
Supporting the analysis of safety critical user interfaces: an
exploration of three formal tools

JOSÉ CREISSAC CAMPOS, HASLab / INESC TEC and Universidade do Minho, Portugal, Portugal
CAMILLE FAYOLLAS, University of Toulouse, France, France
MICHAEL D. HARRISON, School of Computing, Newcastle University, UK, England
CÉLIA MARTINIE, ICS-IRIT, University of Toulouse, France, France
PAOLO MASCI, National Institute of Aerospace, USA, United States of America
PHILIPPE PALANQUE, ICS-IRIT, University of Toulouse, France, France

Use error due to user interface design defects is a major concern in many safety critical domains, for example avionics and
healthcare. Early detection of latent user interface problems can be facilitated by user centered design methods that integrate
formal veri�cation technologies. This paper considers the role that formal veri�cation technologies can play in the context of
user centered design by considering three existing tools: CIRCUS, PVSio-web, and IVY. These tools have been developed
to support the model based analysis of critical user interfaces. They have their foundations in existing formal veri�cation
technologies, but each of them is focused towards particular issues relating to user interface design. The paper explores the
di�erent phases of the user centered design process and the extent to which each of these tools supports these phases. Criteria
are developed for assessing their role at each stage of the design process. The results of the evaluation provide guidance to
developers to help choose the most appropriate tool based on their analysis needs while at the same time setting challenges
for future developments.

CCS Concepts: • Software and its engineering! Integrated and visual development environments.

Additional Key Words and Phrases: Formal modeling of interactive systems, user centered design, safety critical systems

ACM Reference Format:
José Creissac Campos, Camille Fayollas, Michael D. Harrison, Célia Martinie, Paolo Masci, and Philippe Palanque. 2020.
Supporting the analysis of safety critical user interfaces: an exploration of three formal tools. 1, 1 (May 2020), 48 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
User interface software issues are an important source of system and device failure in application domains such
as healthcare, avionics, and tra�c control. It is therefore surprising that relatively little work has been done

This work is part supported by the European Regional Development Fund through the Operational Programme for Competitiveness and
Internationalisation and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia (project
POCI-01-0145-FEDER-016826).
Authors’ addresses: M.D. Harrison, School of Computing, Newcastle University, Urban Sciences Building, Newcastle upon Tyne, UK; P. Masci,
National Institute of Aerospace, Hampton, VA, USA; J.C. Campos, HASLab/INESC TEC and Universidade do Minho, Braga, Portugal; C.
Fayollas, C. Martinie and P. Palanque, ICS-IRIT, University of Toulouse, France.
Authors’ addresses: José Creissac Campos, HASLab / INESC TEC and Universidade do Minho, Portugal, Braga, Portugal; Camille Fayollas,
University of Toulouse, France, ICS-IRIT, Toulouse, France; Michael D. Harrison, School of Computing, Newcastle University, UK, Newcastle
upon Tyne, England; Célia Martinie, ICS-IRIT, University of Toulouse, France, Toulouse, France; Paolo Masci, National Institute of Aerospace,
USA, Hampton, VA, United States of America; Philippe Palanque, ICS-IRIT, University of Toulouse, France, Toulouse, France.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor, or a�liate of the United States government.
As such, the United States government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do
so, for government purposes only.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/5-ART $15.00
https://doi.org/0000001.0000001

, Vol. 1, No. 1, Article . Publication date: May 2020.

This is the authors’ version of a paper accepted for publication at the ACM Transactions on Computer-Human Interaction.

The published version can be found in ACM Transactions on Computer-Human Interaction, 27(5), August. DOI:10.1145/3404199

2 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

to provide tool support for the analysis of use related software requirements. Tools for modeling and analysis
of critical user interfaces require additional characteristics to support a multidisciplinary team of designers
from di�erent engineering disciplines, including, for example, domain experts (to establish design requirements
and interpret compliance), human factors engineers (to run user studies), formal methods analysts (to verify
compliance of a system design with design requirements), and software engineers (to generate prototypes and
develop software from veri�ed user interface models).
Signi�cant work has been done to create tools that combine user centered design and formal veri�cation

technologies. However, in practice these tools support di�erent levels of description and di�erent types of analysis,
ranging from aspects of human-machine interaction at the micro-level, e.g., layout and behavior of user interface
widgets, to the analysis of user tasks and the wider socio-technical system within which the interactive system is
used. To address these di�erent, use related, safety concerns correctly, it is important that developers choose the
most appropriate tool, based both on the analysis needs and in a form that makes sense to the teams that typically
perform these processes. It is important to consider how the process and results are presented to these teams.
Clear guidelines and detailed benchmarks that are necessary to choose the right t ool are, as yet, unavailable. The
aim of this paper is to make a �rst step to address this gap.
This paper explores the role of formal analysis tools in the model based design and implementation of

interactive systems, and in particular, their role in supporting use related safety of interactive systems. It does
this by comparing three model based analysis tools (CIRCUS [34], PVSio-web [61], and IVY [19]) and their ability
to support the di�erent stages. Each provides a di�erent focus on the design process. For example, while CIRCUS
supports task models explicitly, IVY and PVSio-web focus particularly on the device model, and PVSio-web
further provides a prototyping environment which allows a richer exploration of the design decisions. These tools
are distinctive because they have their foundations in formal veri�cation technologies and are chosen because
the developers of each tool claim safety analysis as an important justi�cation for their development. Furthermore
these three tools each cover some aspects of the modeling, prototyping, veri�cation, and validation of critical
user interfaces, focusing on user interface design issues. As will be discussed in Section 9 they are not unique in
this respect but they are representative of the current state of similar formal analysis tools. The paper introduces
criteria that aim to clarify understanding of the appropriateness of each tool while at the same time providing a
foundation for assessing which tools are best for which design problem. The aim is that this evaluation should
provide developers with illustrations of how expert users of the tools are able to analyze a range of usability
and safety properties of the system. It is hoped that these illustrations may be used by developers as guidance,
to enable choice of the most appropriate tool for their analysis needs. Each tool (with the exception of parts of
the PVSio-web tool) has been used exclusively by the community who developed it. However the tools have
been used to provide analyses of systems that have many users. The intention of the evaluation is to encourage a
broader community to consider using them within their own organizations.

