaction of sentences by models is the usual Tarskian
satisfaction.

Example 2. Equational logic (EQ)
The institution EQ is the sub-institution of FOL in which sentences are

restricted to those of the type ∀x : s . t = t′

Example 3. Propositional logic (PL)
Institution PL is the sub–institution of FOL in which signatures with no

empty set of sorts are discarded.

As seen above, no notion of a proof system is considered in the definition of
an institution. This is a limitation if one is interested in logical systems with
calculi, as is the case in this paper which aims at introducing the systematic
generation of calculi for hybridised logics. To overcome this we resort to the
following extended definition of an institution with proofs [5].

Definition 7. An institution with proofs adds to the original definition a functor
Prf I : SignI → Cat such that, for each Σ ∈ |SignI |, Prf(Σ) (called the
category of Σ–proofs) has subsets of SenI(Σ) ( i.e., |Prf(Σ)| = |P

(
SenI(Σ)

)
| )

as objects, and the corresponding proofs as arrows. The latter are preserved along
signature morphisms. In addition, for A,B ∈ |PrfI(Σ)|, if A ⊆ B then there
is an arrow B −→ A; if A ∩ B = ∅ and there is Γ ∈ |PrfI(Σ)| such that
p : Γ −→ A and q : Γ −→ B, then there is a unique proof ⟨p, q⟩ making the
following diagram to commute
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A (A * B)
i2 ##i1$$ B

Γ

p

%%●●●●●●●●●●
q

&&✇✇✇✇✇✇✇✇✇✇
⟨ p,q ⟩

""

For the sake of simplicity, when a singleton set of sentences is present in a
proof arrow, we may drop the curly brackets. Note that the restrictions imposed
to the proof arrows oblige Prf I to follow the basic properties of a proof system.
In particular, we have

1. Reflexivity (if A ∈ Γ , then Γ ⊢ A) follows from the fact that {A} ⊆ Γ and
therefore Γ −→ A.

2. Monotonicity (if Γ ⊢ A and Γ ⊆ ∆ then ∆ ⊢ A), follows from composition of
proofs, where ∆ −→ Γ is given by inclusion and Γ −→ A by the assumption.

3. Transitivity (if Γ ⊢ A and {∆, A} ⊢ B then Γ ∪ ∆ ⊢ B), follows from the
product of disjoint sets, reflexivity and monotonicity,

Γ ## A ## A′

(Γ ∪ ∆)

&&✇✇✇✇✇✇✇✇✇
##

''❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

∆ * A′ ##

""

!!

(∆ ∪ A) ## B

∆

where A′ = A − (A ∩ ∆) ( A′ ⊆ A and (∆ ∪ A) ⊆ (∆ ∪ A′) ).

Note that functor Prf I distinguishes different proofs between the same pair
of objects, as opposed to entailment systems1. In this work, however, we restrict
ourselves to entailment systems in which Prf I(Σ) has at most one arrow for
each pair of objects, i.e. that Prf I(Σ) is thin. Such restriction makes showing
the uniqueness of ⟨p, q⟩ trivial.

Definition 8. Let I be an institution with proof system Prf I . We say that Prf I

is sound if, for any signature Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ),

if arrow ∅ −→ ρ is in Prf I(Σ) then |=I ρ.

Definition 9. Let I be an institution with proof system Prf I .We say that Prf I

is complete if, for any signature Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ),

if |=I ρ then arrow ∅ −→ ρ is in Prf I(Σ)

Hence, soundness and completeness of Prf I entails the equivalence, for any
signature Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ),
1 Typically, in an entailment system Γ ⊢ A means that Γ derives (or entails) A.
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|=I ρ iff ∅ −→ ρ is in Prf I(Σ)

We can now show that

Theorem 1. If an institution I has classical boolean connectives, and a sound
and complete calculus Prf I , with the reductio ad absurdum property, then, for
any signature, Σ ∈ |SignI |, and sentence, ρ ∈ SenI(Σ),

ρ is satisfiable iff ρ −→ ⊥ is not in Prf I(Σ)

