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Abstract. We propose a methodology for designing online exercises sys-
tems with special focus on applications to Mathematics education. The
major goal is to develop a web-based environment that make available
exercises and solutions to students and teachers. Promising results are
reported in this paper that suggest that Constraint Logic Programming
frameworks are adequate to implement such a system. These languages
have the right expressiveness to encode control on the system in an ele-
gant and declarative way.

1 Motivation

Not all students have high mathematical skills but surely one of the reasons for
the lack of success in mathematics is that too often students merely memorize
how to solve some exercises, instead of trying to understand the fundamental
concepts and results. Hence, a possible drawback of classical textbooks and some
existing online course-ware and exercise systems is that the proposed problems
are quite pre-defined, either fixed or at best randomly generated instances of the
same problem template [5, 6].

Rather than to reproduce the classical textbooks, advances in the computer
technology and the Internet should be exploited to develop really interactive
and re-usable contents. Quite sophisticated web-based learning environments
are being developed. For example, ActiveMath [16], that is a second-generation
interactive textbook project offering user-adaptiveness and re-usability by em-
ploying an XML-based representation of mathematical knowledge and Artificial
Intelligence techniques. Alike [5], it supports exploratory learning through com-
munication with mathematical systems.

Commercial mathematical systems, as Geometer’s Sketchpad [7], Maple[12]
and Mathematica [14], just to name a few, are often used as mathematics tools
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for exploratory learning [9, 17], enabling the students to try their own exam-
ples. Some already offer access to their applications through web browsers [14].
The focus of this paper is not on problem solving in the broader sense of explo-
ration, but rather on the repetitive drills students have to do for consolidation
of concepts and practice of algebraic procedures. For constructive learning to be
effective, students need self-confidence and also basic knowledge.

Lots of mathematics teaching resources are spread over the Web, namely web-
based systems for computer aided training and/or assessment, with authoring
facilities for teachers to create question files, for example, for homework and as-
signments (e.g. [2, 6, 10, 16]). This requires non-negligible effort from the teacher,
specially to generate problem instances that are not immediately recognized as
simple variants of a few basic expressions. In fact, for all the systems we know,
the exercises are not generic enough and the user can almost anticipate the form
of the next instance of the problem, after a while.

This paper reports on our experiences in using a computer algebra system
(Maple) and Constraint Logic Programming (CLP) frameworks to automati-
cally generate online examples and exercises for teaching and learning a topic in
mathematics. Our final goal is to develop a system that dynamically computes
a wide range of examples that really look different for students, despite they
naturally obey some given specification. Moreover, the system shall optionally
provide explanations that may help students improve their ability to express
coherently in mathematical language.

Our approach has many different potentials that include user-adaptiveness,
easy definition of several curricula, and possible integration in intelligent tutor-
ing systems. The methodology we adopt to characterize an application domain
mimics the one teachers usually follow when they try to formulate basic problems
in some context. First, we have to define and represent the forms of exercises
that may be solved by the procedures that students shall learn. Second, the exer-
cises must have pedagogical interest, so that we must have some idea of their
solutions. The best strategy is then to proceed from an intended solution and/or
solving procedure to formulate a problem instance. In this way, we may also en-
sure that the generated problems are solvable by the computational system (and,
hopefully, by the student at a given level), thus avoiding undecidability issues.
Although not all the topics taught in mathematics at high school allow such
an automatic treatment, a considerable number do. Many of the questions that
students have to work out in Mathematics courses may successfully be solved by
algebraic procedures. If these procedures are also implemented, the generated
problems can be completely solved and the solving steps explained, in contrast
to systems that implement deduction schemes, as theorem provers.

This idea is also implicit in a recent work by Sangwin [18], although the
emphasis there is on how to generate exercises that get the students to cons-
truct instances of mathematical objects with some properties. How to reduce the
teachers’ effort to prepare questions is not considered at all and, moreover, it is
assumed that they have some expertise in writing computer programs. Actually,
it is examined the application of AIM [10], which is an authoring system for



computer aided assessment that ultimately uses Maple to process the exercises
but that counts on the teacher to program the exercises and in some situations
their grade scheme. This is quite different from what we have in mind.

