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Abstract. Deductive verification tools typically rely on the conversion
of code to a single-assignment (SA) form. In this paper we formalize pro-
gram verification based on the translation of While programs annotated
with loop invariants into a dynamic single-assignment language with a
dedicated iterating construct, and the subsequent generation of compact,
indeed linear-size, verification conditions. Soundness and completeness
proofs are given for the entire workflow, including the translation of an-
notated programs to SA form. The formalization is based on a program
logic that we show to be adaptation-complete. Although this important
property has not, as far as we know, been established for any existing
program verification tool, we believe that adaptation-completeness is one
of the major motivations for the use of SA form as an intermediate lan-
guage. Our results here show that indeed this allows for the tools to
achieve the maximum degree of adaptation when handling subprograms.

1 Introduction

In the last years deductive program verification has reached a stage of a certain
maturity, to the point that a number of tools are now available allowing users
to prove properties of programs written in real-world languages like C, Java, or
SPARK [3I6J10l25]. Deductive techniques attempt to establish the correctness
of a software system with respect to a specification, usually given as a set of
contracts expressed in first-order logic. Their precision depends on information
provided by the user in the form of annotations, in particular loop invariants.
Three trends have characterized the development of modern program veri-
fiers: first, they employ Satisfiability Modulo Theories (SMT) solvers to check
the validity of first-order formulas. The nuclear component is a Verification Con-
ditions Generator (VCGen), that takes as input a program and a specification,
and produces a set of first-order proof obligations that are sent to a solver. If all
the conditions are valid, then the program is correct. The second trend is that
deductive verification tools are usually generic, based on programming languages
tailored for verification. Rather than producing from scratch a dedicated verifier,
programs of a particular language are translated into the intermediate language
of the tool, together with a background encoding of the relevant aspects of that
language. Two widely used generic verifiers are Boogie [4] and Why3 [13].



Finally, and this is the subject of the present paper, modern tools employ
internally a Single-Assignment (SA) representation of the code [I1], in which
variables may not be assigned after they have been read or written. Not only
are SA branching programs easier to encode logically, but its use also solves a
fundamental inefficiency issue. Verification conditions generated from standard
imperative code may be of exponential size in the size of the programs, which
destroys any hope of effectively verifying reasonably-sized programs. However,
Flanagan and Saxe [I4] have shown that conversion of the code to SA form allows
for the generation of quadratic size VCs (a technique that achieves conditions
of linear-size with respect to the SA program was later proposed [5]). Other
advantages have to do with the fact that intermediate values of computations
are never lost: when an instruction like x := = + 1 is executed, one variable
will store the initial value of z, and a new variable will store its new value.
Specification languages like ACSL, for ANSI-C [7], often allow the value of a
variable at a given program point to be used in assertions. In an SA setting this
amounts to simply fetching the adequate “version variable”. This also means
that continuous invariants (that are not relevant for a loop but may be required
after it) are transported automatically, and do not have to be explicitly included.

On the theoretical side, the foundations of program verification have tradi-
tionally lied in two different frameworks: Dijkstra’s predicate transformers for a
guarded commands language [12] and program logics, like Hoare logic [I7] and
separation logic [26]. Guarded commands have been used as an intermediate
language in tools like ESC/Java [22] and more recently the Boogie generic ver-
ifier. Many pragmatic aspects of program verification have been addressed and
described in this setting, in particular the generation of efficiently provable Ver-
ification Conditions (VCs) and the treatment of unstructured programs [T4J5].
The program logic tradition on the other hand, which is based on separate oper-
ational and axiomatic semantics of programming languages, has allowed for the
study of properties like soundness and (relative) completeness of Hoare logic with
respect to the standard semantics of a While language [2], an approach that has
been extended with the treatment of pointers and aliasing in separation logic.

An important issue is that of modular verification and proof reuse. Ideally,
one produces a separate proof of correctness for each occurrence (or call) of a
subprogram C inside a program P, and then adapts the proved specification of
C to different ‘local’ specifications. A formalism that always allows for this to
be done is said to be adaptation-complete [20]; in its original formulation Hoare
logic is not adaptation-complete. This is a problem in the presence of recursive
procedures, since it leads to incompleteness of the program logic itself, but it
is also a problem for the implementation of tools where the correctness of each
procedure is proved once and for all with respect to a contract that must be
adapted to the local context of each call to it. Our work shows that adaptation-
completeness is a natural property of reasoning in the single-assignment setting.

Contributions. In this paper we formalize a verification technique for While
programs annotated with invariants, based on their conversion to an intermediate
SA form. Verification tools convert programs to single-assignment form internally



and profit from this in various ways, in particular to achieve efficiency and to
handle subprograms — our technique is a minimal model of such a tool. It relies
on (i) a novel notion of single-assignment program that supports loops annotated
with invariants; (ii) a notion of translation of While programs annotated with
loop invariants (resp. Hoare triples containing such programs) into SA programs
(resp. Hoare triples containing SA programs); (iii) a Hoare-style logic for these
programs; and (iv) a VCGen generating linear-size verification conditions for
Hoare triples containing SA programs. The entire workflow is proved to be sound
and complete — in particular, we show how invariants annotated in the initial
While program are translated into the intermediate SA form in a way that
guarantees the completeness of the approach. This means that if the invariants
annotated in the original program are appropriate for showing its correctness,
then the verification of the translated SA program will be successful.

An adaptation-complete variant of the logic is also proposed, by adding to
the inference system a dedicated consequence rule with a simple side condition.
This new consequence rule is restricted to reasoning about triples in which the
program does not assign any variable occurring free in the precondition; since
the Hoare logic for SA programs propagates preconditions forward in a way that
preserves this property, the rule can be applied at any point in a derivation.
It provides the highest degree of adaptation, without the need to check any
additional complicated conditions or rules, as used to be the case in adaptation-
complete presentations of Hoare logic [2IT120)].

As an added bonus, this paper can also be seen as bridging a gap between two
different theoretical traditions — the guarded commands/predicate transformers
setting, where the use of single-assignment form was first introduced for the sake
of proof efficiency, and the Hoare logic tradition, that formalizes reasoning with
loop invariants based on a standard interpretation of imperative programs.

The paper is organized as follows: Section 2] contains background material. In
Section [3] we introduce a language of iterating SA programs: loops are annotated
with invariants; they have single-assignment bodies; and a renaming allows for
the values of the initial variables to be updated between iterations. We propose
a Hoare-style partial correctness program logic for this language in Section
its inference system admits only derivations guided by the annotated loop in-
variants, following a forward-propagation strategy. We also give an algorithm
that generates compact conditions (in the sense of Flanagan and Saxe [14]) for a
given Hoare triple, and then optimize it to generate linear-sized VCs. The next
sections contain our main results. We first consider the verification workflow
based on the translation of annotated While programs to the SA language. We
identify, in Section [5| the semantic requirements that are expected from such a
translation. The workflow is validated by showing that the generation of VCs
from the SA form is sound and complete for the verification of the initial pro-
gram (a concrete translation is given in the appendix, together with the proof
that it meets the requirements). In Section |§|We show how the program logic can
be extended with a special consequence rule that makes it adaptation-complete.
Finally Section [7] discusses related work and Section [§] concludes the paper.



2 Hoare Logic

We briefly review Hoare logic for While programs. The logic deals with the notion
of correctness of a program w.r.t. a specification.

Syntaz. We consider a typical While language whose commands C' € Comm
are defined over a set of variables z € Var in the following way:

C == skip | z:=e | C;C| if bthen Celse C | while bdo C

We will not fix the language of program expressions e € Exp and Boolean ex-
pressions b € ExpP°°!, both constructed over variables from Var (a standard
instantiation is for Exp to be a language of integer expressions and ExpP°°! con-
structed from comparison operators over Exp, together with Boolean operators).
In addition to expressions and commands, we need formulas that express prop-
erties of particular states of the program. Program assertions ¢, 0,1 € Assert
(preconditions and postconditions in particular) are formulas of a first-order
language obtained as an expansion of ExpP°°l.

We also require a class of formulas for specifying the behaviour of programs.
Specifications are pairs (¢, ¥), with ¢, 1 € Assert intended as precondition and
postcondition for a program. The precondition is an assertion that is assumed
to hold when the program is executed, whereas the postcondition is required to
hold when its execution stops. A Hoare triple, written as {¢} C {1}, expresses
the fact that the program C' conforms to the specification (¢, v)).