Proof

|=I ρ iff ∅ −→ ρ is in Prf I(Σ)

⇔ { defn. of satisfiability }

¬ρ is unsat iff ∅ −→ ρ is in Prf I(Σ)

⇔ { soundness, completeness of PrfI(Σ) and r.a.a}

¬ρ is unsat iff ¬ρ −→ ⊥ is in Prf I(Σ)

⇔ { defn. of negation }

ρ is unsat iff ρ −→ ⊥ is in Prf I(Σ)

⇔ { de Morgan’s law}

ρ is sat iff ρ −→ ⊥ is not in Prf I(Σ)

Corollary 1. In the context of theorem 1, if I has the explicit satisfaction prop-
erty, then

ρ is sat iff ρ −→ ⊥ is not in Prf I(Σ)

⇔ { explicit satisfaction property }

ρ has a model iff ρ −→ ⊥ is not in Prf I(Σ)

This last result will be essential in the sequel for proving completeness of
hybridised logics.

3 Hybridisation of Logics and Their Calculi

As mentioned before, the existence of software products that are built and main-
tained with respect to requirements of different nature calls for techniques that
favour combination of logics. Hybridisation [14] was born in this context. It
aims at providing a framework to specify reconfigurable systems, whose execu-
tion modes are described by whatever logic the engineer finds suitable, whereas
the transition structure is expressed in a hybrid language.
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From a point of view of verification, however, the engineer is not only inter-
ested in having a hybridised logic, but also, in a very pragmatic way, in its
calculus. This section addresses such issue. It starts by revisiting hybridisation
and then, through the notion of institutions with proofs, it shows how to lift the
calculus in the base logic to its hybridised counterpart.

3.1 Hybridisation Revisited

Definition 10. The category SignH is the category Set×Set whose objects are
pairs ( Nom,Λ ) with Nom denoting a set of nominal symbols and Λ, a set of
modality symbols.

Definition 11. Provided an institution I = (SignI , SenI ,ModI , |=I) the
hybridised version HI = (SignHI , SenHI ,ModHI , |=HI) is defined as follows,

– SignHI = SignH × SignI ,
– given a signature (∆,Σ) ∈ |SignHI |, SenHI(∆,Σ) is the least set generated

by

ρ ∋ ¬¬ρ | ρ∧ρ | i |@iρ | ⟨λ⟩ρ | ∀x ρ′ | ψ |A ρ

for i a nominal, λ a modality, ψ ∈ SenI(Σ) and ρ′ ∈ SenHI(∆ * {x},Σ)
where x is a nominal. We use non standard boolean connectives (¬¬,∧)2 in
order to distinguish them from the boolean connectives that the base logic
may have.

– given a signature (∆,Σ) ∈ |SignHI |, a model M ∈ |ModHI(∆,Σ)| is a triple
(W,R,m) such that,
• W is a non–empty set of worlds,
• R is a family of relational symbols indexed by the modality symbols, such

that for each λ ∈ Λ ( where ∆ = (−,Λ) ), Rλ ⊆ W × W ,
• and m : W → |ModI(Σ)|,

and for each i ∈ Nom, (W,R,m)i is interpreted as a world in W .
– given a signature (∆,Σ) ∈ |SignI |, a model M = (W,R,m)

∈ |ModI(∆,Σ)| and a sentence ρ ∈ SenHI(∆,Σ), the satisfaction relation
is defined as,

M |=HI
(∆,Σ) ρ iff M |=w ρ, for all w ∈ W

where,
M |=w ¬¬ρ iff M ̸|=w ρ
M |=w ρ∧ρ′ iff M |=w ρ and M |=w ρ′

M |=w i iff Mi = w
M |=w @iρ iff M |=Mi ρ
M |=w ⟨λ⟩ρ iff there is some w′ ∈ W such that (w,w′) ∈ Rλ and M |=w′

ρ
M |=w Aρ iff M |=w ∀x@xρ
M |=w ψ iff m(w) |=I

Σ ψ
M |=w ∀x ρ iff for all M ′, M ′ |= ρ

2 Implication (⇒) and biimplication (⇔) are built in the usual way.
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for (W,R,m) = M ′ ∈ |ModHI(∆ * {x},Σ)| a model expansion of M , with the
only difference between them being the interpretation of nominal x: while it is
defined in M ′, in M it is not.

