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Abstract—The current vehicle stability control techniques re-
lies on an accurate sensor information and a complete system
definition, such information is not easily obtained and requires
expensive sensor technology. In this work it is presented a fusion
algorithm for estimating the vehicle handling dynamic states,
using inertial measurements combined with Global Positioning
System (GPS) information, based on the Extended Kalman Filter
algorithm (EKF). The proposed method will be able to track
the state of the variable vector that includes the yaw rate,
lateral velocity and longitudinal velocity of the vehicle using
the information of the available sensors combined with the non-
linear model of the system. In order to validate the proposed
sensor fusion algorithm a simulation with a high-fidelity CarSim
model is carried out and its sensors are compared with Extended
Kalman Filter state variables.

I. INTRODUCTION

In recent years most ground vehicles have been equipped
with Advanced Driver Assistance Systems (ADAS) to improve
driver and passenger security. There are a lot of control sys-
tems such as Anti-lock Brake System (ABS), Electronic Sta-
bility Control (ESC), Rollover Prevention System, and so on.
These systems have proven to be helpful in reducing vehicle
crashes and will also be very useful for overactuated electric
vehicles (EVs) in the future [1]. However, the performance
of the ADAS depends on the accuracy of the information
regarding the longitudinal and lateral velocities, other state
variables and normal tyre forces, which can be difficult to
be measured in a cost-efficient way. Although optical sensors
could be used to measure directly the vehicle lateral velocity,
there are practical issues such as accuracy, cost and reliability
that inhibit production vehicles from using it. Therefore, the
estimation of vehicle longitudinal and lateral velocities and
lateral forces based on other vehicle inputs/outputs is critical
and has been widely investigated in literature.

Baffet et al. in [2] explore the use of two decoupled
observers - in a first stage, a sliding-mode observer is used
to calculate tire/road forces, and an EKF is used in a second
stage to estimate the sideslip angle and cornering stiffness. It
was used a tire-force model to implement the EKF, achieving
good estimation of the sideslip angle. Kim in [3] presents
a procedure for off-line identification of lateral tyre forces,
using a simple vehicle model, an EKF and experimental
road data, achieving a good estimation of lateral tyre forces.

Chen and Hsieh in [4] develop a sideslip angle estimator
based on a kinematic model. It is discussed the performance
of this system in a tire/road parameters and uncertainties
dependent model, which rapidly deteriorates with different
road conditions.

Currently, we are on the verge of a new paradigm shift:
the virtual sensing. This concept consists on combination
of computational models, parameters and data from physical
sensors to provide more reliable estimations of the quantities
of interest. Dakhlallah et al. in [5] use an EKF to estimate
the tire/road forces alongside a friction model to evaluate the
sideslip angle. It achieves a good estimation and concludes that
it is possible to obtain a comparable response to the expensive
sensors currently used to measure the sideslip angle. This shift
towards virtual sensing has a large potential to improve the
performance of motion controllers in overactuated EVs. This
idea is based essentially on sensor fusion that is an effective
way to satisfy the increasing demand on system performance,
fault tolerance and reliability of the motion controllers for
EVs. Typically the sensors used in a vehicle perform a single
specific task and do not interact strongly with other sensors.
Basically it is only an input to controller. Sensor fusion is
the combination of information given by multiple sensors,
obtaining superior information to the one the sensors give
individually. On other hand, when some quantity cannot be
measured directly, it is often necessary to estimate it using the
measurements that are available. It should be added that in
emergency situations, sideslip is necessary to detect a sliding
or skidding vehicle, which may have normal yaw rates. Also in
these situations, the longitudinal velocity cannot be accurately
measured by wheel speed because of excessive wheel slip.
Thanks to the sensor fusion flexibility the information gathered
in this way can help drivers and motion controllers make better
judgments, resulting in smoother and safer driving. Daily and
Bevly in [6] explore the use of GPS to calculate the sideslip
angle of a vehicle, in order to control its stability, pointing out
the possibility of developing higher performance controllers
combining the GPS with an Inertial Measurement Unit (IMU).
It was also presented a method which calculates and predicts
the lateral forces of the tires. Morrison and Cebon in [7] use a
vehicle model and a nonlinear tire model alongside a nonlinear
Kalman Filter to estimate the sideslip of articulated heavy



vehicles in low friction conditions.