The paper builds on an earlier paper [35] which provides a less detailed comparison of CIRCUS and PVSio-web.
Contribution. The novel contributions of the paper are:

• a detailed exploration of the role of formal tools during the stages of model based analysis of critical user
interfaces;

• an extended set of criteria that can be used for evaluating a model based analysis tool for critical user
interfaces;

• an exploration and comparison of the three model based analysis tools through the medium of a case study.

Organization. The paper is organized as follows.
• Section 2 provides an overview of the three tools that form the basis for the comparative evaluation.
• Section 3 describes the evaluation method and introduces the groups of criteria that are used as the basis
for the comparison.

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 3

• Section 4 introduces the design problem which is based on a subsystem of the Flight Control Unit of the
Airbus 380.

• Sections 5, 6 and 7 contain the evaluations of the three tools applied to the design problem.
• Section 8 summarizes the results of the evaluation.
• Section 9 discusses other related tools that provide some of the elements of the tools evaluated in the paper.
• Section 10 concludes the paper.

2 THE SELECTED ANALYSIS TOOLS
The tools were selected according to their ability to support the engineering of safety critical user interface
designs:

• User centered design. The tool should support the three phases of a user centered design process:
requirements de�nition; detailed user interface design; design evaluation.

• Formal veri�cation. The tool should support the use of formal (mathematical) veri�cation technologies,
as recommended by standards in critical application domains such as avionics and healthcare.

• Maturity level. The tool should have a stable release, and should have been applied successfully to realistic
examples.

• Tool updates. The tools should be under active development, and new releases of the tool should continue
to be available.

• Tool availability. The tool should be available free of charge for academic use.

2.1 CIRCUS
CIRCUS1 (Computer-aided-design of Interactive, Resilient, Critical and Usable Systems) is an integrated de-
velopment environment that embeds two types of models: system models (covering functional core, dialog
and interaction techniques) and hierarchical task models (describing user actions, user knowledge, strategies,
information and devices used to reach a goal). CIRCUS is available only through research collaboration. The tool
(or some of its components) have been deployed in organizations (e.g., CNES) and companies (e.g., Airbus and
Thales).

The CIRCUS environment aims to support multi-disciplinary teams of software engineers, system designers
and human factors experts. It is embedded within the NetBeans2 platform and its architecture is presented in
Figure 1. CIRCUS consists of the following components:

• HAMSTERS enables the editing and simulation of task models. The tool can be used to ensure consistency,
coherence, and conformity between assumed or prescribed user tasks and the sequence of actions necessary
to operate interactive systems [6]. The notation used in the tool makes it possible to structure users’ goals
and sub-goals into hierarchical task trees. Mathematical operators such as >> (meaning sequence) are
available for expressing temporal relationships among tasks as well as for the modeling of: specialized task
types; explicit representations of data and knowledge; device descriptions; genotypes and phenotypes of
errors and collaborative tasks.

• PetShop is a tool for creating, editing, simulating and analyzing system models using the ICO (Interactive
Cooperative Objects) notation [56, 68]. The ICO notation allows developers to specify the behavior and the
appearance of interactive systems. The notation uses Petri nets for describing dynamic behaviors, and uses
object-oriented concepts (including dynamic instantiation, classi�cation, encapsulation, inheritance and
client/server relationships) to describe structural or static aspects of the system. In the ICO UIDL, an object
is an entity featuring four components: a cooperative object which describes the behavior of the object, a

1Documentation can be found at https://www.irit.fr/recherches/ICS/documentation/ and contact address is palanque@irit.fr
2Information about NetBeans can be found at https://netbeans.org/

, Vol. 1, No. 1, Article . Publication date: May 2020.

4 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

Fig. 1. The architecture of the CIRCUS environment

presentation part, and two functions (the activation function and the rendering function) which make the
link between the cooperative object and the presentation part. Prototyping is therefore done by using Java
widget libraries in the presentation part, or by invoking Java code dedicated to presentation [67].

• SWAN is a tool for the co-execution of PetShop models and HAMSTERS models [6]. The tool allows
developers to establish correspondences between system behaviors and tasks, and perform automated
system testing by means of co-execution [16].

2.2 PVSio-web
PVSio-web is an open source toolkit formodel based development of user interfaces. The toolkit can be downloaded
from github3 and www.pvsioweb.org.

The toolkit aims to support a multi-disciplinary team of user interface engineers, domain experts, and software
analysts. This support is realized by integrating specialized components designed for di�erent target users. In its
current version (2.2), the toolkit includes seven main components (see Figure 2):

• Prototype Builder. This component allows developers to create the visual aspect and the logic of operation
of a device prototype. The visual aspect of the prototype is an interactive picture of the device realized using

3https://github.com/thehogfather/pvsio-web

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 5

Web technologies. The logic of operation, the model of interactive behavior of the system, is developed in
the language of the Prototype Veri�cation System (PVS) [70].

• Simulator. This component renders the visual appearance of a prototype within a Web browser. The
logic of operation of the prototype is executed in PVSio [65], the native component of the PVS system for
animating PVS models. User actions over input widgets (e.g., button presses) are translated by the Simulator
into PVS expressions that can be evaluated in PVSio. The result of the PVSio evaluation is rendered on the
Web browser using the output widgets of the prototype, so that the visual appearance of the prototype
closely resembles that of the real system in the corresponding states.

• Storyboard Editor. This editor facilitates the development of preliminary mockup prototypes based on
story-boards. Developers can load mockup pictures of di�erent screens, de�ne input widgets on the pictures,
and link user actions attached to input widgets with the transitions between screens.

• Emucharts Editor. This component facilitates the creation of PVS models using visual diagrams known
as Emucharts. These diagrams are based on the Statecharts notation [48].

• Model Editor. This component allows developers to edit PVS models. The editor provides syntax high-
lighting, auto-completion, search, and compile. A �le browser incorporated in the model editor allows
developers to select, rename, delete and create �les and directories.