Semantics. We will consider an interpretation structure M = (D, I) for the
vocabulary describing the concrete syntax of program expressions. This structure
provides an interpretation domain D as well as a concrete interpretation of
constants and operators, given by I. The interpretation of expressions depends
on a state, which is a function that maps each variable into its value. We will
write ) = Var — D for the set of states (note that this approach extends to a
multi-sorted setting by letting X' become a generic function space). For s € X,
s[z + a] will denote the state that maps x to a and any other variable y to s(y).
The interpretation of e € Exp will be given by a function [e], : X — D, and the
interpretation of b € ExpP°°! will be given by [b]a : X — {F, T}. This reflects
our assumption that an expression has a value at every state (evaluation always
terminates without error) and that expression evaluation never changes the state
(the language is free of side effects). For the interpretation of assertions we take
the usual interpretation of first-order formulas, noting two facts: since assertions
build on the language of program expressions their interpretation also depends
on M (possibly extended to account for user-defined predicates and functions),
and states from X can be used as wvariable assignments in the interpretation
of assertions. The interpretation of the assertion ¢ € Assert is then given by
[p]m : X — {F, T}, and we will write s = ¢ as a shorthand for [¢]a(s) = T.
In the rest of the paper we will omit the M subscripts for the sake of readability;
the interpretation structure will be left implicit.
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Fig. 1: Evaluation semantics for While programs

For commands, we consider a standard operational, natural style semantics,
based on a deterministic evaluation relation ~» C Comm x X' x X' (which again
depends on an implicit interpretation of program expressions). We will write
(C, sy~ ' to denote the fact that if C is executed in the initial state s, then its
execution terminates, and the final state is s’. The usual inductive definition of
this relation is given in Figure

The intuitive meaning of the triple {¢} C {¢'} is that if the program C' is
executed in an initial state in which the precondition ¢ is true, then either
execution of C does not terminate or if it does, the postcondition v will be true
in the final state. Because termination is not guaranteed, this is called a partial
correctness specification. Let us define formally the validity of a Hoare triple.

Definition 1. The Hoare triple {¢} C {3} is said to be valid, denoted = {¢} C {4},
whenever for all s,8' € X, if s = ¢ and (C,s)~ s, then s = .

Hoare Calculus. Hoare [I7] introduced an inference system for reasoning about
Hoare triples, which we will call system H - see Figure [2| (left). Note that the
system contains one rule (conseq) whose application is guarded by first-order
conditions. We will consider that reasoning in this system takes place in the
context of the complete theory Th(M) of the implicit structure M, so that when
constructing derivations in H one simply checks, when applying the (conseq) rule,
whether the side conditions are elements of Th(M). We will write Fy {¢} C {¢}
to denote the fact that the triple is derivable in this system with Th(M).

System H is sound w.r.t. the semantics of Hoare triples; it is also com-
plete as long as the assertion language is sufficiently expressive (a result due
to Cook [9]). One way to ensure this is to force the existence of a strongest post-
condition for every command and assertion. Let C' € Comm and ¢ € Assert,
and denote by post(¢p, C) the set of states {s' € X' | (C,s) ~ s’ for some s €
X such that [¢](s) = T}. In what follows we will assume that the assertion lan-
guage Assert is expressive with respect to the command language Comm and
interpretation structure M, i.e., for every ¢ € Assert and C € Comm there
exists ¢ € Assert such that s =1 iff s € post(¢, C) for any s € X. The reader
is directed to [2] for details.

Proposition 1 (Soundness of system H). Let C € Comm and ¢,7) €
Assert. If by {¢} C {¢}, then = {¢} C {¢}.
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Fig.2: Systems H (left) and Hg (right)

Proposition 2 (Completeness of system H). Let C € Comm and ¢, €
Assert. With Assert expressive in the above sense, if = {¢} C {¢}, then Fy

{o} C{y}.

The sets of variables occurring and assigned in the program C will be given
by Vars(C) and Asgn(C) respectively; FV(¢) denotes the set of free variables
occurring in ¢ (all are defined in the obvious way). We will write ¢#C' to denote
Asgn(C) N FV(¢) = 0, i.e. C does not assign variables occurring free in ¢.

Lemma 1. Let ¢,¢ € Assert and C € Comm, such that p#C. If by {¢} C {¢},
then Fn {¢} C {od A }.

Goal-directed Logic. We introduce a syntactic class AComm of annotated pro-
grams, which differs from Comm only in the case of while commands, which are
of the form while b do {0} C where the assertion § is a loop invariant annotation
(see for instance [15]). Annotations do not affect the operational semantics. Note
that for C € AComm, Vars(C') includes the free variables of the annotations in
C. In what follows we will use the auxiliary function [-] : AComm — Comm
that erases all annotations from a program (defined in the obvious way).

In Figure [2| (right) we present system Hg, a goal-directed version of Hoare
logic for triples containing annotated programs. This system is intended for
mechanical construction of derivations: loop invariants are not invented at this
point but taken from the annotations, and there is no ambiguity in the choice of
rule to apply, since a consequence rule is not present. The possible derivations
of the same triple in Hg differ only in the intermediate assertions used. The
following can be proved by induction on the derivation of Fpg {¢} C {¢'}.



{n > 0Anae =n}Fact{f = nau!}
(seq)
1. {n>0Ang=n}f:=1i:=1{n>0Anu: =nAf=1Ai=1}
(seq)
1. (assign) {n > 0A N =n}f:=1{n > 0Ane =nAf=1}
2. (assign) {n > 0ANg =nAf=1}i:=1{n>0Anu: =nAf=1A1=1}
2. {n>0Ang=nAf=1Ai=1}whilei <ndo{f=0G—-D)IAi<n+1Ang =n}f:=
frijii=1i4+ 1{f = nou!}
(while)
1. {f=0—-DI"Ni<n+1Anu =nAit<n}f:=fxigi:=i+1{f=GE—-1IA"i<
n+1Ang =n}
(sea)
1. (assign) {f=G—DIANi<n+1Ang,=nAi<n}f:=fxi{f=0GE—-1)*xiNni<
n+1Anw =nAi<n}
2. (assign) {f=0GC—-—1D!*iANi<n+1Anu =nAi<n}i:=it4+1{f=G—-1)1Ai<
n+ 1A N =n}

Side conditions for application of the (assign) rules:
—n2>20Ang=n = (N >0Anuw =nAf=1)[1/f]
—n>20Ang =nAf=1 = NM>20Ane: =nAf=1Ai=1)[1/1]
— f=0GE-"DINi <n+1Ang =nAi <n = (f = (—1)1*iAi < n+1ANge = nAi < n)[f*i/f]
— f=0GE—-1*iNi<n+1Anm =nAi<n = (f=0G0—-1)IANi<n+1Angu =n)i+1/i

Side conditions for application of the (while) rule:
—n>20Ang=nAf=1Ai=1 = f=0G—-DIANi<n+1Angu =n
— f=0GE—-DANi<n+1Ang =nA-(i<n) = [ =ngu!

Fig. 3: Example derivation in system Hg

Proposition 3 (Soundness of Hg). Let C € AComm and ¢,9 € Assert.
If Fug {0} C {9} then Fn {¢} [C]{¥}.

The converse implication does not hold, since the annotated invariants may be
inadequate for deriving the triple. Instead we need the following definition:

Definition 2. Let C € AComm and ¢, € Assert. We say that C' is correctly-
annotated w.r.t. (¢,v) if Fu {¢} |C] {¥} implies Fug {¢} C {2},

The following lemma states the admissibility of the consequence rule in Hg.

Lemma 2. Let C € AComm and ¢,1, ¢’ 7' € Assert such thattng {¢} C {¢},
E¢ — ¢, and =1 — ). Then Fpg {¢'} C{¢'}.

Consider the factorial program shown in Figure[dal The counter i ranges from
1 to n and the accumulator f contains at each step the factorial of 4 — 1. The
program is annotated with an appropriate loop invariant; it is easy to show that
it is correct with respect to the specification (n > 0 A ngye = 1, f = ngus!). We
show in Figure [3| a derivation of this triple in system Hg. Note that the axioms
0! =1 and n! = n x (n — 1)! are required to prove the side conditions.