Although we expected that the use of computer algebra systems could highly
reduce our implementation effort, our experience (with Maple) has shown that
the algebraic simplifications may turn out troublesome. As we shall detail in
the following section, some additional constraints shall be imposed, for instance,
on the expressions that arise in the exercises, to avoid inconsistencies in the
explanations that are produced.

This paper is intended to present the results we have achieved so far, and
extends [23]. To illustrate the main ideas we refer to a particular topic in In-
troductory Calculus, giving, in Section 3, a grammar that characterizes a vast
sample of examples from some high school textbooks. This grammar shall still
be extended to cover other functions taught. The interesting point is that we
now may get specialized forms of the expressions almost for free, by adding fur-
ther restrictions through constraints. This is of great importance for educational
purposes since the system must be parametrized to easily cater for different cur-
ricula. In the following section, we discuss strengths and weaknesses of our first
attempt to implement some programs to generate problems and examples using
a computer algebra environment. The need for a more declarative framework,
led us to investigate the use of CLP, that offers natural support for possible
user-defined constraints on the expressions. Sections 4 and 5 describe aspects of
our prototype implementation. Finally, we also briefly address interface issues
and conclude. Programs that have been developed as a test-bed for some of the
ideas may be download from http://www.ncc.up.pt/~apt/demomath.html.

2 Some Experiments Using a Computer Algebra System

In this section, we discuss some pros and cons of using Maple to develop interac-
tive course-ware, which may be common to other computer algebra systems. Our
previous work involved the design of Maple worksheets to present some specific
topic in mathematics. Besides some concise notes on the addressed issue, such
worksheets typically include pointers to other ones where the end-user student
may find randomly generated examples and exercises to work on.

Some of the algebraic procedures that students learn are crucial to diffe-
rent problems. For example, in introductory calculus, the analysis of the sign
variation, zeros and domain of real-valued functions is a basic tool to find inter-
vals where a function is monotonic, to study concavity and convexity for twice
differentiable functions and to sketch their graphs. But, it is quite easy to de-
fine functions for which no generic algorithm exists to accurately compute their
zeros, as shown independently by Abel and Galois, about a century ago, for
polynomials of degree greater than four. In the following example, we consider
the generation of rational functions defined by a quotient of two polynomial



expressions so different as the following ones.

(−x−
√

5)5

x5 − 4x4 + 6x3

(−x3 − x2)

(x + 2)3
(x + 1)4(x5 + 3x4 + 2x3)

(x2 + 1)2(−2x− 2−
√

7)

Example 1. We shall present some output from one of our Maple programs that
is helpful for the discussion. Some typesetting has in fact been done for space
reasons.

> domains(true);

FIND THE DOMAIN OF THE FUNCTION f DEFINED BY

f(x) =
(8x2 + 14x− 15)(2x + 1)

(4x6 − x5 − 5x4)(3x2 − 17x + 10)2

SOLUTION: Being f a rational function, it is defined for all

real numbers except the zeros of the denominator of its expression.

We have

(4x6 − x5 − 5x4)(3x2 − 17x + 10)2 = 0

if and only if 4x6 − x5 − 5x4 = 0 or (3x2 − 17x + 10)2 = 0.
As concerns 4x6 − x5 − 5x4 = 0, we have

4x6 − x5 − 5x4 = 0 ⇔ x4(4x2 − x− 5) = 0

⇔ x = 0 ∨ 4x2 − x− 5 = 0

To solve 4x2−x−5 = 0, we apply the solving formula for polynomial

equations of degree 2, the roots being -1 and 5/4.

As concerns (3x2 − 17x + 10)2 = 0, we have

(3x2 − 17x + 10)2 = 0 ⇔ 3x2 − 17x + 10 = 0

To solve 3x2 − 17x + 10 = 0, we apply the solving formula for

polynomial equations of degree 2, the roots being 2/3 and 5.

We conclude that all real numbers are in the domain of f, but

2/3, 0, -1, 5 and 5/4.

As other computer algebra systems, Maple supports polynomial expressions
and thus it is easy to implement this procedure. The main issue is how to control
the difficulty level of the problems. The idea is to abstract their form from the
rules students could use to solve them, as we mentioned previously. For educa-
tional purposes, we also need to have some control on the generated polynomial
expressions, so that the exercise may have pedagogical interest.