• Co-simulation Engine. This component enables integrated simulation of PVS models and other models
developed with di�erent simulation frameworks, e.g., Simulink. Two co-simulation engines are currently
implemented: an internal engine based on a WebSocket protocol, and an external engine [60] based on a
communication and co-ordination middleware [89]. A preliminary version of a third co-simulation engine
based on the FMI standard4 is described in [75].

• Property proving assistant. This component includes the PVSio [65] environment and the PVS [70]
theorem proving assistant, which are developed and maintained by SRI International and NASA Langley.
PVSio is used during simulations to evaluate PVS expressions generated by the PVSio-web Simulator. The
theorem prover is used for formal analysis of use related safety properties of the prototypes. Initial support
for automatic instantiation and veri�cation of use related property templates [46] is available in the latest
release of the toolkit.

2.3 IVY Workbench
IVY is a tool for model based analysis of interactive systems designs. It is free for academic use, and can be
downloaded5.
The tool consists of a set of plug-ins that provide a front end to the NuSMV model checker [23]. The toolkit

supports a notation, Modal Action Logic (MAL), that enables the speci�cation of interactive systems and provides
a set of property templates designed to aid the development of appropriate properties for the analysis of the
model. The results, which include traces provided by the model checking analysis when a property fails to be
true, are visualized. The tool o�ers a selection of visualization formats. The aim in developing IVY was to provide
representations and analysis tools that were more easily usable by user interface developers, and in which the
results could be communicated e�ectively within an interdisciplinary team of software engineers and formal
methods experts. The IVY toolkit architecture is organized into an extensible set of interoperable components. In
its current version, the toolkit includes four components (see Figure 3):

• MAL editor. This component provides a standard text editor with some support for visualizing the structure
of MAL models. A simple structural pattern is used for aiding the development of the MAL speci�cation.
The modeling language is based on Structured MAL [82]. MAL (Modal Action Logic) is a (deontic) modal

4http://fmi-standard.org
5http://ivy.di.uminho.pt/

, Vol. 1, No. 1, Article . Publication date: May 2020.

6 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

PVSio-Web

Model
Editor

Prototype
Builder

PVS

Build formal specifications
Validate specifications
Interpret results

PVS model

Templates

Developers
Formal methods novices and experts

Domain experts
End users

User interaction PVSio-Web component
External toolData flow

Interaction with external tools

Simulator
View

PVSio Wrapper

Emucharts
Editor

Model
Generator

Visual Editor User
action

Device
state

Co-Simulator

MathWorks

Fig. 2. The structure of PVSioweb

logic that incorporates a notion of action. Structured MAL adds mechanisms for structuring the speci�cation
which are used to express the notion of interactor [29, 76]. Interactors are modules that have a state (de�ned
by attributes) which is (partially) made available to the user through some presentation medium, and a set
of actions (some available to users, some internal) that act on that state. MAL describes a logic of actions
and is used to write production rules that describe the e�ect of actions on the state of the device. This
style of speci�cation was used because there is some evidence that it is found easy to use by software
engineers [63] and preferred to the notation used by the NuSMV model checker. The language also enables
the expression of when an action is allowed, using permissions. Non-determinism is possible when more
than one action is allowed in the same state of the described model and/or when an action does not fully
determine the next state of the system

• Property editor. This component supports the formulation of properties of the model. Properties are
expressed in the CTL notation (as used in NuSMV). Assistance is provided in formulating the properties
using templates or patterns. The analyst is able to instantiate a property template with the attribute or
action names de�ned in the MAL model.

• Trace visualizer. If a property fails to be true of the model a counter-example is produced. This provides
a witness indicating one case where the property has failed. The IVY tool enables a variety of formats for
describing counter-examples including a matrix notation showing the values of all the attributes of the
state at each step of the execution of actions, and a variant of a UML activity diagram.

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 7

Fig. 3. The structure of IVY

• Trace simulator. The simulator enables the production of traces dynamically. It is possible to explore
alternative paths, and therefore an analysis of “what if” scenarios.

3 EVALUATION METHOD
The method adopted for the evaluation of the tools is based on a generic development process described by
Billman et at [10]. They discuss two di�culties: (1) when change is easy then information to guide change is
scarce; (2) when information is available then change is di�cult. Billman et al. propose a generic development
process that extends and develops Boehm’s spiral model [12]. This generic process consists of three phases:

(1) a work and task analysis loop designed to establish criteria for assessing the adequacy or e�ciency of the
technology to support the work for which it is designed;

(2) an early prototyping loop which provides rapid feedback about the e�ectiveness of a solution and how
much the technology is necessary for the work;

(3) a full scale prototyping loop which takes fuller functionality to assess the proposed solution in a richer
information environment.

The criteria that have been developed here have a grouping that is orthogonal to these phases. Criteria �rst
concern the general characteristics of the tool in terms of how much of the development process it assesses, who
can use the tool or the information it provides and whether the tool can be extended. Criteria then focus on three
concerns that span the phases. These are the means of producing models, the mechanisms for prototyping and
the means of analysis. Evaluating the tools therefore involves the following steps.

• Criteria are identi�ed that are important for modeling and analysis of critical user interfaces.
• A design problem is introduced: a �ctional enhancement to an existing safety-critical user interface.
• The means by which each tool can be applied to the example is discussed assessing the performance of the
tool against each group of the criteria.

, Vol. 1, No. 1, Article . Publication date: May 2020.

8 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

To ensure best and most e�ective use of the tools, the application of each tool to the example was carried out
by a member of the team that had developed the tool. The criteria and the design problem are introduced in
the following sub-sections. The application of the tools to the example is described in Sections 5, 6, and 7. The
criteria will be applied using the design problem described in Section 4 to illustrate their application.

3.1 The criteria
Based on experience using and developing tools for model based analysis of critical user interfaces, 22 criteria
were identi�ed to highlight the characteristics of the tools. The criteria are summarized in four groups designed
to represent how well the candidate tool performs against the various aspects of the development and analysis of
safety critical interactive systems. The criteria are qualitative and are designed to be of general application.