The concept of sensor fusion is not new. The emergence
of new sensors, advanced processing techniques, and im-
proved processing hardware have made real-time fusion of
information increasingly viable for automotive applications.
Algorithms implementing that fusion system for EVs are a
very promising field of research, and towards this direction
this paper aims to contribute. There is a broad range of
classification for sensor fusion and while there is no norm,
Khaleghi et al. in [8] and Castanedo in [9] suggest a succinct
and extensive classification of the algorithms and of the data
that it fuses, based on different metrics. This paper will focus
in complementary and centralized fusion; the former due to the
different kind of sensor input to be fused and the latter because
a single processor will receive the information directly from
the sensors. The Kalman Filter method has been proved to be
the most powerful tool for multi-sensor data fusion problems
at a low computational load. The algorithm combines the
available measurements from the GPS and IMU with dynamic
model to enhance the estimation of key vehicle dynamic states.
Design goals include a reduction of computational complexity
compared to the observers in order to make the Kalman filter
suitable for implementation in embedded hardware. The design
is based on a standard sensor configuration, and is subjected to
extensive testing in realistic conditions with CarSim Software.
It is shown that a set of two Kalman filters can provide an
accurate estimation of the main state variables for motion
control. The filter estimates can be used to implement control
algorithms, as Fig. 1 illustrates. The paper is organized as
follows: section II introduces the Kalman Filter algorithm
that accomplishes the sensor fusion, section III demonstrates
the performance of the algorithm and section IV presents a
discussion of what was accomplished.

II. SENSOR FUSION ALGORITHM

In this section it will be presented the sensor fusion algo-
rithm proposed for a ground vehicle. First it will be introduced
the mathematical model of the system used to implement the
Kalman algorithm, followed by a coordinate transformation
to obtain the sensors information in the desired coordinate
frame, and finally the design and implementation of the EKF
algorithm. In Fig. 1 is presented an overview of the proposed
sensor fusion structure.

A. Vehicle Model

The laws of motion of a rigid body are expressed by two
key motions, the translation motion and the rotation motion.
The definition of this equations are based on the Newton-Euler
laws of motion that express the behaviour of a rigid body as
presented by (1) [10].
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Fig. 1. Outline of the proposed sensor fusion system

Where m express the total mass of the vehicle, I, the inertial
moment of the vehicle in the vertical axis and M, the total
moment generated by the forces applied in each individual
wheel presented in (2) [11].

M. = ((FSFL — Fspr)sin(0) + Frrr — Frrr + (FLrr
L
- FLFL)COS(6)>§ - (FSRR + FSRL)ZT + ((FSFR

+ Fsrr)cos(0) — (FrLrr + Frrr) Sin(5))lf )

The state variables of the system are the vehicle’s longitu-
dinal velocity v, the lateral velocity v, and the yaw rate .
The forces F, and Fy represent the sum of all longitudinal
and lateral forces, respectively, applied to the vehicle and can
be defined as (3) and are explicitly presented in Fig. 2.

F, = ((FLFL + Frrr)cos(d) + (Frrr + FrrRr)

— (FSFL + FSFR) Sin(é)
- (3)

y:

((FLFL + Frrr)sin(é) + (Fsrr + Fsrr)

+ (Fsrr + Fsrr) 005(5))

Where Fgj,, and Fp;, represent the forces in the lateral
and longitudinal axis in the jw wheel respectively.

In the present formulation it will be considered that the
difference between the lateral forces of the front and rear axis
are negligible resulting in Fsp = Fgp and it is defined Fsp
and Fsp as the lateral forces applied in the front and rear axis
respectively as presented in (4).