Instead of simply using the builtin Maple procedure to generate random poly-
nomials, the computation of f(x) was driven by the selection of the set of roots,
which might be rational and (conjugated) irrational numbers. Factors with no
real roots were obtained by adding appropriate constants to quadratic polyno-
mial expressions with real roots to shift their representing parabolas upwards



or downwards so that every intersection with the horizontal axis is eliminated.
Both the denominator and numerator are factored and the factors may be of
the following basic forms: ax + b, ax2 + bx + c, (ax + b)n, (ax2 + bx + c)n and
axn+1 + bxn, axn+2 + bxn+1 + cxn, where a, b, c 6= 0. The idea is that the stu-
dent has to know how to solve linear and quadratic equations, Un = 0 and that
axn+1 + bxn = xn(ax + b) and axn+2 + bxn+1 + cxn = xn(ax2 + bx + c). In this
phase, we discarded expressions as (axn+2 + bxn+1 + cxn)m, because we did not
think they are of great pedagogical interest.

An important point that deserves some further research is how to improve
the linguistic quality of the output explanations. It is not trivial to obtain expla-
nations in natural language by annotating the programs. In Example 1, almost
no use was made of global context information, which renders the explanations
fairly repetitive and, therefore, unnatural or pedagogically poor. This observa-
tion applies also to intelligent tutoring systems.

Besides the need for a more flexible input/output interface, three other re-
marks have played a major role in our decision to try a different platform. The
first one concerns the algebraic manipulations that Maple automatically per-
forms, which may result in unpredictable simplifications of the expressions being
operated. This feature appears as a great advantage when compared to Logic
Programming systems but is surely a serious drawback for our intended usage
of the system. Actually, it may introduce some puzzling inconsistencies in the
output explanations. For instance, it is not possible to pretty print 3(x2 + 5)
in Maple since it will naturally yield 3x2 + 15. By a similar reason, we had
better not ask the student to find the domain of a rational function defined by
f(x) = (x−1)2/(x−1), because that expression would be printed as f(x) = x−1,
and hence 1 belongs to domain of the latter but not of the former one. Computer
algebra systems like Maple and Mathematica do some basic two-dimensional for-
matting of the output presented to the user, but they have some limitations: the
automatic re-ordering and simplification routines might modify the expression
presented; they also have limited text formating possibilities (for example: mix-
ing formulas and text in a single line, or formatting tables).

In Example 1, the simplifications were avoided by further restricting the types
of the generated rational functions f(x) to disallow repetitions of factors (either
in a product or quotient) and to require that the involved polynomials just have
integer coefficients. Since we would like to cover more general expressions, this
does not seem the right way to proceed.

The second point is that we need declarativeness to help specify the possible
form of the expressions and problem templates. Finally, we would like the ap-
plication to be well parametrized to cater for different curricula. For both these
aspects, CLP seems to offer the right expressiveness to encode control on the
system in an elegant way. The disadvantage is that we now have to implement
symbolic processing of algebraic expressions to provide exact representations of
the solutions, which hopefully have quite simple pre-defined forms, as we fur-
ther detail in Section 5. It is worth mentioning that CLP languages are rather
adequate for symbolic processing. All one needs is either to spend sometime im-



plementing a symbolic processor or to find and adapt an existing one. Difficulties
have also appeared when we tried to combine different constraint solvers, since
it is almost impossible to share variables between them in a natural way.

We shall now present abstract representations for the expressions, that we
need to characterize the problem templates and to simplify the solving proce-
dures. For that purpose, we give a grammar that characterizes a wide range of
the function expressions that may be found in high school textbooks and whose
zeros can be exactly computed. This grammar extends the set of functions we
considered in Example 1.

3 Using Grammars and Constraints to Define Expressions

In order to be able to abstract the possible forms of function expressions, we
have carried out a thorough analysis of Portuguese textbooks in mathematics
for grades 10 to 12. As a result, we defined the grammar shown in Fig. 1.