Group 1: General aspects of the tool. The �rst group are summary criteria. General features of interactive systems
design and analysis are a focus. Criteria assess how well the tool supports the stages of a typical development
process, whether it provides support for multi-disciplinary use and whether the tool itself supports an explicit
development process. Criteria also relate towhether the tools can be extended or tailored to particular requirements
and what technology is used that aids these adaptations.
(1) Scope/purpose of the tool within the development process. At what stage in a user centered design

process can the tool be used, e.g., when exploring conceptual user interface design, when exploring design
requirements, when analyzing a system design against its design requirements.

(2) Support formultidisciplinary teams.What are the target users of the tool (e.g., domain experts, software
engineers, human factors specialists) and which functionalities of the tools can support multi-disciplinary
work among target users.

(3) Related development process. Which development process could be supported by the tool, e.g., user
centered design, waterfall development process, agile development.

(4) Tool features. Which aspects of the system can be modeled and analyzed, e.g., modeling of user tasks and
goals, analysis of usability properties, simulation of user tasks.

(5) Tool extensibility. Which aspects of the tool can be customized for speci�c needs that are not provided
by the tool, e.g., to model systems from di�erent application domains, or to perform a di�erent type of
analysis.

(6) Prerequisites.What background knowledge is required to use the tool, e.g., distributed systems, object
oriented languages, Petri Nets, task modeling, model checking, theorem proving.

(7) IDE instance and principle.What technology is used for the development of the tool, e.g., Eclipse API,
Netbeans API, Web technologies.

(8) IDE availability.Which type of distribution is available, and under which conditions of use, e.g., snapshot,
demo, downloadable, open source.

Group 2: Modeling criteria. The second group of criteria focus on the type of modeling supported by the tool.
Criteria focus on the modeling notation as well as the theory paradigm supported by the notation. An important
criterion relates to mechanisms for structuring speci�cations. Criteria also consider how editing of a speci�cation
is supported as well as any checking of the speci�cation under development.
(9) Modeling paradigm. The modeling approach supported by the tool, e.g., event-based, state-based, data-

�ow based, declarative.
(10) Modeling language. The notation supported by the tool to represent relevant aspects of the system under

analysis, e.g., Petri Net, state machines, higher-order logic.
(11) Structuring models. Mechanism for model organization, e.g., object-oriented, functional, component-

based.

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 9

(12) Model editing features. Support provided by the tool for developing models, e.g., textual, visual, auto-
completion support.

(13) Suggestions for model improvements. Support for checking compliance with best modeling practice
and design patterns, e.g., strengthening of pre-conditions.

Group 3: Prototyping criteria. The third group of criteria focus on the means of developing prototypes and styles
of interaction supported by prototypes. Criteria focus on support for prototype building as well as the execution
environment for a developed prototype. Criteria also focus on the interaction techniques that can be supported
and whether code can be generated from the prototype.
(14) Support for prototype building. Environment provided for de�ning the visual appearance of the user

interface, and to link user interface widgets to functionalities de�ned in a model, e.g., visual editor, library
of widgets.

(15) Execution environment of the prototype. Technology used to deploy the prototype, e.g., Java virtual
machine, Javascript execution environment.

(16) Human-machine interaction techniques. What user interactions can be captured/de�ned by the tool,
e.g., Pre-WIMP (input dissociated from output), WIMP, post-WIMP, tangible, multitouch, multimodal.

(17) Code generation. Capability provided by the tool for translating the prototype into code for a physical
prototype or the �nal product, e.g., C, C++, Java.

Group 4: Analysis and verification criteria. The fourth and �nal group is concerned with analysis of a model or
corresponding prototype. First criteria are concerned with the type of veri�cation supported and tools provided
to support it. Also of concern are the support for usability testing and whether there is support for analysis of
the broader sociotechnical system. Finally a concern is with issues of scalability.
(18) Veri�cation type. Types of model based analysis supported by the tool, e.g., functional veri�cation,

performance analysis, hierarchical task analysis.
(19) Veri�cation technology. Approach used in the tool to perform the analysis, e.g., theorem proving, static

analysis, model checking. This can give developers insights about the level of completeness of the analysis
and the level of automation of the veri�cation tasks.

(20) Scalability of the analysis. What complexity and size of models can be analyzed with the tool, e.g.,
illustrative examples, industrial scale.

(21) User interface testing.Whether test suites for the �nal product can be generated from the model, e.g.,
automatic generation of input test cases.

(22) Support for the analysis of the wider socio-technical system.Whether the tool supports extending
the analysis of a single device to include aspects of the context within which the device is used, e.g.,
teamwork, human-human collaboration, organization.

4 A SAFETY-CRITICAL CASE STUDY
The example adopted for the evaluation of the tools is based on a subsystem of the Flight Control Unit (FCU) of
the Airbus A380. The FCU is an interactive hardware panel with several di�erent buttons, knobs, and displays
(see Figure 4) which allows �ight crew to manipulate auto-pilot parameters (e.g. altitude, speed and heading) as
well as setting information to be displayed using the Navigation Displays (ND). One ND is available for each
pilot as presented at the bottom of Figure 4. Further details of the example are available6.

A future cockpit design is considered. The interactive hardware elements of the FCU panel are to be replaced
by an interactive graphical application rendered on one of the cockpit displays (see Figure 5). This graphical
software (hereafter, referred to as FCU Software) would provide the same functionalities as the corresponding
6https://sites.google.com/view/fcusoftware

, Vol. 1, No. 1, Article . Publication date: May 2020.

10 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

Fig. 4. The cockpit layout relevant to the proposed design

hardware elements. An envisaged design of this kind provides a comprehensive set of modeling and analysis
challenges. It is proposed that the FCU Software would o�er two components relevant to the present exploration:
an Electronic Flight Information System Control Panel (EFIS CP), for con�guring the piloting and navigation
displays (ND); and an Auto Flight System Control Panel (AFS CP), for setting the autopilot state and parameters.