Note that sentence ρ being satisfiable means that there is a model (W,R,m)
= M ∈ |ModHI(∆,Σ)| such that M |=w ρ for some w ∈ W . Hence, hybridised
logics do not have the explicit satisfaction property. One can, however, redefine
the satisfaction relation in the hybridisation method to,

M |=HI
(∆,Σ) ρ iff M |=w ρ, for some w ∈ W

which then provides to logics hybridised in this alternative way the explicit
satisfaction property.

A weak hybridisation of an institution I, denoted by H′I, is obtained as HI,
but the omission of syntax constructor ∀x ρ. The following decidability results
are formulated with respect to weak hybridisation.

3.2 Hybridising a Calculus

We now present the hybridisation of calculi in the context of institutions with
proofs. Let us assume that I has a proof system, i.e., that Prf I is well defined,
and that, in particular, it is an entailment system, i.e., PrfI only defines thin
categories. Then we define PrfHI as follows:

For any
(
(Nom,Λ),Σ

)
∈ |SignHI |,

1. for any ρ ∈ SenI(Σ), if ∅ −→ ρ is in Prf I(Σ) then
∅ −→ ρ is in PrfHI((Nom,Λ),Σ),

2. for any nominal i, j ∈ Nom, modality λ ∈ Λ, ρ, ρ′ ∈ SenHI
(
(Nom,Λ),Σ

)
,

proof arrows in Table 1 are in PrfHI((Nom,Λ),Σ)
3. finally, PrfHI((Nom,Λ),Σ) has all the inclusion proof arrows and for each

A,B,Γ ∈ |PrfHI((Nom,Λ),Σ)| if Γ −→ A, Γ −→ B then Γ −→ A ∪ B.

PrfHI is maintained thin in its construction process in order to have it as
an entailment system.

4 Decidability and Completeness of Hybridised Logics

Decidability and completeness are properties that one usually looks for when
defining a new logic. From a Computer Science perspective, they are essential
as a basis for tool-supported proofs. Formally,

Definition 12. Decidability of an institution I means that, for each signature
Σ ∈ |SignI | and sentence ρ ∈ SenI(Σ), there is an effective algorithm able to
decide whether ρ is valid.

After some preliminary work, we address first this definition in the context
of hybridised logics.
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Table 1. Axioms and rules for PrfHI from [3]

Axioms
(CT) All substitution instances of classical tautologies
(Dist) ∅ −→ @i(ρ ⇒ ρ′) ⇔ (@iρ ⇒ @iρ

′)
(⊥) ∅ −→ @i⊥ ⇒ ⊥
(Scope) ∅ −→ @i@jρ ⇒ @jρ
(Ref) ∅ −→ @ii
(Intro) ∅ −→ (i∧ρ) ⇒ @iρ
(⊓*E) ∅ −→ ([λ]ρ∧⟨λ⟩i) ⇒ @iρ
(∀E) ∅ −→ ∀x ρ ⇒ ρ[i/x]
Rules
(MP) if ∅ −→ ρ and ρ −→ ρ′ then ∅ −→ ρ′

(N@) if ∅ −→ ρ then ∅ −→ @iρ
(Name) if i does not occur free in ρ and ∅ −→ @iρ then ∅ −→ ρ
(⊓*I) if i does not occur free in ρ, ρ′ and ∅ −→ (ρ ∧ ⟨λ⟩i) ⇒ @iρ

′

then ∅ −→ ρ ⇒ [λ]ρ′

(∀I) if i does not occur free in ∀x ρ′, ρ and ∅ −→ ρ ⇒ ρ′[i/x]
∅ −→ ρ ⇒ ∀x ρ′

4.1 Preliminaries

Recall that in the sequel we assume that the base institution I has the classical
boolean connectives and the explicit satisfaction property. Furthermore, it has a
calculus, Prf I , is sound, complete and has the reductio ad absurdum property.