For prototyping, the trigonometric, exponential and logarithmic functions
have been left out. Basically, with this grammar we try to capture some of the
expressions for which the computation of the domain and zeros mainly involves
solving linear or quadratic equations (ax+b = 0 or ax2+bx+c = 0), or equations
of the form aXn + b = 0, a n

√
X + b = 0, Xn ± Y n = 0, n

√
X ± n

√
Y = 0, for

n ≥ 2, or X/Y ± Z/T = 0, with degree(XT ) ≤ 2 and degree(Y Z) ≤ 2, or
even some case-based reasoning to get rid of the absolute value operators. We
note that by writing, for instance, (k*)?rad(basic12, N)+ (k*)?rad(basic12, N)

we really want to restrict N to be the same for both subterms, so that the
grammar is not context-free1. We use (k*)?rad(basic12, N) as an abbreviation
for k*rad(basic12, N) or rad(basic12, N), and * means product.

The rightmost column of following table contains the output expressions
that correspond to the basic types. The first two columns contain the internal
representations we use to denote them. Two levels of abstraction are considered.

p1 o TypeT pol(T, [a, b]) aT + b
p2 o TypeT pol(T, [a, b, c]) aT 2 + bT + c
xip(1, N) expand(N, x, pol(x, [a, b])) axN+1 + bxN

xip(2, N) expand(N, x, pol(x, [a, b, c])) axN+2 + bxN+1 + cxN

pow(N) o TypeT pow(T,N) TN

rad(N) o TypeT rad(T,N)
N
√
T

abs o TypeT abs(T) |T |
p2 o pow(N) o x pol(pow(x,N), [a, b, c]) ax2N + bxN + c
instead of bisqr(N) instead of bisqr

It may be checked that

(8x2 + 14x− 15)(2x + 1)

(4x6 − x5 − 5x4)(3x2 − 17x + 10)2

1 Indeed, it is known that {0n10n10n | n ≥ 1} is not a context-free language.



function −→ (k*)?prodfact | (k*)?divexpr
prodfact −→ factor | prodsexpr
divexpr −→ prodfact/prodfact | k/prodfact | prodfact/k

−→ pow(divexpr,N) | rad(divexpr,N) | abs(divexpr)
prodexpr −→ factor*factor | factor*prodexpr

−→ pow(prodsexpr,N) | rad(prodsexpr,N) | abs(prodsexpr)
factor −→ sumexpr | vxip | basic
sumexpr −→ abs(sumexpr) | pow(sumexpr,N) | rad(sumexpr,N) | bsum
bsum −→ ipol1(vquot12k)

−→ (k*)?rad(basic12, N) + (k*)?rad(basic12, N)

−→ (k*)?pow(basic12, N) + (k*)?pow(basic12, N)

−→ (k*)?pow(basic12, N) + (k*)?pow(basic1, 2N)

−→ (k*)?rad(basic12, 2N) + (k*)?rad(basic1, N)

−→ (k*)?rad(2, basic12) + (k*)?basic1
−→ (k*)?pow(2, basic1) + (k*)?basic12
−→ (k*)?basic12 + (k*)?basic12
−→ (k*)?quot12k + (k*)?basic12, subject to Condition

−→ (k*)?quot12k + (k*)?quot12k, subject to Condition
vquot12k −→ pow(vquot12k, N) | rad(vquot12k, N) | quot12k
quot12k −→ k/basic12 | basic12/k | basic12/basic12 | abs(quot12k)
basic12 −→ basic1 | basic2
basic2 −→ fpol1(abs(basic2)) | ipol2(x) | expand(1, x, ipol1(x))

−→ basic1*basic1 | fpol1(pow(2, basic1)) | pow(2, basic1)
−→ abs(basic2)

basic1 −→ abs(basic1) | fpol1(abs(basic1)) | fpol1(x)
basic −→ ipol2(x) | expand(1, x, ipol1(x)) | bisqr | fbasic

−→ fpol1(fbasic) | fpol1(x)
fbasic −→ abs(basic) | pow(basic,N) | rad(basic,N), N ≥ 2
vxip −→ xip | k*vxip | abs(vxip) | pow(vxip,N) | rad(vxip,N), N ≥ 2
xip −→ expand(N,x,ipol2(x)) | expand(N + 1,x,ipol1(x)), N ≥ 1
bisqr −→ ipol2(pow(x, N)), N ≥ 2
fpol1(T ) −→ pol(T,[a, b]), a 6= 0
ipol2(T ) −→ pol(T,[a, b, c]), abc 6= 0
ipol1(T ) −→ pol(T,[a, b]), ab 6= 0
x −→ variable
k −→ constant

Condition: Being either of the form (k*)?A/B + (k*)?C with degree(BC) ≤ 2 or of
the form (k*)?A/B + (k*)?C/D with degree(AD) ≤ 2 and degree(BC) ≤ 2.