To keep the design problem simple the EFIS Control Panel only is considered. The right side of the EFIS Control
Panel (see right-hand side of Figure 5) is dedicated to the con�guration of the Navigation Display (ND) and the
top part provides buttons for adding or removing information on the ND. For instance, WPT button adds the
way-points information on the ND. The DropDownComboBoxes at the bottom allow the pilot to choose display
modes on the ND (e.g. LS for Landing System or VV for Velocity Vector) and range of the weather radar (e.g. 160).
The left side of the EFIS CP is dedicated to the con�guration of the barometer settings. Pilots interact with

the FCU Software via the Keyboard and Cursor Control Unit, that integrates a keyboard and track-ball (see
the leftmost picture in Figure 5). When starting the descent (before landing), pilots may be asked to con�gure
the barometric pressure to the one reported by the airport. The barometric pressure is used by the altimeter as
an atmospheric pressure reference in order to process correctly the aircraft altitude. To change the barometric
pressure, pilots select QNH mode, then select the pressure unit (which depends on the airport), and then edit the
pressure value in the EditBoxNumeric. The EFIS CP panel is composed of several widgets: two CheckButtons
enable pilots to select the pressure mode which value is either Standard (STD) or Regional Pressure Settings
(QNH). When in QNH mode, a number entry widget (EditBoxNumeric following ARINC 661 terminology [5])
enables pilots to set the barometric reference value. When in STD mode, it is not possible to enter a value in
that EditBoxNumeric. Finally, a button (PushButton labelled INHG!HPA on the Figure) enables pilots to switch
the barometer units between inches of mercury (inHg) and hectopascal (hPa). When switching from one unit to
the other, a unit conversion is triggered, and the barometer settings value on the display is updated accordingly.
When the barometer unit is inHg, the valid range of values is [22, 32.48]. When the unit is hPa, the valid range

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 11

Fig. 5. Keyboard and Cursor Control Unit and Flight Control Unit So�ware.

is [745, 1100]. If the entered value exceeds the valid value range limits, the software automatically adjusts the
value to the minimum (when over-shooting the minimum valid value) or the maximum (when overshooting the
maximum valid value).

Some requirements of the proposed design
The following use related requirements will provide an introduction to the analysis capabilities of the tools. They
are intended to show simple examples of the requirements that might be relevant for this particular design. Other
examples, relating to FDA use centered requirements for medical devices can be found, for example, in [46, 59].
The following four requirements relate to the ease of access to features of the interface.

R1: reinitialisability It should always be possible to return to the initial state of the FCU through a single
action. This requirement addresses the problem that the user might become disorientated and locked into
some feature of the interface. It also guarantees that the use of the system does not alter its functioning.

R2: availability of buttons The STD and QNHmodes should always be accessible through a single action. This
requirement ensures accessibility of the two main modes of the design and ensures that the mode can be
changed through a simple action.

R3: mutual exclusion The STD and QNH modes should be mutually exclusive. The only means of change from
one mode to another should be the designated actions described in R2. This ensures that the design does
not allow the user to stray into another mode without using the STD and QNH buttons.

R4: reversibility Actions should be available that are reversible in the sense that an action’s e�ect on relevant
state variables may be undone by a following action. This ensures that an action can be recovered from by
performing a simple procedure.

, Vol. 1, No. 1, Article . Publication date: May 2020.

12 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

5 EVALUATION OF CIRCUS
5.1 General aspects of the tool
CIRCUS allows human factor experts to gather information during the task analysis phase as well as to check the
behavior through the simulation of task models using the HAMSTERS tool. The tool also enables, using the ICO
notation, modeling of the entire interactive system from drivers of the input devices [1], interaction techniques
[39] to interactive applications [69]. User interface prototyping capabilities are provided by the NetBeans IDE
and therefore limited to high-�delity prototyping of WIMP interactions. More sophisticated interfaces can be
programmed in JavaFX, for example, interactive cockpit multi-touch interfaces described in [38]. Early prototyping
is outside the scope of CIRCUS. Interactive system models and task models can be inter-connected to check their
compatibility and to simulate them [72]. A Java-based API allows developers to extend CIRCUS with additional
features, e.g., to connect the user interface simulator to cockpit software simulators [4], or to extend the analysis
modules with external Petri net analysis tools [84]. The work�ow supported by the tool includes six steps:
Step 1: Task analysis and modeling. This step identi�es goals, tasks, and activities that are intended to be
performed by the operator, modeled using the HAMSTERS tool. This also enables description of use error related
scenarios, providing a basis for assessing the costs of recovering from errors [30].
Step 2: Workload and performance analysis. HAMSTERS enables di�erentiation between cognitive, motor,
and perception tasks and represents the knowledge and information needed by the user to perform a task. This
enables qualitative analysis to assess workload and performance. For example, the number of cognitive tasks and
information that pilots need to remember, may be e�ective indicators for assessing user workload [34].
Step 3: User interface look and feel prototyping. The CIRCUS environment is built on top of the NetBeans
platform and therefore it is possible to produce rapid, high-�delity prototypes of the look and feel of a design
using Rapid Application Development (RAD) tools.
Step 4: User interface formal modeling. Formal modeling is achieved using the ICO notation. The formal
models can embed qualitative and quantitative time and, use the underlying Petri nets to describe concurrent
behavior and dynamic instantiation [39].
Step 5: Formal analysis. ICO models can be analyzed using techniques for high-level Petri nets (e.g. symbolic
graph calculation [49]) or, alternatively, techniques related to the underlying Petri net model. These analysis can
be presented to the analyst using CIRCUS, interleaved with the editing and simulation of the model to support
the correction of detected modeling faults [33]).
Step 6: Compatibility assessment between task models and user interface models. The task model and
the formal model of the user interface behavior can be analyzed in terms of their mutual completeness and
consistency.