It is possible to write an algorithm, known as a verification conditions gen-
erator, that simply collects the side conditions of a derivation without actually
constructing it. Hg is agnostic with respect to a strategy for propagating asser-
tions, but the VCGen necessarily imposes one such strategy [15].



Ezxponential Explosion. To understand the exponential explosion problem men-
tioned in Section [T} consider a program consisting of a sequence of n conditional
statements: since each such statement doubles the number of execution paths,
the program has 2" paths. Consider now the (if) rule of Hoare logic. If one
uses a backward propagation strategy, one starts with a given postcondition
1, which will be propagated through both branches of the last conditional, to
produce two assertions ¢, ¢, both of which may contain occurrences of .
These will be combined in an assertion ¢, for instance (b — ¢¢) A (b — ¢y),
where 1 may occur twice. The (seq) rule will then use ¢ as postcondition for the
prefix of the program, repeating the process and generating the exponential pat-
tern. A similar exponential pattern may be generated by duplicating variables
rather than assertions, in a sequence of assignment statements whose right-hand
sides contain multiple occurrences of the same variable. For instance propagating
backwards an assertion containing a single occurrence of z through the sequence
y:=x+x; z:=y+ y produces a formula containing 4 occurrences of x.

Adaptation Incompleteness. Consider a block of code that has been proved cor-
rect with respect to a specification. Take for instance the triple {n > 0 A ngy, =
n} Fact {f = nauz!}. The specification makes use of an auxiliary variable n gy .
These variables do not have a special status; they are simply not used as pro-
gram variables, and can be safely employed for writing specifications relating
the pre-state and post-state. According to the above, the program Fact com-
putes the factorial of the initial value of n. Now suppose Fact is part of a
bigger program P, and one would like to establish the validity of the triple
{n = K} Fact{f = K!}, with K a positive constant. Adaptation-completeness
would mean that one would be able to derive this from the specification of Fact
without constructing a dedicated proof — indeed, it should not even be necessary
to know the implementation of Fact, since it has already been proved correct.
The (conseq) rule of Hoare logic is meant precisely for this, but it cannot be
applied here, since both side conditions are clearly mot valid. This shows that
system H is not adaptation-complete:
{n > 0Angm =n}Fact {f = ngu!} . n=K-—>n>0Ang =n and

{n = K} Fact {f = K1} ! o f= K

3 Single-assignment Programs

Translation of code into Single-Assignment (SA) form has been part of the
standard compilation pipeline for decades now; in such a program each vari-
able is assigned at most once. The fragment x := 10; x := z + 10 could be
translated as x1 := 10; x5 := z; + 10, using a different “version of z” vari-
able for each assignment. In this paper we will use a dynamic notion of single-
assignment (DSA) program [27], in which each variable may occur syntactically
as the left-hand side of more than one assignment instruction, as long as it
is not assigned more than once in each execution. For instance the fragment



fi=1; fii=1;
=15 i1:=1;
while i <ndo{f=0GC—-1)!Ai<n+1 T
ANauz = N} while (iq0 < 1) do {fao = (iao — 1)! Aigo < n+ 1}
fi=fx*i; fa1 = fa0 * a0
=i+ 1 tq1 = ta0 + 1;
} u
}
(a) Initial annotated program Fact (b) With blocks converted to SA form
fi:=1;

i1 =13
for ({ia0 =115 fao := f1},%a0 < 1, {ia0 = ta1; fao := fa1}) do{fao = (ia0 — D! Ndao < n + 1}

fa1 := fao * ia0;
la1 i= lao + 1

(c) Annotated single-assignment program Fact®

Fig.4: Factorial example

if x > 0 then z := x + 10 else skip could be translated into DSA form as
if zog > 0 then x; := zg + 10 else z; := x9. Note the else branch cannot be
simply skip, since it is necessary to have a single version variable (in this case
x1) representing x when exiting the conditional.

In the context of the guarded commands language, it has been shown [14]
that VCs for passive programs (essentially DSA programs without loops, where
assignments are replaced with assume commands) can be generated avoiding
exponential explosion. However, a single-assignment language of programs with
loops, tailored for verification, does not exist. In what follows we will introduce
precisely such a language, based on dynamic single-assignment form.

Definition 3. The set Rnm C Comm of renamings consists of all programs
of the form {x1 :=y1; ... ; Tpn = Yn} such that all x; and y; are distinct. The
empty renaming will be written as skip.

A renaming R = {z1 :=y1; ... ; Tn := yn} represents the finite bijection [z —
Y1y -y Tn > Yn|, which we will also denote by R. We will write dom(R) and
rmg(R) to denote the domain and range of R, respectively. Furthermore, R(¢)
will denote the assertion that results from applying the substitution [y /21, ...,
Yn/xn] to ¢. Also, for s € X we define the state R(s) as follows: R(s)(z) =
s$(R(z)) if z € dom(R), and R(s)(x) = s(x) otherwise.

Lemma 3. Let R € Rnm, ¢,v¢ € Assert and s € Y.

1. (R,s)~R(s)
2. [R(9)](s) = [¢](R(s))
3. E{IR{W}Y iff Eo—R@W).



Proof. 1. By inspection on the evaluation relation. 2. By induction on the inter-
pretation assertions. 3. Follows from 1 and 2. O

In a strict sense it is not possible to write iterating programs in DSA form.
So what we propose here is a syntactically controlled violation of the single-
assignment constraints that allows for structured reasoning. Loop bodies are
still SA blocks, but two renamings, responsible for propagating the values inside,
outside and between iterations, are free of single-assignment restrictions.

Definition 4. Let AComm®* be the class of annotated single-assignment pro-
grams. Its abstract syntaz is defined by
C == skip | z:=e | C;C| if bthenCelse C | for (Z,b,U) do{0}C
where:
— skip € AComm**
— z:=e¢ € AComm*" if z ¢ Vars(e)
— C1; Cy € AComm™ if C1,C2 € AComm® and Vars(Cy) N Asgn(Ca) =0
— if b then C; else C; € AComm™ if C, Cy € AComm™ and
Vars(b) N (Asgn(C;) U Asgn(Cy)) =0
— for (Z,b,U) do {0} C € AComm*™ if C € AComm*, Z,U € Rnm, Asgn(Z) =
Asgn(U), mg(U) C Asgn(C), and (Vars(Z) U Vars(b) UFV(0)) N Asgn(C) =0
and Vars and Asgn are extended to the for command as follows:
— Vars(for (Z,b,U) do {6} C)=Vars(Z)UVars(b)UFV(8)UVars(C)
— Asgn(for (Z,b,U) do {0} C') = Asgn(Z) U Asgn(C)
Definition [4]is straightforward except in the case of loops. The initialization code
7 contains a renaming that runs exactly once, even if no iterations take place.
On the other hand the code in U is executed after every iteration. This ensures
that the variables in dom(i/) (equal to dom(Z)) always contain the appropriate
output values at the beginning of each iteration and when the loop terminates.
Note that the definition of ¢p#C' extends to annotated programs as expected.
In Figure [4b] we show again the factorial program, where we have converted
the blocks to SA form (the variables occurring in the loop are signalled with an ‘a’
subscript for clarity, but any other fresh variables would do). The initial version
variables of the loop body f,o and i,¢ are the ones used in the Boolean expression,
which is evaluated at the beginning of each iteration. They are also used in the
invariant annotation. We have placed in the code the required renamings 7
and U, and it is straightforward to instantiate them. Z should be defined as
Ta0 :=11; fa0 := f1, and U as 140 := 141 ; fao := fa1. The initial version variables
can be used after the loop to access the value of the counter and accumulator; so
a specification for this program can be written as (n > 0Angue = 1,y fao = Nauz!)-
It is now immediate to write the program with a for command encapsulating
the structure of the loop, in accordance with Definition ] This is shown in
Figure [dd Incidentally, note that the invariant does not contain the ‘continuous’
part ngy., = n of the initial code, since it becomes unnecessary in the SA version.
The function W : AComm® — AComm translates SA programs back to
(annotated) While programs in the obvious way: W(for (Z,b,U) do{0}C) =
Z; while b do {6} {W(C); U}. Otherwise the function is defined as expected.