Fsp = Fspr + Fsrr, Fsr=Fsrr+Fsrr (4



Fig. 2. Forces applied to the front(left) and rear(right) wheel [10]

It will also be considered the drag force (Fprac) dynamic
as presented in (5) [11]:

1
Fprac = §POD Av? 4)

where p is the atmospheric air density, Cp the drag factor, A
the area of the vehicle frontal projection and v the total speed
of the vehicle.

The adopted non-linear model is presented in (6).

1
- ((FLFL + Frpr)cos(0) + (Frrr + FLrr) (62)

by =
— (Fsr)sin(0) = Fprac) + v,
by = - ((Fere + Furn)sin(®) + (Fsp) (6b)
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Where [,,l¢, 1, are the length of the axis, the distance
between the front axis and the center of gravity (CoG), and
the distance between the rear axis and the CoG.

B. Coordinate Transformation

The GPS is placed with the IMU in the CoG of the vehicle.
The GPS presents the position of the system in a global
geodetic frame, the Geodetic Coordinate System (GCS), while
the IMU is aligned with the local navigation frame, that is
associated with the vehicle’s CoG [12]. The velocity and
ground course (GC) from the GPS are also obtained in the
navigation frame. In order to convert the GPS readings to
a 2D Cartesian coordinate system, it will be considered an
equirectangular projection where latitude lines are straight,

parallel and equally spaced between each other, and so are
the meridians of longitude [13]. This is achieved with a
scaling factor applied to the longitude readings. This method
greatly diminishes the computational burden when compared
to the typical 3D geodetic-Cartesian conversion, as it assumes
y = Ry and x = RAcos(yg), where R is the Earth’s
radius, ¢ is the latitude, A is the longitude, g is the origin
measurement’s latitude and cos((pg) the scale factor that makes
this calculation correct for the respective pair of equidistant
latitude lines above and below the equator line. To obtain
distance between one point and the starting point in meters, we
do /(z —20)2 + (y — yo)2, where z and yo are the origin
latitude and longitude that are set when the algorithm starts.

The available sensor information will enable the access to
three angles: the heading (7)) that gives the physical orientation
of the vehicle, the GC' of the GPS that gives the orientation of
the movement of the vehicle, and the sideslip angle (3) given
by (7).

f=v-GC (7

Notice also that the longitudinal and lateral velocity can be
related through the sideslip angle as expressed in (8).

vy = vcos(B), vy = vsin(f) €)

The longitudinal and lateral velocity of the CoG of the
vehicle can be referred to the origin frame by applying the

rotation matrix with a ¢ rotation angle as presented in (9a)
and in (9b).

& = vzcos() — vysin(y)
y = vgsin(v) + vycos(y)
C. Kalman Filter Design

(9a)
(9b)

The Extended Kalman Filter is a non-linear observer that
aims to minimize the covariance error of the system state
estimation. The Kalman observer is especially useful when
the noise of the system measure or process is a white noise
with zero mean [3], [14].

The introduction of a non-linear observer employs the non-
linear vehicle model presented in (6) combined with the sensor
dynamic presented in (9) and linearize it in each computational
step. The continuous-time non-linear system can be defined in
the general form as [3]:

w(t) = f(t,z(t),u(t) +w(t);

y(t) = h(t,z(t), u(t) +¥(t);
where w(t) ~ N(0,Q(¢)) and ~(t) ~ N(0, R(t)) represent
the process noise (disturbance) and the measurement noise
respectively and are assumed to be zero mean Gaussian noise
[14].

It is assumed from now on the discrete system of (10),

by assuming the Forward Euler approximation based on the
truncated Taylor series expansion presented in (11):

=Xy + T, f (X, Ur)

(10)

(1)

Xkt1



where T is the computational step (tx+1 = tr + T5).
The discrete state vectors are X and Y, are defined as:

Xp = [Uza Vy, ¢7 FSF> FS'R7 wv z, y]T

Yk = [Uxa 'Uyﬂ-)xa @y7¢7¢757$ay]T
The measurement of the accelerations is available as well as
the yaw rate and heading reference of the system through the
IMU. The longitudinal velocity, position and sideslip angle of
the system are obtained through GPS. The longitudinal forces
applied on each wheel of the vehicle are assumed to be the
control variables that are available. The steering angle () is

also available and is assumed as part of the control variable,
Uy as it can be seen in Fig. 1 and is expressed by:

12)

Ur = [Frrr, FLrr, FLrL, FLRR, 0)F (13)

The intrinsic difference between the available sensors poses
an important problem regarding the sample rate of each sensor
and the computational time of the proposed sensor fusion
algorithm. Typically, GPS acquires new samples at a slower
rate (5—10H 2) than the IMU, which has a much higher sample
frequency (1kH z).

In order to cope with this limitation of the GPS, it is
proposed a method that allows the EKF algorithm to update at
a higher frequency using just the IMU measures, introducing
the GPS measure to correct the system variables [15]. As a
result, the EKF is updated at the same frequency as the IMU
(1kHz) and correct the state variables with the information
provided by the GPS at 10/Hz. The only exception is the
magnetometer that is included in the IMU, since it has a
slower acquisition rate on par with the GPS (10H z) and will
be processed alongside the GPS data, despite coming from the
IMU. The information of all available sensors is acquired at
the same time in order to synchronize the sensor data with the
algorithm.

The design of this method implies that the algorithm will
be defined in two distinct scenarios: the one where only the
IMU information is available, and other where all the sensor
information is available. The first scenario will be executed
at 1kHz and the second scenario will replace the previous
scenario, once the GPS measure is available. If the GPS fails
temporarily, the first scenario will be executed continuously
until there’s a new GPS reading.

The non-linear model f(Xy, Uy) can be expressed as func-
tion of the state and control variables, based on the equations
presented in (6) and the positioning dynamic evolution pre-
sented previously. The dynamic of the state variables Fgp
and Fgp are defined as unknown in this model.

The measured output of the sensors, that are positioned in
the vehicle’s CoG, are expressed by the function h(Xy, Ug).
This function will be defined differently in the two scenarios,
as the velocity, ground course and position provided by the
GPS and the heading provided by the magnetometer will not
be available.

In the EKF formulation, the system is linearized in each
computational step through the Jacobian matrix F} and Hj of
the non-linear model.

P = Of(Xk,Ug) Oh(Xk, Uy)
X, 00Xy

The Kalman filter algorithm relies on the prediction of the
state variable which is obtained through the Jacobian matrix.
The Kalman filter is a recursive algorithm, which means that
the prediction of the current state is obtained through the
previous estimation. There are two main steps in the Kalman
algorithm: the prediction and the update [16].

The prediction of the state variables are obtained through
the non linear equations of the model. The prediction of the
covariance matrix Py is also performed through (15) and
express the accuracy of the state estimation [16].

Py = F.Py 1 F' + Qy

Hy, = (14)

5)

In the update process it is computed the optimal Kalman
gain through the Riccati equation, presented in (16). The state
variable is also updated with a component generated by the
Kalman gain and the measured residual, presented in (17).
Finally, the estimate covariance matrix Py, is also updated [16],
presented in (18).

PHT
Ky = =t (16)
H,P.HT + Ry
X = X1 + K (Y — Hp Xy) (17
Py = (I — Ky Hy)P, (18)

It is important to notice that, despite having two different
scenarios, the dimensions of the state and process matrices
does not change. The prediction and update equations for each
situation are the same. The changes of the algorithm are only
present in the definition of the measurement vector h(Xy, Uy),
the inherent Jacobian matrix H;, and in the definition of the co-
variances matrices () and Ry that are configured differently.
As the measurement of the velocity, position, heading and
sideslip angle are no longer present, the covariances matrices
are reconfigured in order to impose a greater dependency on
the model.

III. RESULTS

The sensor fusion algorithm was tested with maneuvers
produced by the commercial software CarSim. The maneuvers
consist of a Double Line Change (DLC) at 60Km/h, 90km/h,
120km/h and 160km/h and a J-turn at 60km/h, 90km/h and
120km/h. The procedures are carried out in a simulation
environment and the maneuver presented is defined by the
driver model present in the CarSim software. As a result, the
inputs may vary slightly at different velocities.