Summary criteria
scope/purpose: interactive system prototyping, development, and analysis;
support for multi-disciplinarity: human factor expert performing task analysis and building task models in

HAMSTERS, software engineers;
related development process: user centered design (task-based design only), iterative development, model

based engineering;
tool features: user task and goals description, interaction logic (dialog) and interaction techniques modeling,

interactive system prototyping, support for veri�cation of generic properties, assessment of compatibility
between user tasks and interactive system prototype;

tool extensibility: user task and goals description (with extensibility features of the HAMSTERS notation itself
(see [57]), interaction logic (dialog) and interaction techniques modeling, interactive system prototyping,

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 13

Fig. 6. Extract of the task model for the user goal “Perform descent preparation”.

support for veri�cation of properties, assessment of compatibility between user tasks and interactive system
prototype;

Prerequisites: object-oriented analysis and programming; high-level Petri nets (for PetShop), Java programming,
distributed systems, hierarchical task modeling;

IDE instance and principle: Netbeans Visual API;
IDE availability: documentation can be found at https://www.irit.fr/recherches/ICS/documentation/ and contact

address is palanque@irit.fr.

5.2 Modeling features of CIRCUS
The CIRCUS environment provides two main modeling features: the HAMSTERS tool enables the modeling of
user tasks; the PetShop tool enables the modeling of the interactive system behavior. These two features are
detailed below using the example.

5.2.1 Task modeling. HAMSTERS has many of the characteristics of other task analysis notations (see, for
example, [52, 64]). It is distinctive in that it includes informative annotations to goals and subgoals. Hence in
Figure 6 (this is an extract of the full model7) the root node of the tree “Perform descent preparation” is annotated
as a goal. Sub-goals are similarly annotated as such. Subgoals that involve processing by the operator are also

7https://sites.google.com/view/fcusoftware

, Vol. 1, No. 1, Article . Publication date: May 2020.

14 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

Fig. 7. ICO model of the barometer se�ings behavior.

annotated distinctively (see, for example, “Interpret and analyse barometric pressure”). Information used in
completing a sub-goal is provided in a box marked “Inf”. Iterative sub-goals within a sequence of subgoals
(marked by “>>”) are identi�ed (see “change barometric pressure” for example). Decision subgoals are marked
with a “D” and action subgoals with an “A”. Further boxes marked with “DK” identify a design issue. In both the
cases that can be seen in Figure 6 these identify issues associated with the modes that may be required in any
design to achieve the task. The task representation, as displayed in this fragment, captures part of the procedure
described in the Flight Crew Operating Manual (FCOM) [2].
This task modeling activity is typically performed by Human Factors experts. In the context of aviation,

certi�cation speci�cations require that such task descriptions are performed and that the aircraft manufacturer
demonstrates that the �ight desk supports the performance of these tasks (see Certi�cation Speci�cation 25 -
section 13.028).

5.2.2 System modeling. The behavior of the FCU’s user interface is described in an ICO model. The barometer
settings feature of the EFIS user interface is presented in Figure 7. The left part of this model (enlarged in Figure 8)
is dedicated to the pressure mode. This mode can be in two mutually exclusive states: STD and QNH. The user can
switch from one mode to the other by clicking either the STD or QNH CheckButton (clicking on a CheckButton
while already in the corresponding mode is also possible but does not change the pressure mode). The state of
the pressure mode is represented by the presence of a token within “QNH” or “STD” places (in Figure 7, place
“STD” holds a token meaning that the current pressure mode is STD). Transitions “changePressureMode_1” and
“changePressureMode_2” correspond to the availability of event “qnhClick”. When one of these two transitions
is enabled (highlighted in blue in this example), the “qnhClick” event is available (thus enabling the QNH
CheckButton). The “changePressureMode_1” transition therefore makes it possible to switch from STD pressure
mode to QNH pressure mode as a result of clicking the QNH CheckButton. Transition “changePressureMode_2”
allows the user to click the QNH CheckButton when in QNH pressure mode without any impact on the pressure
mode. Similarly, transitions “changePressureMode_3” and “changePressureMode_4” correspond to the availability
of event “stdClick”.

Summary modeling criteria
Modeling language: ICO, HAMSTERS;
8CS-25-Amendment 17 - Certi�cation Speci�cations and Acceptable Means of Compliance for Large Aeroplanes. EASA, 2015

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 15

Fig. 8. ICO model of the barometer se�ings behavior. Right-hand side is a magnification of the le� part of the model
presented in Figure 7.

Modeling paradigm: event-based, state-based, procedural;
Structuring models: object-oriented, component-based;
Model editing features: graphical editing of taskmodels, ICOmodels and their correspondences, auto-completion

features of models, visual representation of properties on models, simulation of models at editing time;
Suggestions for model improvements: suggestions for model correction by real time analysis of models and

continuous visualization of analysis results);

5.3 Prototyping features of CIRCUS
The CIRCUS environment embeds the NetBeans Swing GUI Builder. This enables the prototyping of Java Swing
interfaces. Swing components must be connected explicitly to ICO models. Beyond Java Swing, the CIRCUS
environment also supports the use of the JavaFX libraries. The use of this feature has already been proposed as a
means of prototyping applications featuring multi-touch interactions [37]. In the case of the EFIS example user
interface a library of JavaBeans components has been created to provide assurance that widgets are compatible
with the ARINC 661 standard [3]. The resulting interface is displayed in the screen-shot of the EFIS presented on
the right-hand side of Figure 5.
When the interface prototype has been connected to the ICO models, the CIRCUS environment enables

interaction with the prototype using interactive simulation. When the user interacts with the prototype, user
actions on the input devices trigger events on the user interface elements that �re, in turn, transitions in the ICO
model as presented in [66].
The CIRCUS environment o�ers a logging feature so that so that all the evolutions of the ICO model (e. g.

token added to a place, �ring a transition . . .) following a user action on the user interface [71] are recorded. This
feature makes user testing possible by providing data about user performance which is very useful when tuning
multi-modal interaction techniques [71]. The CIRCUS environment does not provide a code generation feature.
However an ICO model (developed to describe application behavior) can be directly executed and therefore used

, Vol. 1, No. 1, Article . Publication date: May 2020.

16 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

Fig. 9. Incidence matrix and invariants automatically calculated from the underlying Petri net model from figure 7

“as is” as ICO transitions can call methods written in Java. This technique has been used in aviation applications
designed with the CIRCUS environment [8].