Notation 1. Consider (∆,Σ) ∈ |SignHI | and ρ ∈ SenHI(∆,Σ). Let Bρ =
{ψ1, . . . ,ψn} to denote the set of all maximal sentences, ψi ∈ SenI(Σ), occurring
in ρ. Then, the set of base sentences, Ωρ, denotes the least set such that for each
a ∈ 2Bρ ,

(χ1 ∧ · · · ∧ χn) ∈ Ωρ ⊆ SenI(Σ)

where

χi =

{
ψi if ψi ∈ a

¬ψi if ψi ̸∈ a

Whenever suitable we abbreviate (χ1∧ · · ·∧χn) to χ, and refer to components
of χ as χi. Moreover, when no confusion arises, we will also consider χ as the
set of sentences {χ1, . . . ,χn}.

Lemma 1. For any model M ∈ |ModI(Σ)|, M satisfies exactly one of the sen-
tences in Ωρ.

Proof. Suppose that M fails to satisfy a sentence χ ∈ Ωρ. This only happens
when at least one member of χ is not satisfied by M . By definition of Ωρ we
know that Ωρ has another sentence χ′ which negates all the failed components
in χ and therefore M must satisfy χ′.
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Suppose that M satisfies a sentence χ ∈ Ωρ. Clearly, by the definition of
Ωρ any other sentence χ′ ∈ Ωρ must negate at least one of the components of
χ. Since M cannot satisfy a component and its negation, χ′ cannot be satisfied
by M .

Notation 2. If Ωρ is not empty, Lemma 1 allows the use of notation ΩM
ρ to

denote the sentence in Ωρ which is satisfied by a model M ∈ |ModI(Σ)|.

Next, in order to take advantage of the well known decidability and complete-
ness results for hybrid propositional logic, HPL, we define a function between
HI and HPL sentences,

Definition 13. Consider a signature (∆,Σ) ∈ |SenHI |, a sentence ρ ∈ SenHI

(∆,Σ), and a PL signature Prop that, for each ψi ∈ SenI(Σ), has a proposi-
tional symbol πψi . Then a function
σ : SenHI(∆,Σ) → SenHPL(∆, P rop) is defined to replace the base sentences
that occur in ρ and Bρ by propositions from Prop. Formally,

σ(¬¬ρ) = ¬¬σ(ρ)
σ(ρ∧ρ′) = σ(ρ)∧σ(ρ′)
σ(i) = i
σ(@iρ) = @iσ(ρ)
σ(⟨λ⟩ρ) = ⟨λ⟩σ(ρ)
σ(∀x ρ) = ∀x σ(ρ)
σ(Aρ) = A σ(ρ)
σ(ψi) = πψi

Definition 14. For each χ ∈ Ωρ we define function σ′ : χ → SenPL(Prop)
such that,

σ′(χi) =

{
¬πψi if χi = ¬ψi

πψi if χi = ψi

and denote by σ′[χ] the result of applying σ′ to each member of χ.

Note that both σ and σ′ are injective.

4.2 Decidability

Lemma 2. Consider a signature (∆,Σ) ∈ |SignHI | and ρ ∈ SenHI(∆,Σ). For
any χ ∈ Ωρ, if χ is satisfiable σ′[χ] is also satisfiable.

Proof. Unsatisfaction of σ′[χ] may only come from the following cases:

1. A component of σ′[χ] is unsatisfiable,
2. two components of σ′[χ] contradict each other.

A component in σ′[χ] is πψi or ¬πψi , hence the first case never happens. If
two elements contradict each other, that is, if one is πψi and the other ¬πψi then
surely χ has elements ψi and ¬ψi, which renders it unsatisfiable.
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Theorem 2. Consider signature (∆,Σ) ∈ |SignHI | and ρ ∈ SenHI(∆,Σ). If ρ
is satisfiable, σ(ρ) is also satisfiable.