(skip) {¢}skip{o AT}

(assign) {p}x:=e{p Nz =c¢}

{6y Ci{p A1} {d A1} Coa{Pp N1 Adba}
(seq) {8} C1; Ca{P NP1 A2}

{pAB}Cr {p ANb AP} {p A0} Cr{oA-bAYps}
(if) {¢}if bthen C; else C¢ {d A ((bAY) V (mbAs))}

{O6ADB}YC{OANbAY} . ¢ —I(0) and
(for) (¢} for (Z,b,U) do {0} C (A O A b} — OAbAY — U®B)

Fig. 5: Inference system for annotated SA triples — System Hsa

4 Logic and Verification Conditions for SA Programs

We propose in Figure [5| an inference system for Hoare triples containing anno-
tated SA programs. Hsa is goal-directed like system Hg but it incorporates a
strategy, based on forward propagation (reminiscent of strongest postcondition
computations). It is proved sound with respect to system H, and complete with
respect to Hg. Note that Hsa derives triples of the form {¢} C' {¢ A9}, where the
program does not interfere with the truth of the precondition. For this reason
we restrict our results to triples satisfying the ¢#C condition (SA translations
will generate triples of this kind only).

Lemma 4. Let C € AComm®* and ¢,v € Assert such that ¢#C, Fysa
{6} C{}. Then (i) FV(¢) C FV(¢) U Vars(C) and (ii) all triples {a} C' {B}

occurring in this derivation satisfy a#C’.

Proof. Both are proved by induction on the structure of the derivation of Fys,

{0} C{v}. O

Proposition 4 (Soundness of system Hsa). Let C € AComm™ and ¢,
' € Assert such that ¢#C. IfFpsa {0} C{ONY'}, thenty {o} IW(C)] {oAV'}.

Proof. By induction on the derivation of Fysy {6} C {@pAY'}, using Lemmaand
induction hypotheses. We show the interesting case, where the last rule applied
is (for). Assume the last step is

{0ADYC{ONDAY} h¢—>I(9) and

wit

{¢} for (Z,b,U) do {6} C {¢ A6 A —b} ONbAY —UD)

By Lemma [ we have that (8 A b)#C. So, by induction hypothesis, we have
Fu {0 A IW(C)] {0 ANb A} From the validity of the side conditions, by



Lemma 3| and completeness of H, we have -y {§ AbAY}U {0} and Fy {¢} Z {6}.
Now applying sequentially the rules (seq), (while) and again (seq), we get by
{¢}T; whilebdo {{W(C)]; U} {#A—-b}. Hence, by definition of W and Lemmal[]
we have Fy {¢} |[W(for (Z,b,Ud) do {0} C)| {¢ N6 A —b}. O

Proposition 5 (Completeness of system Hsa). Let C € AComm®™ and ¢,
Y € Assert such that ¢#C and Fug {¢} W(C) {¥}. Then Fusa {6} C{d A Y}
for some 1’ € Assert such that = ¢ A" — 1.

Proof. By induction on the structure of C'. Assume ¢p#C and Fng {¢} W(C) {9}

— Case C = x := e, we must have = ¢ — ¢[e/z]. Since x & (FV(e) UFV(9)), it
follows that = ¢ Ax =€ — . As Fus {¢} 2z :=e{p Az = e} we are done.

— Case C' = C1;C5, we must have for some v € Assert Fpg {o} W(Ch) {7}
and Fug {7} W(Cs2) {¢}. Since ¢p#C1; Coy we have ¢p#C4. Hence by induction
hypothesis we have Fus, {¢} C1{¢ A v’} for some v € Assert such that
E ¢ Ay — . Therefore, by Lemma [2} Fpg {¢ A 7'} W(C2) {¢}. From
Lemma [ we have that FV(¢A+) C FV(¢) U Vars(Cy), and thus (¢ A )#Co.
Hence by induction hypothesis Fpsa {¢ A7} Co{d A+ A’} for some ¢’ €
Assert such that = ¢ Ay’ Ay — 1. Applying rule (seq) we then get
FHsa {QS} C1; Cy {¢ A ’YI A "//}

— Case C = for (Z,b,U) do {0} C;, we must have, for some v € Assert, that
e {0} {0}, g {0 ADYWC) {1}, g 11} ULB), and = 6 A b — 1.
We have that (6 A b)#C4, so it follows by induction hypothesis that Fus,
{0AD} C: {OANbAAN'}, for some +' € Assert and = § AbAY — ~. Therefore,
by Lemma Frg {0AbAY }U{0}. Since Hg is sound, by Lemma it follows
that = ¢ — Z(0) and = 0 AbA~ — U(0), which allow us to apply rule (for)
and get the conclusion s {¢} for (Z,b,U) do {0} C {¢ A 0 A —b}.

The remaining cases are routine. g

All the rules of system Hsa propagate the precondition ¢ forward. Note that
in the (for) rule this happens even though ¢ is not implied by the annotated
loop invariant. Observe also how in this same rule we reason structurally about
the body of the loop (an SA piece of code), with the renamings applied to the
invariant in the side conditions.

Figure [6] shows an example of a Hsa derivation, where Fact™ is the factorial
single-assignment program of Figure The assertion n > 0 A ngy, = n is used
as precondition. Note that the application of the (for) rule introduces two side
conditions, which are both valid. The derivation generates a unique postcondi-
tion for the program, with the given precondition. Other valid triples with the
same precondition may be obtained by weakening this postcondition, following
Proposition [5} For the triple {n > 0 A ngue = n} Fact{fs0 = Naus!} we would
check the validity of:
n>0ANgue =N Afi=1A01 =1A fo0 = (ta0 — 1)! ANigo <n+1A(te0 < n) = fao = Naua!

A set of verification conditions for a triple {¢} C {¢} can be obtained from a
candidate derivation of a triple of the form {¢} C' {¢#A9)'} in system Hsa. The VCs



{n > 0Anew: =n}
Fact™
{nZO/\naur:n/\flzl/\il:1/\fa0:(iaofl)!/\iaogn+1/\—|(iagSn)}
(sed)
1. {n>0Ang =n}fi:=11i:=1{n>0Ang: =nAfi=1Ai =1}
(seq)
1. (assign) {n > 0A Nz =n}f1:=1{n>0Anu =nA f, =1}
2. (assign) {n > 0A N =nAfi=1}i1:=1{n>0Ane: =nAfi =1Ai =1}
2. {In>0Anuz =nAfi=1Ai =1}
for ({iao := i1; fao = f1},%a0 < N, {%a0 = ia1; fao = fa1}) do{fao = (iao — D! Aiao <
n+ 1} {fa1 := fao * %00} %a1 := a0 + 1}
{nZO/\an:n/\fl:1/\7J1:lAfaoz(iaofl)!/\iao§n+1/\—\(iao§n)}

(for)
1. {fa(J:(iaO_l)!/\iaO <n+1Aiq0 Sn}
fa1 = fa0 * 1a0; a1 = a0 + 1
{fao = (a0 =)' Niao <N +1ANia0 <NA fa1 = fao * 1a0 Ata1 = a0 + 1}
(seq)

1. (assign) {fao = (a0 — ! Ao < n4+1Aia0 < n} far := fao * a0 {fao = (fao — 1)IA
ig0 <n+1ANigo0 <N A fa1 = fao *Ga0}

2. (assign) {fao = (fao — D! ANigo < n+1Aig0 < nA fa1 = fa0 * %00} ta1 =
ta0 + 1{fa0o = (ta0 — 1)!' Nigo <n+1Aiq0 <N A fa1 = fao * 100 A ta1l = a0 + 1}

Side conditions for application of the (for) rule:
—n2>20ANgue =nAfr=1ANi1=1—=fi=>01—-1)!IAi; <n+1
= fao = (ta0 = D! Nigo < n+1Nia0 < nA fa1 = fao*ia0Nia1 = ta0+1 = fa1 = (la1 —1)!Adg1 <
n+1

Fig. 6: Example derivation in system Hsa

are the side conditions introduced by the (for) rule, together with ¢ A o' — :
the triple is valid if and only if all these VCs are valid. It is possible to calculate
the VCs and the formula ¢’ without explicitly constructing the derivation. The
following function does precisely this.