Summary prototyping criteria
support for prototype building: use of graphical user interface editor of NetBeans for standard interactions

(e.g. WIMP), possible to create interactive components and assemble them for non standard interactions
(e.g. multitouch); no low �delity prototyping;

execution environment of the prototype: Java Virtual Machine;
human-machine interaction techniques: pre-WIMP, WIMP, post-WIMP, multimodal, multi-touch. run-time

re-con�guration of interaction techniques;
code generation: run-time execution of ICO models (to support prototyping and co-execution of task and

system models).

5.4 Analysis and verification features
The CIRCUS environment provides two main analysis features: the PetShop tool supports automatic analysis of
the structure of the underlying Petri net; the SWAN tool provides the means to analyze whether the task model
is compatible with the system model. These two features are detailed below using the example.

5.4.1 Formal analysis and verification features of CIRCUS. CIRCUS enables the analysis of an ICO model to
provide data that can be used to demonstrate that well-formedness conditions are true of the model. The raw
analysis produces an “incidence matrix” (see Figure 9) that enables the calculation of:

siphon: a set of (one or more) places that cannot gain tokens from the initial marking (whatever transition is
�red);

trap: a set of (one or more) places that cannot lose tokens from the initial marking (whatever transition is �red);
liveness: siphons and traps can provide information about the Petri net liveness;

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 17

Fig. 10. Visual presentation of formal analysis results inside the PetShop tool. This model is the same as Figure 7 but presents
visually the analysis results. Transitions are green, indicating that there is no evolution in the model that removes the
availability of a transition. In terms of user interfaces, it means that whatever state the system is in, there is an interaction
sequence that will enable the widget associated with a transition. The pop-up pie menu on top of the image has been used to
display all the siphons including place InHg (under the pop-up menu).

place invariant: a set of (one or more) places that will always contain the same number of tokens (it cannot
gain or lose tokens from initial marking);

transition invariant: a set of (one or more) transitions that indicate a possible loop in the net i.e. �ring all of
them brings the net back to the state it started from.

The information about analysis and veri�cation results is presented in PetShop through two di�erent types of
visualizations:

• A dedicated panel (Figure 9) that presents the incidence matrix, the trap and siphons and the place and
transition invariants. Figure 7 shows the Petri net model generated for the case study.

• A dedicated look and feel within the main editing view as shown in Figure 10. The green overlay on the
places and transitions identi�es the node part of the model’s invariants otherwise the red overlay is used.
Places with yellow borders are siphons whereas traps use a blue stroke. To determine which nodes belong
to the same invariant, a modal pop-up menu is provided. The nodes belonging to the invariant are then
framed with a yellow border. The siphon shown in Figure 10, for example, contains “InHg”, “NewInHg”,
“InHgToCorrectOK”, “hPa”, “NewhPa”, “hPaToCorrect”, “hPaOK”. The analysis mode can be activated
without stopping either the editing or the simulation.

This raw data allows the veri�cation of the use related properties of the FCU. The ICO model, unlike the models
developed in PVS and IVY, involves the concurrent execution of processes. An initial step therefore involves
establishing that the behavior of the barometer settings application is free of deadlock: the underlying Petri
net is live as it contains two siphons that are marked with one token each and each of them contains a trap.
The requirements established in Section 4 can be addressed. The style of proof using the ICO model di�ers
from that described in the cases of PVS and IVY. While it is possible to demonstrate that requirements R1-R3
hold true, as is indicated below, proof of R4 requires more detail than the Petri net, as illustrated, provides. The
speci�cations produced in PVS and IVY add additional detail to the design that leads to initial failure of some of
the requirements as will be seen in the relevant sections.

, Vol. 1, No. 1, Article . Publication date: May 2020.

18 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

Fig. 11. SWAN example of co-execution.

R1: reinitialisability This is established by using the fact that the underlying Petri net is live and bounded.

R2: availability of buttons The “STD” and “QNH” radio buttons will always be active: the two corresponding
events (“stdClick” and “qnhClick”) will remain available whatever action is triggered. This is because at least one
transition corresponding to the availability of these events (the transitions “changePressureMode_3” and “change-
PressureMode_4” for the event “stdClick” and the transitions “changePressureMode_1” and “changePressureMode_2”
for the event “qnhClick”) will always be available.

R3: mutual exclusion The “STD” and “QNH” modes are in mutual exclusion: the pair of places “STD” and “QNH”
are part of a place invariant marked by only one token and therefore will always hold one (and only one) token. The
two transitions in the model, “changePressureMode_1” and “changePressureMode_2”, correspond to the same event
“qnhClick”. This could potentially lead to non-determinism in the model. However, as “changePressureMode_1”
has place “STD” as input place and “changePressureMode_2” has place “QNH” as input place, non-determinism is
avoided due to the mutual exclusive marking of these places. Whatever the evolution of the Petri net, there will
always be exactly one token in one of these two places. There are four transitions connected to these places;
two associated with the event click on the graphical widget STD (see event ::stdClick on the right-hand side of
the name of the transitions) and two associated with the event click on the graphical widget QNH (see event
::qkhClick on the right-hand side of the name of the transitions). Following commoner’s theorem (see [78]) this
demonstrates that whatever state the Petri net is in, two transitions will be available (one with ::stdClick event
and one with ::qnhClick event) which demonstrates that both QNH and STD buttons on the User interfaces will
always be available.

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 19

R4: reversibility The models presented in Figure 7 do not provide enough information to demonstrate reversibil-
ity of actions at a generic level. At a speci�c level reversibility can be performed, for instance between STD and
QNH states, as it is always possible to go from one of these states to the other one. More detailed modeling of the
EditBoxNumeric could have represented the fact that an input that is not validated triggers the system back to
the previously validated value (see for instance [31] page 175 Figure 9.15).

5.4.2 Analysis of the compatibility between the task models and the user interface models. This analysis step
gathers assurances that the task model and the formal model of the user interface behavior are complete and
consistent together (thus helping to guarantee that procedures followed by the operators are correctly supported
by the system). This may be used, for instance, to guarantee the e�ectiveness factor of usability as de�ned in the
ISO standard9 as demonstrated in [32]. The SWAN tool provides several functionalities to perform and support
this analysis.