Fig. 1. Describing functions that may appear in exercises



is of the form

pol(x, [8, 14,−15]) ∗ pol(x, [2, 1])

expand(4, x, pol(x, [4,−1, 5])) ∗ pow(2, pol(x, [3,−17, 10]))

And, we may also conclude that e.g., −2| − 2y + 4| + 4|3y + 3| + 2 belongs to
bsum (i.e., basic sum expression), since it is given by

pol(abs(pol(y, [−2, 4])), [−2, 0]) + pol(abs(pol(y, [3, 3])), [4, 2])

To solve equations that involve sum expressions one may need to know how to
solve Xn ± Y n = 0, n

√
X ± n

√
Y = 0, for n ≥ 2, or X/Y ± Z/T = 0, with

degree(XT ) ≤ 2 and degree(Y Z) ≤ 2. We notice that, in general we would not
be able to solve the first two if instead of 0 we had a non-null constant k.

In the grammar, some categories have names that are indexed by 1, 2 or 12,
because they result from the basic category when we restrict the degree to be 1,
2, or any of these two. As for vquot12k and quot12k the idea is that the numerator
and denominator have degrees 1, 2, or 0. To avoid defining more grammar rules,
the abbreviate notations pol1(T ), ipol2(T ) and ipol1(T ) were introduced. For
instance, ipol2(pow(x, N)) rewrites to pol(pow(x, N), [a, b, c]) by applying the
rule (scheme) for ipol2(T ).

4 Generating Exercises in a CLP System

CLP languages are quite convenient to constrain the exercises by imposing cons-
traints on some variables of the problems’ generator. In this way, constraints
are useful to control the difficulty and adequacy of the exercises for a certain
curriculum, stage or user. In order to test these ideas, we have developed a
prototype of such a generator in SICStus Prolog [20] using CLP(FD) [4]. In
particular, we would like to see how quickly it runs, so that we defined a predicate
examples/5 that obtains one exercise of each type for some given specifications,
through backtracking.

examples(File,Degree,RateMin,RateMax,X) :-

tell(File),

constrs(CountTypes,urestr_function), % user-defined constraints

undefined(OpMax), CountOps #>= 0, CountOps #=< OpMax,

Rate in RateMin..RateMax, indomain(Rate),

nl, nl, write(’>>>> rate’:Rate), nl, nl,

function(Type,Degree,Rate,CountTypes,CountOps), % finds a type

expression(Type,X,Expr), % finds an instance

write(Type), nl, write(Expr), nl, nl,

fail.

examples(_,_,_,_,_) :- told.

E.g., if we launch examples(probs2,2,9,12,x), the system writes expressions
in the variable x, of degree 2 and difficulty level in 9..12 to the file probs2.



The actual meaning of such difficulty rate may be settled by the user who may
be given permission to assign a rate to each type (for details, see user_rate/2

below). The overall rate of an exercise is then the sum of such rates. Different
and more sophisticated criteria shall be investigated. The expressions of a given
degree (in this example, we asked for expressions of degree 2) shall evaluate to
polynomials of that degree when simplified to get rid of abs and pow, and do
not contain quotients and radicals.

It is quite impressive how quickly the program may obtain a huge number
of expressions. Throughout this section, it is assumed that the reader is familiar
with CLP languages, and in particular CLP(FD) (for an introduction and some
references, see e.g. [13]).

We note that the constraint solver shall be mainly used to do consistency
checking and to propagate constraints on the exponents and on the number of
occurrences of some combinations of particular function types. So, none of the
optimization facilities of the CLP systems shall be utilized.