Proof. If ρ is satisfiable we have a model M = (W,R,m) ∈ |ModHI(∆,Σ)| such
that M |=w ρ for some w ∈ W . Through this assumption and Lemma 2, we
define a model (W,R,m′) ∈ |ModHPL(∆,Σ)| as follows: for any w ∈ W , m′(w)
is a model satisfying σ′[Ωm(w)

ρ ] (recall that Lemma 2 proves that σ′[Ωm(w)
ρ ] is

satisfiable).
It remains to show that (W,R,m′) |=w σ(ρ), for some w ∈ W . Since models

(W,R,m) and (W,R,m′) have the same Kripke structure and ρ,σ(ρ) only differ
in the base sentences, we just need to check that for all χ ∈ Ωρ, m(w) |= χ
entails that m′(w) |= σ′[χ] for any w ∈ W . Actually, this is a direct consequence
of condition, m(w) |= Ωm(w)

ρ entails that m′(w) |= σ′[Ωm(w)
ρ ] for all w ∈ W ,

which is freely given by the definition of (W,R,m′).

Now, we want to show the converse of Theorem 2. For this we need yet another
definition to cater for the “preservation” of information with respect to satisfia-
bility of the base sentences; information that is “lost” by σ(ρ). Thus,

Definition 15. Let SatI be an effective decision procedure of I, and
∨

denote
the disjunction operator, built from ∧,¬¬. Then define

η(ρ) =

{∨
{χ ∈ Ωρ | SatI(χ) is “unsat” }, if Bρ ̸= ∅

⊥, otherwise

Corollary 2. It is clear that satisfiability of ρ entails satisfiability of ρ∧A¬¬η(ρ),
which in turn, by Theorem 2, entails satisfiability of σ

(
ρ∧ A¬¬η(ρ)

)
.

Lemma 3. Consider a model (W,R,m) ∈ |ModHPL(∆, P rop)| such that
(W,R,m) |= σ

(
ρ∧ A¬¬η(ρ)

)
. For any χ ∈ Ωρ, if σ′[χ] is satisfied by a model in

img(m), χ is satisfiable.

Proof. If χ is unsatisfiable then, by definition of η, occurs as one of the literals
in η(ρ), hence no model in img(m) may satisfy it.

Theorem 3. Consider signature (∆,Σ) ∈ |SignHI | and ρ ∈ SenHI(∆,Σ). If
σ(ρ∧ A¬¬η(ρ)) is satisfiable, then ρ is satisfiable.

Proof. If σ(ρ ∧ A¬¬η(ρ)) is satisfiable we have a model M = (W,R,m) ∈
|ModHPL(∆, P rop)| such that M |=w σ(ρ∧A¬¬η(ρ)) for some w ∈ W . Through
this assumption, and by Lemma 3, we define a model (W,R,m′) ∈ |ModHI(∆,Σ)|
as follows: for any w ∈ W , m′(w) is a model satisfying χ where σ′[χ] = σ′[Ωm(w)

ρ ]
It remains to show that (W,R,m′) |=w ρ for some w ∈ W . Since models

(W,R,m) and (W,R,m′) have the same Kripke structure satisfied by the sen-
tences ρ, σ(ρ∧A¬¬η(ρ)), we just have to show that for all χ ∈ Ωρ, m(w) |= σ′[χ]
entails that m′(w) |= χ for any w ∈ W . Actually, this is a direct consequence of
condition, m(w) |= σ′[Ωm(w)

ρ ] entails m′(w) |= Ωm(w)
ρ , for all w ∈ W , which is

given by the definition of (W,R,m′).
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Corollary 3. From Corollary 2 and Theorem 3 we have that

ρ is satisfiable iff σ(ρ∧ A¬¬η(ρ)) is satisfiable.

Then, since H′PL was already proved to be decidable [12], we may use an
effective decision procedure of H′PL to check for satisfiability of sentences writ-
ten in H′I. This leads to the expected result

Corollary 4. If I is decidable then H′I is also decidable.