Definition 5 (Verification Conditions Generator). The VCGen function
VC : Assert x AComm®* — Assert x P(Assert) is defined as follows:

VC(¢, skip) = (T,0)
VC(¢p,z:=¢) = (z =e,0)
VC(¢,C1; C2) = (1 A2, I't U I2)
where (¢Y1,I1) = VC(¢p,C1) and
(2, I'2) = VC(¢ A 91, C2)
VC(¢,if bthen C; else C¢) = ((bA ) V (b Ays), It UTy)
where (Y, I'y) = VC(p A, Cy) and
(v5,I'y) = VC(p A —b,Cy)
VC(¢, for (Z,b,U)do {0} C) = (6A=b, " U{p—TL(6),0 NbAY—U()})
where (¢, I") = VC(6 A b, C)

Let (¢, I') = VC(¢, C). The verification conditions of C' with the precondition ¢
are given by the set I', and the formula 1)’ approximates (since it relies on loop
invariants) a logical encoding of the program; it is clear from the definition that
¥ does not depend on the formula ¢. The VCs of a Hoare triple {¢} C {¢} are
then given by I'U {¢ A ¢’ — 1}

Proposition 6. Let C € AComm®*, ¢,v¢' " € Assert and I" C Assert,
such that (', I") = VC(¢,C). Then:



1. If =TI, then Fusa {9} C{p A Y}
2. If Fhsa {0} C{Oo AV}, then =T and " = o'.

Proof. 1. By induction on the structure of C. 2. By induction on the derivation

of Fhsa {¢} C{p A"} d

The reader may check that for our factorial example we have VC(n > 0 A
Nauz = N, Fact) = (fl = 1/\7,1 = 1/\fa0 = (iaO_l)!/\iaO < n+1A_|(’ia0 < TL), {TL >
OANguz =nAfr=1Ni1 =1 = f1 = (il—l)!/\il <n+1, foo = (’iao—l)!/\iao <
n+1Ai,0 < n/\fal = faO*iaO Nigl =ig0+1 — fal = (ial _1)!/\ial < ’Il—|—1}),
in accordance with the derivation of Figure [6]

Consider the calculation of VC(¢, {if b then C; else Ct}; C3). The recursive
call on Cy will be VC(¢pA((bAY,)V (=bAY)), Ca), where ¢, 1 do not depend on
¢. The resulting VCs avoid the exponential pattern described in Section 2] since
a single copy of the precondition ¢ is propagated to Cs. In fact the size of the
VCs is quadratic on the size of the program. It is clear from the VC(¢, Cy ; Cs)
clause of the definition that the propagated precondition ¢ is duplicated, with
one copy used to generate VCs for C7, and another propagated to Cy together
with the encoding of C7. Now observe that each loop in the program generates
two VCs, one corresponding to the initialization of the invariant (¢ —Z(6)), and
another to its preservation. The size of loop preservation VCs depends only on
the size of the loop’s body, but initialization conditions contain an encoding of
the prefix of the program leading to the loop (propagated in the ¢ parameter),
so they have size linear in the size of that prefix. The worst case occurs for
a program consisting in a sequence of n loops: the " loop will generate an
initialization VC of size O(i), so the total size of the VCs is O(n?).

This VCGen can in fact be simplified, in a way that potentially decreases
the size of the VCs. We have seen that the propagation of assertions (using
the ¢ parameter) is a potential source of formula duplication, but in fact the ¢
parameter can be eliminated. For this, the algorithm must now return a triple
(1,7, I") containing, in addition to an encoding v of the program and a set I" of
VCs, the VC that is currently being constructed (whereas the conditions in I’
have already been fully generated, inside inner loops of the current block). The
simplified VCGen highlights the fundamental fact that VC generation for SA
programs is not a matter of directed ‘propagation’ of assertions, either forward
or backward: it suffices to perform a single program traversal collecting pieces
of information along the way, and conveniently structuring them:

VC, (skip) = (T, T,0)
VCL(z:=¢e¢)=(z=¢,T,0)
VCL(C1; C2) = (Y1 A2, 1 A (Y1 = 72), 1 U T3)
where (91,71, 1) = VCL(C1) and (2,72, I2) = VC (C2)
VC_(if b then C; else C¢) = (bA ) V (mbAYs), (b= ve) A(mb = ), It UTy)
where (¢¢,v¢, It) = VCL(Cy) and (Y5, vyp, I'y) = VCL(Cy)
VC (for (Z,b,U)do {0} C) = (6A—=b,Z(6),{0ANb = v A (p=U(0))}UT)
where (¢, v, I") = VC (C)



Let (¢],v,11) = VC.(C) and (¢/,I") = VC(¢,C). Clearly ¢; and ¢’ are the
same, and it can be proved by induction that A I' < A I} A (¢ — 7). The VCs
of a Hoare triple {¢} C {1} are then given by It U {¢ — v A (¢] — )}

With respect to VC size, note that this VCGen joins the initialization VCs
of all the top-level loops in each sequence in a single condition. Instead of repli-
cating prefixes of the program for each VC, a single formula is generated, that
will be valid only when all initialization conditions hold. For left-associative se-
quences the size of this formula may still be quadratic, since the sequence clause
duplicates the program formula v; of C7; however, if sequences are represented in
a right-associative way (a reasonable assumption for an intermediate language),
the size of the resulting VCs is linear in the size of C in the worst-case.

5 Program Verification Using Intermediate SA Form

We will now put up a framework for the verification of annotated While pro-
grams, based on their translation to single-assignment form and the subsequent
generation of compact verification conditions from this intermediate code.

The translation into SA form will operate at the level of Hoare triples, rather
than of isolated annotated programs. Such a translation must of course abide by
the syntactic restrictions of AComm®* (as ilustrated by the factorial example),
with additional requirements of a semantic nature. In particular, the translation
will annotate the SA program with loop invariants (produced from those con-
tained in the original program), and Hg-derivability guided by these annotations
must be preserved. On the other hand, the translation must be sound: it will
not translate invalid triples into valid ones. These requirements are expressed by
translating back to While programs.

Definition 6 (SA translation). A function T : Assertx ACommx Assert —
Assert x AComm?®* x Assert is said to be a single-assignment translation if
when T (¢, C,1) = (¢, C',4") we have ¢'#C', and both the following hold:

LIf = {¢"} V(C)] {4'}, then = {0} [C]{¢}.
2. If Fg {6} C {0}, then g {&'}W(C") {v'}.

The following results establish that translating annotated programs to an in-
termediate SA form before generating VCs results in a sound and complete
technique for deductive verification.

Proposition 7 (Soundness of verification technique). Let C € AComm,
C' € AComm®, ¢, ¢’ 1,9, v € Assert and I' C Assert, such that (¢',C' 7)) =
T (¢, C, ) for some SA translation T, and (vy,I") = VC(¢',C").

If EL ¢' Ny = then |={¢} [C]{¥}.

Proof. From Proposition [6[1) we have Fpsa {¢'}C'{¢/ A~} and from Defini-
tion [6| we have ¢/#C’. Thus Proposition [d] applies yielding Fy {¢'} [W(C")] {¢' A
~}. From soundness of H, and because = ¢’ Ay — ¢/, it follows that &
{¢'} (W(C")] {¢'}. Finally, by Definition [6] we have = {¢} |C] {¢'}. O



Proposition 8 (Completeness of verification technique). Let C € AComm,
C' € AComm®, ¢, ¢’ 1,9y’ v € Assert and I’ C Assert such that (¢',C",¢)") =
T (¢, C, 1) for some SA translation T, and (v, ') = VC(¢',C"). If = {¢} |C] {¢}
and C' is correctly-annotated w.r.t. (¢,v), then =T, ¢ Ay — .

Proof. First note that by completeness of system H we have g {¢} |C| {¢}. By
Definitions [2] and [§] it follows that Fng {¢} C {¢} and Fug {¢'} W(C”) {¢'}. The
latter definition implies that ¢'#C’, and by Proposition [f] Fsa {¢'} C" {¢/ ¢}
for some ¢ € Assert such that = ¢’ A" — 1. Proposition [62) then gives us
= I' and ¢" = v, which concludes the proof. O

An example of a detailed translation can be found in Appendix [A] together
with the proof that it complies to Definition [G}

6 Adaptation Completeness of SA Program Logic

Let (¢,%) and (¢',4¢’) be specifications, and assume that (¢,) is satisfiable
(there exists some program that is correct w.r.t. it). Suppose now that C' is a
program such that if the Hoare triple {¢} C {1} is valid then so is {¢'} C' {¢’}. An
inference system for Hoare logic is said to be adaptation-complete if whenever this
happens, then {¢’'} C' {1’} is derivable in that system from the triple {¢} C {9 }.