4.1 Defining Type Schemes for Expressions

In the implementation, a higher level of abstraction is considered to denote types
of expressions, as given in the leftmost column of the table shown above. This
is done by introducing type schemes with constrained finite domain variables to
define sets of expressions of the same form, that is to represent expression tem-
plates. They almost mimic the grammar categories, and the main idea is that the
composition of functions (herein denoted by o) is the main operation to enable
the definition of complex functions from the elementary ones. Hence, for example,
pow( ) o ip(1) o (p1 o x/p1 o x) represents pow(ipol1(pol1(x)/pol1(x)), N),
which, by the grammar, is a sumexpr. The following expression is a particular
instance of this type scheme (

−2
−2x− 1

−3x + 4
+ 3

)7

and has type pow(7) o ip(1) o (p1 o x/p1 o x). Here, ip(1) and p1 replace
ipol1 and pol1, respectively. In general, the grammar rules are implemented by
predicates of the form

category(Type,Degree,Rate,CountTypes,CountOps)

the main one, which has appeared previously in examples/5, is function/5.

function(Type,Degree,Rate,CountTypes,CountOps)

The parameters Degree, Rate, CountTypes, CountOps are used to constrain
the resulting scheme Type. This allows to impose constraints to control the
difficulty level or form of the generated expressions and to tackle user-defined
constraints.



4.2 Illustrating the Generation of Type Schemes

In the implementation, we distinguished the basic constructs for the basic and
vxip grammar categories as polynomial or non-polynomial functions.

npftype(abs). npftype(rad(_)). npftype(pow(_)).

pftype(p1). pftype(p2).

They may be composed to produce more complex types. The functions to which
a basic function may be applied (i.e., composed with) are defined by ctype_/2.

ctype_(T,x) :- pftype(T).

ctype_(p1,T o _) :- npftype(T).

ctype_(T,xip(_,_)) :- npftype(T).

ctype_(T,Tc o _) :- npftype(T), (pftype(Tc); (npftype(Tc), T \= Tc)).

We note that, for instance, the second clause avoids forms as p1 o p2 and
p1 o p1, which are not possible by the grammar, either. To provide some further
intuition on the implementation, we give the code of a predicate that defines the
grammar category basic.

basictype(xip(1,1),2,Rate,Ts,0) :-

user_rate(p2,Rate),

sum(Ts,#=,1), increment(p2,Ts).

basictype(p2 o pow(N) o x,Dgr,Rate,Ts,2) :-

user_rate(bisqr(N),Rate),

sum(Ts,#=,1), increment(bisqr(N),Ts),

degree(bisqr(N),Dgr).

basictype(T o Tc,Dgr,Rate,Ts,Ops) :- (pftype(T); npftype(T)),

degree(T,DgrT), DgrC #>= 1, Dgr #= DgrT*DgrC,

rate_restr(T,Rate,[RateC]),

types_restr(T,Ts,[TsC]),

ctype_(T,Tc),

ops_restr(Ops,1,[OpsC]),

((Tc = x, DgrC #= 1, OpsC #= 0, RateC #= 0, sum(TsC,#=,0));

basictype(Tc,DgrC,RateC,TsC,OpsC)).

Here, Rate is a parameter that allows us to have some control on the applica-
tion of each of the clauses that define a predicate. It must be either instantiated or
have an upper bound when function/5 is called. This is important also to gua-
rantee that the generation terminates. User-defined rates are assigned through
user_rate/2 to the primitive functions and to particular sub-expressions (as for
example, sums of radicals, quotients and products). The overall rate is then the
sum of such rates, as we mentioned before. Since the teacher is not supposed to
learn CLP to be able to constrain the generated problems, such a system shall
have an user-friendly interface. For that purpose, we are investigating the use
of the Pillow package [3] to develop a web interface. It is not straightforward to
decide which kind of constraints we shall let the teacher define, since we would



like to achieve high flexibility and expressiveness, but keep the parametrization
task simple.

Now, Ts is a list of finite domain variables, each one giving the number of
occurrences of a given type. These types include p1, p2, abs, rad(_), pow(_),
xip(_,_), bisqr(_), but also more general ones as, for instance, prodstype,
divstype and sum. The latter is related to the expressions identified by sumtype
in the grammar. The idea is that the user may define constraints on the values
of the counters in Ts. These constraints may involve a single variable (e.g., to
specify its domain) or any subset of them. Calls to constrs/2 result in imposing
the user-defined constraints on Ts for the category identified by urestr_name.
The following example is meant as a mere illustration. It establishes that the
number of abs, bisqr(_), pow(_) and rad(_) shall not exceed four and that
there shall be at least one abs and one bisqr(_).

user_function(Ts) :-

elements([abs,bisqr(_),pow(_),rad(_)],Ts,Vars),

sum(Vars, #=<, 4).

elements([abs,bisqr(_)],Ts,[Abs,BSqr]), Abs #>=1, BSqr #>= 1.