Note that the proof of Theorem 3 paves the way for an example decision
algorithm, that is, an algorithm able not only to answer “yes” or “no” to the
question “Is ρ satisfiable?”, but also to build a model that satisfies sentence ρ,
if it exists. Technically, to construct such an algorithm one also needs to have
example decision algorithms for both I and H′PL. The latter has at least one
prover that meets this requirement [12]. Then, as indicated in the proof, through
a H′PL’s decision procedure, one extracts a Kripke frame for ρ in which suitable
models of I are “attached” given its example decision algorithm for I.

Finally, note that the decision algorithm forH′I, conceptualised in Theorem 3,
maybe computationally hard. Indeed, in order to define η(ρ) the decision algorithm
for I must be executed 2n times where n = |Bρ|.

In addition, if we want the algorithm to give example models, the decision
procedure for I must also be executed a number of times that can reach the
number of worlds in the model built by the decision procedure for H′PL.

4.3 Soundness and Completeness

In this section we focus on the entailment system for HI, i.e., on functor PrfHI ,
to show that the rules in PrfHI are both sound and complete. Note that
for hybridised logics equipped with the corresponding generated proof systems
PrfHI , proving soundness and completeness boils down to show the equivalence,

ρ is satisfiable iff ρ −→ ⊥ is not in PrfHI(∆,Σ)

Recall also that it is assumed that the base institution has the typical boolean
connectives and the explicit satisfaction property, as well as that its proof system,
Prf I , is sound, complete and has the reductio ad absurdum property.

Theorem 4. If Prf I is sound, then PrfHI is also sound.

Proof. Consider signature (∆,Σ) ∈ |SignHI | and ρ ∈ SenHI(∆,Σ).
If PrfHI is sound then sentence ρ, being satisfiable means that there is no
proof arrow ρ −→ ⊥ in PrfHI(∆,Σ). If such an arrow exists, however, it must
come from some of the conditions imposed to PrfHI(∆,Σ), i.e., some of these
conditions must be unsound. We check each one:

1. the condition that proof arrows ∅ −→ ρ in PrfI(Σ) come to
PrfHI(∆,Σ) is, by assumption, sound.



Completeness and Decidability Results for Hybrid(ised) Logics 159

2. the axioms and proof rules from Table 1 were already proved to be sound
(cf. [3]).

3. composition, inclusion and product rules are, by definition, sound.

The proof of completeness is more complex. For this we resort to a procedure
similar to the one used for proving decidability.

Theorem 5. Consider a signature (∆,Σ) ∈ |SignHI | and ρ ∈ SenHI(∆,Σ). If
there is no arrow ρ −→ ⊥ in PrfHI(∆,Σ) then there is also no arrow σ(ρ) −→
⊥ in PrfHPL(∆, P rop),

Proof. First notice that rules in Table 1 do not distinguish ρ from σ(ρ), that is,
any such rule may be applied to both sentences. Then observe that, since Table
1 contains all classical tautologies, PrfPL does not bring new rules to PrfHPL

and therefore rules in PrfHPL are also in PrfHI . Both remarks entail that if
there are rules in PrfHPL that can generate arrow σ(ρ) −→ ⊥, then the same
set of rules (also present in PrfHI) can surely generate it there.

Next, we show the converse of Theorem 5 holds as well. For this we define a
function to play a role similar to that played by η in sub-section 4.2.

Definition 16. Given a signature (∆,Σ) ∈ |SignHI | and ρ ∈ SenHI(∆,Σ) we
define,

η′(ρ) =

{∨
{χ ∈ Ωρ| χ −→ ⊥ is in Prf I}, if Bρ ̸= ∅

⊥, otherwise

Corollary 5. Clearly if there is no arrow ρ −→ ⊥ in PrfHI(∆,Σ) then there
is also no arrow (ρ∧ A¬¬η′(ρ)) −→ ⊥ in PrfHI(∆,Σ).