Adaptation is closely linked to the existence of a consequence rule that dic-
tates when a triple is derivable in one step from another triple containing the
same program. Adaptation is by design entirely absent from goal-directed sys-
tems like Hg or Hsa, which have no consequence rule. System H is capable of
adaptation, but not in a complete way. An example of this was already seen at the
end of Section [2] involving the use of auxiliary variables. For an even simpler ex-
ample of how adaptation fails in system H, consider the triple {z > 0} P {y = z}
where x is now a program variable, used outside P, but not assigned in P.
Again let K be some positive constant. Clearly if the triple is valid then so is
{r = K} P{y = K}, since the value of = is preserved. However, attempting
to apply the consequence rule would yield the following, where the first side
condition is valid, but the second is invalid

{z >0} P{y ==z} =K —2>0 and
(t=K}P{y=K} = y=z-y=K

The problem of adaptation was raised by the study of complete extensions
of Hoare logic for reasoning about recursive procedures. The initial proposal by
Hoare [I8] was to derive a triple concerning a procedure call by assuming that
same triple as a hypothesis when reasoning about the procedure’s body:

{#} callp {4} I {¢} body(p) {¢}
{¢} callp {¢}

(assuming that an identity axiom is present, and system H rules are lifted to
work with sequents). It was soon discovered that, in the presence of auxiliary



variables in the procedure’s specification, the resulting system turned out to be
incomplete, and the reason for this was the failure to handle the adaptation of
the procedure’s specification to the local context of the recursive call.

One solution for this problem was to introduce additional structural rules [1],
but Kleymann [20] has shown that the adaptation problem is orthogonal to the
handling of recursive procedures: if the base system is made adaptation-complete,
then Hoare’s rule for recursive procedure calls is sufficient to achieve a Cook-
complete system, with no need for further structural rules.

Kleymann obtains an adaptation-complete inference system for Hoare logic
by proposing the following consequence rule, whose side condition is a meta-level
formula with quantification over states/variable assignments:

(6} C {0} if VZNo.[¢')(Z,0) —
e m2nel(Zy, o) = [¥](Z1, 7))
Wiewl L

(conseqxk)
[¢'1(Z, o) denotes the truth value of ¢’ in the state (Z, o), partitioned between
auxiliary (Z) and program (o) variables. As it is, (conseqg) cannot be handled
directly by an SMT solver, since the condition is not a first-order formula.

We will show that reasoning with single-assignment programs is advantageous
from the point of view of adaptation: our Hsa system will be made adaptation-
complete by adding a rule with a simple syntactic side condition. We start with a
result showing that the side condition of a consequence rule that always leads to
adaptation-completeness, in general terms, turns out to be the result of stripping
away the states and quantifiers in the side condition of (conseqx) above.

Lemma 5. Let ¢, ¢’ 1, € Assert. If there exists at least one program Cy €
Comm such that = {¢} Co {¢}, and for arbitrary C' one has that = {¢} C {¢}
implies = {¢'} C {¢'}, then it must be the case that = ¢' — (¢ — ) — .

Proof. We assume [~ ¢’ — (¢ — ) — 1/, i.e. there exists a state so such that
S0 E &, so E ¢ — ¢, and sq = ¢'. To show that in this context = {¢'} C {¢'}
does not follow from = {¢} C {¢} for arbitrary C, we construct a particular
program C7 with the following behavior: (C4, sg)~» sg and for s # s¢,{C1, s}~ '
whenever (Cy, s) ~ s'. To see that {¢} C; {¢} is a valid triple, observe that if
so = ¢ and (1 is executed in state sp we will have sg = 9 since sg = ¢ — ¥,
and for other executions we note that = {¢} Cy {t}. The triple {¢'} Cy {¢'} is
however not valid, since sg = ¢, but (C1, so)~> s¢ and sq = . m]

The problem is that a consequence rule with side condition ¢’ — (¢ — ¥) — ¢’
would not be sound. But it is sound for triples satisfying the simple syntactic
restriction that free variables of the precondition are not assigned in the program.

Lemma 6. Let C € Comm and ¢ € Assert. If ¢#C and (C,s) ~ s, then
[¢1(s) = [](5).

Proof. Since ¢p#C, s(x) = s'(z) for every x € FV(¢). Hence, [¢](s) = [¢](s'). O



Lemma 7. Let C € Comm and ¢,¢ 1, € Assert, such that ¢p#C and
¢'#C. If ={} C{Y} and = ¢ = (¢ = ) = ¢, then |= {¢'} C{y'}.

Proof. Assume s = ¢’ and (C, s)~s'. Since ¢/#C, by Lemmal6] we get s’ = ¢'.
We also have s’ = ¢ — 1) because, if s’ |= ¢, then s = ¢ (by Lemma [ since
¢#C) so, as = {¢} C {¢}, we get ' = . Now, s’ = ¢ follows directly from
F¢ = (@—=v)=d, ' E=d¢ ands’ =é— 4. m

Recall from Lemma [4| that Hsa derivations consist entirely of triples {¢} C {¢}
satisfying the ¢#C condition, which means that an adaptation rule with the
side condition given above can be naturally incorporated in the system. We
must however be careful to ensure that the new rule preserves Lemma |4} in
particular, the postcondition 1)’ should not contain free occurrences of variables
not occurring either in the program or free in the precondition ¢’. The following
result will allow us to eliminate these free occurrences.

Lemma 8. Let C € Comm, ¢,9 € Assert and x € Var, such that x &
FV(6) UVars(C). If = {6} C {6} then = {6} C {¥. v},

Proof. Assume s |= ¢ and (C, s)~s'. As © € FV(¢) U Vars(C), for every a € D,
slx — a] E ¢ and (C, s[z — a])~ §'[x — a]. Since = {¢} C {v}, it follows that
§'[x — a] E 1. Hence, s’ =V ..

Let Hsa®™ be the inference system consisting of all the rules of system Hsa
together with the following rule:

{sYC{o Ny} if ¢#C and
{¢YC{d' ANV — )} x = FV(¢)\(FV(¢') U Vars(C))

(conseqaq)

Recall that Hsa is a forward propagation system, so the rule will be applied
when we reach C with the propagated precondition ¢’ (in which case Lemma
ensures that ¢'#C holds). The rule will produce a postcondition not directly
by propagating ¢’ through the structure of C, but instead by adapting the
triple {¢} C {¢ A 1}. The conditions ¢ and 1 may well contain occurrences of
variables not occurring either in C' or free in ¢, but the quantification ensures
that Lemma [4] remains valid in system Hsa™. Note that the lemma guarantees
that FV(¢) C FV(¢) U Vars(C), so FV(¢) does not need to be included in x.

System Hsa™ is not goal-directed, but it is still a forward-propagation system
(the postcondition is the strongest allowed by Lemma |7).

Proposition 9 (Soundness of Hsa®). Let C € AComm** and ¢, ¢’ €
Assert such that p#C and b+ {0} C{dAY'}. Then by {¢} [IW(C)] {pAY'}.

Proof. The proof, by induction on the structure of the derivation of Fp+
{¢} C{p A1}, extends the proof of Proposition [4| with the (conseq,) rule case.
Assume the last step is

{1} C{p1 A1}
{o}C{d A (V. p1 — 1)}

with ¢1#C and @ = FV(¢1)\(FV(¢) U Vars(C))



By induction hypothesis we have Fy {¢1} [W(C)] {é1 A 1} and since H is
sound it follows that = {¢1} [IW(C)] {1 A1} As = ¢ — (d1 — d1 A1) —
&N (91 — 1), we get |= {6} V(C)] {6 A (én — 1)} by Lemma [} Now note
that N (FV(¢)UVars(C)) = 0, thus Lemma 8| can be applied, and it follows that
E {¢} W(C)]{d A (Vx.d1 — ¢1)}. Finally, by completeness of H we obtain

Fr e} IW(O)[{o A (V. 1 — 1)} O

The system is obviously complete in the same sense as Hsa, since it extends
it. But unlike Hsa it is also adaptation-complete.

Proposition 10 (Adaptation completeness of Hsa™).
Let C € AComm®** and ¢, ¢’ 1, € Assert such that ¢#C, (¢,)) is satisfi-
able, and = {¢} [W(C)|{y} implies = {¢'} W (C)] {¢'}.

If Fpea+ {0} C{p A~} for some v € Assert such that |= ¢ Ay — 1, then
{¢'}C{d' AN(Vx.¢p = )} with x = FV(p)\(FV(¢') U Vars(C)) can be derived
from that triple in system Hsa™®, and = ¢' A (V. ¢ — ) = .