Predicates as rate_restr/3 and types_restr/3 (that appeared in the third
clause of basictype/5) propagate the constraints for rates and type counters,
respectively whereas increment/2 tries to increment a given type counter by 1.
The number of operations (i.e., compositions, sums, products and quotients)
may be limited and ops_restr/3 is used to propagate such constraints.

The use of a constraint language helps simplify the implementation. As
an example, basic12 is just Dgr in 1..2, basictype(T,Dgr,Rate,Ts,Ops), if
basic/5 implements the grammar category basic. Nevertheless, it is still not
easy to implement a constrain-and-generate strategy in order to avoid introduc-
ing what can be seen as symmetries in types. Indeed, being + a commutative
operator, abs o p1 o x + abs o p2 o x and abs o p2 o x + abs o p1 o x

should be the same type. Some symmetries may be filtered out by propagating
constraints on the number of operators.

Finite domain variables could have been used to restrict the type constructs
that are applicable at each derivation step. This improvement shall be analysed
for future implementations.

4.3 Finding Particular Expressions

Instances of the expressions of a given Type may be obtained by calling

expression(Type,X,Expr)

For each type scheme, we may generate several expressions of that type by re-
peated calls to expression/3. Variations of the same example, in which the
coefficients and exponents may change, can be easily found by forcing back-
tracking, in the CLP framework.



The predicate function/5 generates a type scheme that may contain do-
main variables (representing exponents) with some attached constraints. Now,
instead of saving all the constraint store on the exponents for later usage, the
system would rather either save a particular instance of the type scheme or
some pre-defined number of expressions that conform the type scheme. Different
algorithms may be implemented to define expression/3, which may be even
specialized to the particular problem we have in mind.

One possibility was described in Example 1, but we may also simply com-
pute coefficients at random, though within a given range of pedagogical interest.
Another possibility could be to use the program to generate several exercises
which would later be filtered out, in view of the special application.

When only partial consistency is enforced, we have to guarantee that the
(random) labeling process eventually stops, when no solution exists. The pro-
gram currently implements committed-choice, disallowing backtracking to the
random numbers generator when a feasible value is found to the to variable that
is being labeled. In this way, the program may fail to find a solution even if one
exists. This problem is not specific of CLP and other strategies could be devised
to overcome it.

The type scheme plays a crucial role not only in the generation phase but
also to render the implementation of problem solvers easier. We are mainly using
CLP(FD) to generate the expressions, which then naturally would have integer
coefficients. We have also made some simple experiments with other constraint
programming domains, namely CLP(R), to define and tackle some conditions
on the final expressions. However, the preliminary results had almost no interest
for educational purpose. Further experiments could be done.

5 Symbolic Processing to Compute Roots and Domains

In general, the system needs to support symbolic processing of algebraic expres-
sions to provide exact representations of the solutions. Indeed, CLP(Q) [8] could
be used for finding the solutions, but expressions should have degree 1 and not
involve the abs construct, so that they would be quite elementary.

We have already implemented a prototype program that finds the zeros and
the domains of some of the expressions. For that purpose, we have implemented
a symbolic solver for single constraints, that can handle any of the relational
operators (≥,≤,=, 6=, <,>).

The arithmetic operations that involve only rationals are dispatched to the
CLP(Q) solver. We are not using CLP(R) because we want to have exact (sym-
bolic) representations for the irrational numbers that are handled, instead of
floating point numbers. This is usually important for educational purposes.

Symbolic manipulation of irrational numbers is supported for the special
forms r0 n

√
r1, r0 + r1

√
r2 and r0 n

√
r1 + r2

√
r3, where the ri’s stand for rational

numbers. For educational purposes these forms are already too sophisticated for
the common intended users. We introduced some normal form r0 n

√
r1 so that

the system would reduce, for instance, 3
√
−40 to −2 3

√
5, 6
√

4 to 3
√

2,
√

1
2 to

√
2
2 ,



3

√
1
2 to

3√4
2 . When higher exponents occur, the numbers may exponentially grow

if we apply the latter transformation, so that we may possibly not keep it in
future versions of the system. Prime factorizations of integers are found to make
these transformations. Since we are not planning to tackle very large numbers,
this apparently is causing no inefficiency.