The validation of the proposed sensor fusion algorithm,
implemented in Matlab, is defined by recovering the driver
inputs from the CarSim in different scenarios and comparing
the resulting signals obtained with the measured variables from
Carsim simulation tool. In order to evaluate the performance
of the proposed EKF it is introduced a Gaussian noise to
each measurement with a standard deviation value equal to the
typical value for low-grade sensors, these values are presented
in table I.
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TABLE I
STANDARD DEVIATION OF SENSOR MEASUREMENTS

Standard Deviation
Velocity 0.1 (m/s)
GPS | Ground Course | 0.01 (rad)
Position 0.1 (m)
Acceleration 0.025 (m/s?)
MU Yaw Rate 0.002 (rad/s)
Heading 0.01 (rad)

The results of the state variables of the DLC maneuver
at 60Km/h are presented in Fig. 3. The dynamic of the
longitudinal velocity of the vehicle is presented in Fig. 3a and
it is compared with the result of the sensor fusion algorithm.
The lower sample rate of the longitudinal velocity hinders
the EKF estimation as it only relies on the proposed model
to estimate the new value of v,, but despite this it achieves
a good estimation. The longitudinal velocity estimation uses
the model to update the sate variable value and uses the
measurement to correct its value at a lower rate, as it can
be seen in Fig. 3a. One of the most challenging state infor-
mation to obtain is the lateral velocity due to the non-linear
characteristic of the lateral force generated in each tire and
the difficulty of modelling this forces in a simple and effective
way. Fig. 3b shows the performance of the proposed method on
estimating the lateral velocity of the vehicle. The model’s lack
of knowledge of the lateral force dynamic creates a difficulty in
the estimation of the lateral velocity. Nonetheless, the sensor
fusion algorithm is still capable to obtain a fair estimation
of the state variable from the lateral acceleration information.

The yaw rate estimation is present in Fig. 3c, where a good
performance of the algorithm was achieved. The position,
despite not being the main focus of this paper, is also being
estimated, as shown in Fig. 3d.

The comparisons between the measured and estimated value
of the DLC maneuver at different velocities are presented
in Fig. 4a and in Fig. 4c, in which the error of the lateral
velocity and the yaw rate of the vehicle are shown. The error in
the lateral velocity increases as the dynamic of the maneuver
increases, which is expected as we are dealing with higher
lateral forces and therefore the estimation/prediction becomes
harder. The yaw rate estimation presents an interesting result
for every maneuver due to the direct measurement of the
variable with high sample rate combined with a good dynamic
model and sensor redundancy. It is worth noticing that the
maneuver finishes at different time instants as the velocity in
each procedure increases.

In Fig. 4b and Fig. 4d we have the equivalent analysis
made for the a different type of maneuver, the J-turn, at three
different speeds. The error of the lateral velocity increases with
velocity due to a greater dynamic of the maneuver, as in the
DLC, and the yaw rate estimation also presents an interesting
result, having a peak when the maneuver starts but managing
to stabilize as the maneuver continues.

IV. CONCLUSION

It was proposed a sensor fusion algorithm capable of
tracking the yaw rate, lateral velocity and longitudinal velocity
of the vehicle at high frequency, managing to also track the
position of the vehicle. This was achieved with a non-linear
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model that describes the vehicle’s dynamics, using low-grade
inertial and GPS sensors. This algorithm uses two EKF in
order to integrate both sensors, which allows the algorithm
to estimate the vehicle’s velocity with a slower acquisition
of the velocity, compared to the acceleration and yaw rate.
The validation is implemented by comparing the estimated
results with those simulated by the CarSim and it is shown
a promising tracking performance with a good convergence
speed and stability. It is also shown the ability of the algorithm
to work without GPS information and its capability to correct
the drift from the IMU when it has GPS measurements
available, solving individual limitations of both sensors.

Our future work would cover a practical application of the
algorithm presented here.
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