Proof. From bFyg,+ {9} C{é A v} we can apply the (conseq,) rule to produce
Frsat {&'}C{d'A(Va.d — )} with ¢ = FV(¢)\(FV(¢')UVars(C)), since ¢p#C.
So it just remains to prove the validity of the formula ¢’ A (V. — v) — .
From = ¢ Ay — 9 it follows that = (¢ — v) — (¢ — ), and so we also
have E (Vx.¢ — v) = (Va.¢ — 9). Consequently = ¢ A Va.¢p — ) —
¢ NVx.d— ), and thus ¢’ A(Vx. ¢ = v) E ¢ A(Va. ¢ — ). On the other
hand, as x NFV(¢') = (), we have ¢/ A (Vx.d — ) = ¢’ A (¢ — ). Now, since
E {¢} IW(C)] {¢} implies = {¢'} (IW(C)|{¢'}, it follows by Lemma [5| that
E ¢ — (¢ = 1¢) = ¢, and hence we get ¢' A (V. ¢ — 7) = ¢'. Now we can
conclude that ¢’ A (V. — ) — ', O

Consider again the example introduced at the end of Section [2| Let K be
a positive constant; the Hoare triple {n = K} Fact® {f,0 = K!} can now be
derived from {n > 0 A nguy = n}Fact® {n > 0 A ngus = n A foo = Nauz! }:

{n > 0Ang =n}Fact™® {n > 0Anew: =nA fao = Naua!}
{n=K}Fact® {n = KA (Vnaz-n>0Ang =n— fao = Nau!)}

since = n=KA (Va7 > 0A g =1 — fao = Nawe!) — fao = K. As to the example
at the beginning of the present section, consider the following derivation (recall
that z is not assigned in P):

{z>0}P{z>0Ay ==z}
{r=K}P{z=KAN(x>0—>y=ux)}

This proves {t = K} P{y=K}since Fz=KA(z>0—-y=12)—>y=K.

7 Related Work

The original notion of Static Single-Assignment (SSA) form [II] limits the syn-
tactic occurrence of each variable as L-value of a single assignment instruction.



A construct called “@-function” is used to synchronize versions of the same vari-
able used in different paths. For instance the fragment if z > 0 then z :=
x 4+ 10 else z := = + 20 could be translated as {if zo > 0 then z; :=
x0+10 else x5 := 29+ 20} ; 23 := P(x1,x2). This means that the value assigned
to x3 depends on whether execution has reached this point through the first or
the second branch of the conditional. In dynamic single-assignment form [27]
variables may occur in multiple assignments in different paths.

Abstracting from the fact that assignments are replaced by assume state-
ments, the original notion of passive form of [14] can be seen as a kind of dynamic
SA where assignment instructions are replaced by assume commands, but sim-
ilarly to the static notion, variable synchronization is achieved by introducing
fresh variables assigned in both branches. Adapting this to standard impera-
tive syntax, the above fragment would be translated as if zg > 0 then z; :=
xo + 10; x3 := x1 else x5 := xg + 20; x3 := x2. Our translation resembles the
passify function introduced in [14], but there are significant differences: passify
generates fresh variables abstractly, whereas we provide a concrete mechanism
for this purpose; while passify only handles loop-free programs, our translation
considers programs with loops annotated with invariants; passify is proved to be
sound in the sense that it preserves the weakest precondition interpretation of
programs, while our translation is proved to be sound with respect to the valid-
ity of Hoare triples, and moreover it is shown to be complete since it preserves
derivability guided by the invariants. This is a crucial issue from the point of
view of the completeness of using an intermediate SA form for verification.

Finally, passify does not generate version-optimal programs; the notion of
version-optimal passive form, which uses the minimum number of version vari-
ables, is defined for unstructured programs in [16], together with a translation
algorithm. In this form the above fragment becomes simply if x¢ > 0 then z; :=
o + 10 else x1 := x¢ + 20. The algorithm differs from the translation of Ap-
pendix [A] in that it does not contemplate annotated loops, and no proof of
soundness is given. However, they are similar in the use of variables: for loop-
free programs, the DSA form produced by our translation is version-optimal.

Single-assignment forms have played an important role in two different fam-
ilies of efficient program verification techniques.

(I) In the generation of VCs using weakest precondition computations for
programs based on Dijkstra’s guarded commands [I2]. This setting is used as
the basis for verification condition generation in ESC/Java and Boogie. For DSA
programs, which appear here disguised as passive programs, weakest precondi-
tions can be computed with quadratic size [14123]. Note that VCs are here created
by assert commands instead of loop conditions. The approach was extended to
programs with unstructured control flow [5] in an optimized way that produces
linear-size VCs. It has also been shown that efficiently provable verification condi-
tions can be generated using instead strongest postcondition computations [I6].

There exists a single semantics of guarded commands programs, given by
the definition of the predicate transformers, from which a VCGen is directly
derived. This stands in contrast to our approach: soundness and relative com-



pleteness of the logic and VCGen are established with respect to a standard
operational semantics of While programs. A second important difference is the
treatment of iteration. The fixpoint definition of predicate transformers for it-
erating commands are of no use in the verification of programs annotated with
loop invariants. The approach used in ESC/Java and Boogie has been instead
to convert each program into an iteration-free program, such that the verifica-
tion conditions generated for the latter guarantee the soundness of the initial
program (in the approach implemented in Boogie [5] loops are first converted to
unstructured code with goto statements, but back edges are them eliminated to
produce an iteration-free program). As an example consider the program shown
below on the left annotated with a pre- and postcondition, and a loop invariant.

// assume precondition

assume 100 < z¢;

// check invariant initialization
assert 0< xzo;

// assume invariant and loop condition
assume 0<z1 A0< z71;

assume x5 =1 — 1}

// check invariant preservation
assert 0 < zo;

// assume invariant and mnegated condition
assume 0 < z3 A (0 < z3);

// assert postcondition

assert x3 =0;

@requires 100 < x

@ensures = =0

while (0<z) {
@invariant 0 <=z
z = x—1

}

In simplified terms, this could be converted to the program shown on the right
side of the figure. Observe how the fresh version variables x; and x3 isolate the
three relevant parts of the program (before, inside, and after the loop).

Our work differs from this in that loops are part of the intermediate SA
language; they are translated into this language together with their invariants;
and soundness and completeness properties are established based on the standard
semantics of iteration. Annotated programs are treated explicitly, and the notion
of correctly-annotated program is introduced, which allows us to distinguish
between incorrect programs and correct programs containing ‘wrong’ invariants.

(IT) In software model checking, where the verification is performed on a
model of the system containing only bounded executions (as in bounded model
checking of software [§]), or on an abstract model containing spurious errors
(false positives, as in predicate abstraction [19]). In these techniques a model is
usually extracted from the code by first converting it to SA form [21].

The interest and power of bounded model checking has been decidedly demon-
strated in practice by the success of the CBMC tool [§]. The idea of this technique
is that loops are unfolded a given number of times, and the resulting branching
code is converted to a static single-assignment form (using C conditional expres-
sions to encode @ functions). Loops are thus not converted to SA form: they
are eliminated by a bounded expansion before conversion. A number of trans-
formations are then performed on the SA form, and the resulting program is
easily encoded as a satisfiability problem. The transformations avoid exponen-
tial explosion, although they are not based on the observations that led to the
definition of efficient predicate transformers. To the best of our knowledge, no



proofs of soundness or completeness are available for bounded model checking
of software.

8 Conclusion

Based on a Hoare-style logic for single-assignment programs, we have formalized
a program verification technique that consists in translating annotated programs
and specifications into an intermediate SA language, and generating VCs from
these intermediate programs. An adaptation-complete variant of the logic is
obtained by adding a dedicated consequence rule with a simple condition.

We have also shown how compact verification conditions can be produced
directly from annotated SA programs. Assuming a right-associative representa-
tion of command sequences, the resulting VCs have linear size without requiring
conversion of programs to unstructured form with goto commands as in [5].