To solve problems that require finding the domain of a function, the system
needs to exactly solve disequations and disjunctions. Furthermore, we would like
to be able to provide explanations of the solving steps. For both these reasons,
the CLP(Q) solver, acting as a black-box, cannot be utilized to discard symbolic
manipulation of constraints, even when no irrationals are involved. The same can
be said about CLP(R), which in addition would yield floating point numbers.

We have not annotated the programs to explain the solving steps as we have
done for the Maple programs. We think that the explanations that we obtain
by introducing simple annotations in strategic points of the recursive solving
procedures are often pedagogically poor. Because of that we shall investigate
how to construct the explanation given all the solving steps.

6 Towards making the system available in the Web

We would like to obviate the need for students to learn a special syntax just for
typing and reading formulas on the computer, unlike in WebMathematica [14],
for example. Although textual representations for mathematical expressions are
quite common, for example, in programming languages, they are not suitable
for a learning environment (although, not everyone agrees with this [10]). The
presentation and editing should be as close to the classical pencil-and-paper
notation as possible.

To illustrate the potentials of the program, we have written some predicates
to convert the internal representations of the mathematical expressions and so-
lutions to LateX. This allowed us to pretty print the mathematical expressions.

Another possibility, that we considered at start and may further investigate,
amounts to use a prototype viewer/editor of MathML documents, written to
Tcl/Tk (some more details may be found in [23]). MathML is an instance of
the XML markup languages for encoding documents containing mathematical
formulas [15]. It is designed not only to present maths on-screen (i.e., on web doc-
uments) but also to support high-quality printing, rendering for non-graphical
readers (for example: audio readers) and to serve as input/output language be-
tween math-aware software (for example: computer algebra systems).

Unfortunately, there are currently few web browsers that support MathML
directly (one example: Amaya [1]), and none of the more common browsers sup-
port it “off-the-shelf”. The situation is likely to improve in the future, either by
the use of plug-in applications or updated browsers. To visualize the MathML
document we used our own prototype viewer/editor, written using the Tcl/Tk
toolkit [21]. This prototype viewer supports just a small subset of the presenta-
tion MathML, but this subset is all our MathML documents use. The quality of



the layout is comparable to that obtained using Maple, with the advantage that
text can be freely mixed with math formulas.

By choosing a subset language from MathML we gained a good framework
for further increasing the expressiveness of our presentation language should the
need arise in the future. Furthermore, when MathML is directly supported by
web browsers, we can easily integrate our documents in web pages.

In the mean time, further work in this viewer will include integrating it into
web pages by making it a Tcl plugin (a small application that can be executed
within standard web browsers).

One further advantage is that this viewer is also a graphical editor where
math expressions can be entered and modified in two-dimensional layout (unlike
in Maple, for example, where expressions are always edited in textual form). In
the future, we intend to allow the student to interact with the tutoring system
(for example, to input trial solutions for the exercises) and this will avoid the
need to learn a special syntax.

7 Conclusions

We proposed a methodology for designing online exercises systems with special
focus on applications to Mathematics education. The emphasis is on working
backwards from the intended solution of the problem to obtain a sequence of
steps leading to that solution. Prototype programs using CLP show that these
languages have the right expressiveness to encode control on the system in an
elegant way. The main drawback is that we cannot take complete advantage
of CLP solvers to reduce the implementation effort. Indeed, we need to handle
symbolic representations of some types of irrational numbers. Moreover, we also
need symbolic processing of constraints, for example, to be able to find the
domains of functions or to provide explanations. Since the system must have
great control on the solving procedure to be able to explain the solving steps,
we think we would not benefit if we used other languages and platforms to
implement the system.

We shall analyse the integration of the system in a web-based environment.
In particular we study the integration in Ganesh [11], although, so far, this
distributed learning environment has been mainly used for Computer Science
topics, with an emphasis on the automatic grading and correction of students
exercises.
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