Lemma 4. Consider a model (W,R,m) ∈ |ModHPL(∆, P rop)| such that
(W,R,m) |= σ

(
ρ∧ A¬¬η′(ρ)

)
. For any χ ∈ Ωρ, if σ′[χ] is satisfied by a model

member of img(m), χ is satisfiable.

Proof. If χ is unsatisfiable then, by definition of η′ and completeness of Prf I ,
occurs as one of the literals in η′(ρ), hence no model member of img(m) may
satisfy it.

Theorem 6. If Prf I is complete then PrfHI is also complete.

Proof. We want to prove that given a signature (∆,Σ) ∈ |SignHI | and a sentence
ρ ∈ SenHI(∆,Σ), if no arrow ρ −→ ⊥ exists in PrfHI(∆,Σ) then ρ is satisfiable.

Hence, let us assume that there is no arrow ρ −→ ⊥ in PrfHI(∆,Σ), which
by Corollary 5, entails that there is no proof arrow σ(ρ∧ A¬¬η′(ρ)) −→ ⊥ in
PrfHPL(∆, P rop) and therefore means that σ(ρ∧ A¬¬η′(ρ)) is satisfiable. In
other words, we have a model M = (W,R,m) ∈ |ModHPL(∆, P rop)| such that
M |=w σ(ρ∧ A¬¬η′(ρ)) for some w ∈ W . Then, by Lemma 4, we are able to
define a model (W,R,m′) ∈ |ModHI(∆,Σ)|, in which, for any w ∈ W , m′(w) is
a model for χ where σ′[χ] = σ′[Ωm(w)

ρ ].
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It remains to show that (W,R,m′) |=w ρ for some w ∈ W . Since models
(W,R,m) and (W,R,m′) have the same Kripke structure satisfied by sentences
ρ and σ(ρ∧ A¬¬η′(ρ)), it is enough to show that, for all χ ∈ Ωρ, m(w) |= σ′[χ]
entails that m′(w) |= χ for any w ∈ W . Actually, this is a direct consequence of
the fact that m(w) |= σ′[Ωm(w)

ρ ] entails m′(w) |= Ωm(w)
ρ , for all w ∈ W , which

comes from the definition of (W,R,m′).

5 Conclusions and Future Work

This paper lays the first steps towards the development of (dedicated) proof
tools for hybridised logics, by providing an effective decision algorithm for the
satisfiability problem. Additionally the systematic hybridisation of the calcu-
lus of a base logic was addressed, and shown to preserve both soundness and
completeness.

The next step, from an engineering point of view, is, of course, to develop
such a generic, dedicated prover for hybridised logics. A comparison with the
strategy of using the parametrised translation to FOL will then be due.

In a similar line of research, lies the development of an alternative decision
algorithm, that potentially overcomes the problem detected in the definition of η,
which involves calling the decision procedure of the base logic 2n times, for n the
number of base sentences in the sentence under consideration. Such an algorithm
may be based on the tableau technique (for instance, the one implemented in
[12]) which opens a number of branches as the possible ways to build a model
satisfying a given sentence. If the sentence is unsatisfiable then all branches must
be closed. If any branch remains open then the decision procedure of the base
logic is called to try to close it. Thus, the number of times the decision procedure
of the base logic is called is much smaller than in the approach discussed here.

Other results in the literature abstract the combination of logics pattern
by considering the “top logic” itself arbitrary. Such is the case of what is called
parametrisation of logics in [4] by C. Caleiro, A. Sernadas and C. Sernadas. Sim-
ilarly , the recent method of importing logics suggested by J. Rasga, A. Sernadas
and C. Sernadas [16] aims at formalising this kind of asymmetric combinations
resorting to a graph-theoretic approach. In both cases some decidability and
completeness results are given. It should be interesting to see in which ways the
hybridisation method relates to these works.
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tutions. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol.
6859, pp. 283–297. Springer, Heidelberg (2011)

15. Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Hybridisation at work. In:
Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 340–345. Springer,
Heidelberg (2013)

16. Rasga, J., Sernadas, A., Sernadas, C.: Importing logics: Soundness and complete-
ness preservation. Studia Logica 101(1), 117–155 (2013)