Single-assignment intermediate forms are used extensively in software verifi-
cation, both in model checking and in deductive verification; tools from both of
these families eliminate iterating constructs before programs are converted to SA
form. This stands in contrast with our work in this paper: we define rigorously a
notion of single-assignment iterating program, and use it as the basis for a sound
and complete verification technique, which includes the translation of annotated
programs to SA form. We remark that the translation of loop invariants is a
crucial component of the workflow, that doesn’t trivially lead to completeness.
To the best of our knowledge, this is the first time that completeness is estab-
lished for a verification technique based on the use of an intermediate SA form
for programs annotated with invariants.

Tools based on predicate transformers and bounded model checking incorpo-
rate many advanced features that our framework does not cover. For instance,
Boogie includes automatic inference of loop invariants based on abstract inter-
pretation, and CBMC, which natively uses a SAT (rather than SMT) solver,
incorporates constant propagation and simplification functionality that is es-
sential for making bounded verification work in practice. Still, our work here
proposes a common theoretical foundation for program verification based on in-
termediate single-assignment form, unifying ideas from predicate transformers
and program logic, while at the same time presenting adaptation-completeness
as a natural property of the single-assignment setting.

In fact, a bounded notion of program verification as implemented in bounded
model checking, which also relies on conversion to SA form, may also fit the
same common foundation. The idea, which we will explore in future work, is to
formalize this notion in a deductive setting, by obtaining a semantically justified
bounded version of the VCGen of Section [l
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A A Translation to SA Form

We define a translation function that transforms an annotated program into SA
form. We start by introducing some auxiliary definitions to deal with variable
versions. Without loss of generality, we will assume that the universe of variables
of the SA programs consists of two parts: the variable identifier and a version
(a non-empty list of positive numbers). We let Var®® = Var x NT be the set
of SA variables, and we will write z; to denote (z,1) € Var®. We write X% =
Var®™ — D for the set of states, with D being the interpretation domain.

Consider the version function V : Var — NT. The function V : Var — Var®**
is such that V(z) = xy(,). V is lifted to Exp and Assert in the obvious way,
renaming the variables according to V. Let s € 2 and V : Var — NT. We define
V(s) € Var® — D as the partial function [V(z) — s(z) | € Var]. Moreover,
for s € X%, s’ @ V(s) denotes the overriding of s’ by V(s).

The translation function Ty, is presented in Figure [ At the bottom we
show the function that receives a triple and transforms it into the SA form.
This function uses the auxiliary function shown on top (with the same name
but different type) that receives the initial version of each variable identifier
and the annotated program, and returns a pair with the final version of each
variable identifier and the SA translated program. The definition of the latter
function relies in turn on various auxiliary functions that deal with the version
list and version functions, and also generate renaming commands. The functions
are defined using Haskell-like syntax; we assume that the renaming sequences
7 and U, defined in the case of while commands, follow some predefined order
established over Var (any order will do).

We will now show that Ty, is indeed an SA translation. The full details of
the proofs and a translation example can be found in [24]. Firstly, we prove that
the T, translation preserves the operational semantics of the original programs.
Let us first consider some lemmas.

Lemma 9. Let V € Var — NT, s € ¥ and s’ € X%, If Vx € Var.s(z) =
s'(V(x)), then s" = sy @ V(s) for some sy € L.

Lemma 10. Let e € Exp, ¢ € Assert, V € Var — Nt, s ¢ ¥ and s’ € X5*.

Lemma 11. Let C € AComm and V € Var — NT. If T,(V,C) = (V', ("),
then for every x & Asgn(C), V(z) = V().



T, : (Var - N') x AComm — (Var — N*) x AComm**
T (V, skip) = (V, skip)
Tu(V, 2 =€) = (V[z = next(V(@))], Zpea(v () = V(e))
Tia(V, C1; C2) = (V" C1: C3)
where (V',C}) = Tu(V,C1)
(V//a Cé) = Tsa(vla CZ)
T (V, if b then C; else Cy) = (sup(V', V"), if V(b) then Cp;merge(V', V") else C}; merge(V"', V"))
where (V',C;) = Tw(V, Ct)
V', CH=Ta(V,Cy)
Twa(V, while b do {6} C) = (V"' for (T, V’(b),U) do {V’(6)} {C"}; upd(dom(U1)))

where T = [Tnew(v(a)) = Ty () | T € Asgn(C)]
% = V[z — new(V(z)) | = € Asgn(C)]
V", C")=Ta(V',C)
u = [Thew(V(a)) 1= Tyrr(a) | T € Asgn(C)]
v = V" [z — jump(l) | z; € dom(U)]
next : NT — NT sup : (Var — NT)? — (Var — NT)

next (h:t)=(h+1):t V(z) if V'(z) < V(z)

sup (V,V')(z) = {V/(I) otherwise

new : Nt — Nt merge : (Var — NT)? — Rnm

newl=1:1 merge (V, V') = [y (2) = Ty(a) | € Var AV(z) < V' (x)]
jump: NT — NT upd : P(Var*') - Rnm

jump (i:j:t)=(+1):t upd (X) = [Tjump(ry = 71 | 1 € X]

(h:t)<(h :t')y=h<h

T.. : Assert x AComm X Assert — Assert™ x AComm®™ x Assert*

Ta(¢,C, ) = (9@5)7 Clv\/}\/(d’)), where (V/, C,) =T (V,C) , for some V € Var — Nt

Fig.7: SA translation function

Lemma 12. Let C; € AComm, V € Var — NT, s;,5p € ¥, s, s € 2%,
V' =V[z— new(V(2)) | z € Asgn(Cy)], Ta(V',C) = (V",C}),

U = [Znew(V(z)) = Tyr(z) | © € Asgn(Cy)]. If (while b do [Cy],s;)~ sy and
(while V'(b) do {|{W(C})|;U}; upd(dom(U)), s © V(s;))~> 8%, then

Vo € Var. s¢(z) = s}(ﬁ’(m))

Proposition 11. Let C € AComm, V € Var — N*, 5,57 € X, s/, s/, € 2%
and T,(V,C) = (V’,C’A). If {[C], si)~ sy and ((W(C")],s" @ V(si))~ 8%, then
Vz € Var. sy(z) = s;(V'(2)).

Proof. By induction on the structure of C. a



Secondly, we prove that lifting the translation function to Hoare triples is
sound, i.e., if the translated triple is valid then the original triple is also valid.

Lemma 13. Let C € AComm, V € Var — NT, and s;,s7 € X. If ([C],8;)~
sy and T (V,C) = (V',C"), then ((W(C")], s} @ V(s;))~sh ®V'(sy), for some

/ / SA
51,85 € 2P,

Proof. By induction on the structure of C' using Proposition m|

Proposition 12. Let C € AComm, ¢,9 € Assert, V € Var — Nt and
Ta(V.C) = (V. (). R
If = V() W)V ()}, then = {¢} |C]{¥}.

Proof. Follows from Lemmas [13] and [I0] and Propositon O

Finally, we will show that Hg-derivability is preserved, i.e. if a Hoare triple
for an annotated program is derivable in Hg, then the translated triple is also
derivable in Hg. Again we start by stating some lemmas.

Lemma 14. Let V,V' € Var — Nt and ¢ € Assert. The following hold:

L Fug {V ()} merge(V, V') {sup(¥, V) (1)}
2. Fug {V(¥)} merge(V", V) {sup(V, V) (1)}

Lemma 15. Let Z € Rnm and ¢ € Assert. Then tyg {¢} Z{Z*(¢)} holds.

Lemma 16. Let V € Var — NT, C € AComm, V' = V[z +— new(V(z)) |z €
Asgn(C)], T (V',C) = (V',C") and U = [xnew(v(,;)) = Tyu(y) | © € Asgn(C)].
The derivation Fug V"(0)U{V'(8)} holds.

Lemma 17. Let V € Var — N, C € AComm, V' = V[z — new(V(z)) |

x € Asgn(C)], T(V',C) = V",C"), U = [Zpew(v(z)) = Tyr(z) | © € Asgn(C)]

and V" = V'z — Jump() | ©; € dom(U)]. The following derivation holds
u

Frg {V/(4)} upd(dom (1)) {V" (1))} .

Proposition 13. Let C € AComm, ¢, € Assert, V € Var — Nt and

Ta(V,C) = (V',C"). If bug {0} C {9}, then bug {V ()} W(CT) {V'(¢)}-

Proof. By induction on the structure of Fng {¢} C {9}. O
It is now immediate that Ty, conforms to Definition [6}

Proposition 14. The Ty, function of Figure[7is an SA translation.

Proof. Follows directly from Propositions [12] and O
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