First, it enables the editing of correspondences between the system model elements (e.g. places or transitions)
and task model elements (e.g. interactive input and output tasks). The editing of correspondences between the
task model (see Figure 6) and the ICO model (see Figure 7) of the case study is done by a dedicated editor (this
is shown in the detailed description10). This editor connects interactive input tasks (from the task model) and
system inputs (transitions from the system model) as well as system outputs (places from the system model) with
interactive output tasks (from the task model).
The co-execution of models may be launched (via the co-execution panel at the end of the lower right-hand

part), even if correspondence editing is not completed. Figure 11 depicts the co-execution of the system models
(right part), the task models (left part) and the visible part of the application of the case study (right part). As
explained before, the co-execution control panel stands in the lower part. The co-execution can be task driven (as
depicted in Figure 11) or system driven.

When using the task driven co-execution, the user selects the available tasks (from the task model) through the
co-execution control panel and the corresponding modi�cation is done within the system model. For instance, in
Figure 11, the “Click on QNH checkbutton” task has just been executed, on the system side. This corresponds
to the fact that the “ChangePressureMode_1” transition has been �red, thus the token contained in the “STD”
place transfers within the “QNH” place. At the same time, the user interface is updated (as presented in Figure 11
where the QNH checkbutton is selected, changing the previous STD selection).

The SWAN tool detects an error if the corresponding system element cannot be executed. Thus it provides
support for validation as it makes it possible to �nd inconsistencies between the two models, e.g., sequences of
user actions that should be available but are not because of inadequate system design. This feature allows the
SWAN tool to provide support for automated scenario-based testing of an interactive application [16].

Summary of analysis and verification criteria
veri�cation type: analysis is limited to static properties of the underlying Petri net; no representation of

requirements; simulation-based analysis through model animation;
veri�cation technology: theorem proving on the ICO model using invariants, traps and siphons calculation;

limited to the underlying Petri net of the ICO model;
scalability of the analysis: no limitation on scalability as matrix transformations is used; scalability issue as

properties have to be expressed outside of CIRCUS and there is no support to the analyst to check them;
user interface testing: automated execution of input test sequences recorded during interactions with the

prototype, either from tasks model or from ICO models;

9https://www.iso.org/obp/ui
10https://sites.google.com/view/fcusoftware

, Vol. 1, No. 1, Article . Publication date: May 2020.

20 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

support for the analysis of the wider socio-technical system: modeling of integrated views of the three
elements of socio-technical systems (organization, human and interactive systems); however, FRAM11-based
description of organization and variability of performance has only been addressed at a model level and
not at a tool level (see [58]).

6 EVALUATION OF PVSIO-WEB
6.1 General aspects of PVSio-web
PVSio-web combines a theorem proving assistant PVS [70] with a web based environment. The result is a tool
that enables the creation of realistic user interface prototypes that can be veri�ed and validated against usability
and safety requirements. A plug-in architecture allows developers to extend the tool with additional features, e.g.,
to introduce new prototyping front-ends, extend the widgets library, or introduce support for new veri�cation
technologies. The process supported by the tool includes the following steps:
Step 1. De�ne the behavior of the prototype. An executable PVS model is created that de�nes the logic of
operation of the system. The model’s structure follows an action-based pattern: a collection of state attributes
characterizes the state of the prototype, and a set of transition functions over the state attributes de�nes which
user actions are supported by the prototype. The Emucharts graphical editor provided by PVSio-web can be used
to complete this step. Developers who are familiar with the PVS notation can also use the native Emacs-based
model editor provided by PVS.
Step 2. De�ne the visual appearance of the prototype. The layout of the user interface and the characteristics
(position, size, etc.) of widgets are de�ned. PVSio-web provides a Prototype Builder environment that can be
used to complete this step. Developers who are familiar with web-based programming languages (HTML5 and
JavaScript), can also use standard web development tools.
Step 3. Model validation. Developers can: 1) check the well-formedness of the model in the PVS theorem
prover; and 2) assess the accuracy of the behavior of the prototype with respect to the real system by interacting
with the prototype or by analyzing plausibility properties in PVS.
Step 4. Formal analysis. Properties of the model representing, e.g., safety requirements, are analyzed by means
of simulation and theorem proving. The aim of simulation is to: 1) establish a common understanding among all
stakeholders (developers, end users, safety bodies, etc.) of the characteristics of the system and the meaning of the
requirements; and 2) perform lightweight formal veri�cation based on exploration of relevant test scenarios, e.g.,
based on the execution of sample input key sequences demonstrating situations where a given requirement is
either satis�ed or fails. The formal analysis complements and extends the simulation-based analysis by allowing
developers to check that requirements and properties of the model are satis�ed in all reachable model states
for all scenarios. In the current version of the toolkit, the formal analysis is carried out using the PVS theorem
proving assistant.

Summary criteria
scope/purpose: user interface prototyping and analysis;
support for multi-disciplinarity: software engineers and human factors via prototypes;
related development process: user centered design, model based design;
tool features: interaction logic modeling, rapid prototyping of user interface software, veri�cation of safety

requirements and usability properties, code generation and documentation;
tool extensibility: PVSio-web has a plug-in based architecture that enables the rapid introduction of new

modeling, prototyping, and analysis tools;
11Functional Resonance Analysis Method [47]

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 21

Prerequisites: state machines, PVS higher order logic and PVS theorem proving (only required for full formal
veri�cation);

IDE instance and principle: web technologies;
IDE availability: open source, downloadable at http://www.pvsioweb.org.

6.2 Modeling features of PVSio-web
The preliminary model of the proposed design of the EFIS is developed using Emucharts. This model serves the
same purpose as a sketch prototype and does not require an understanding of PVS. This model is used to de�ne
the overall modal behavior of the data entry system. An enhanced model can then be developed from this initial
model using PVS. The more detailed model describes accurately the following features: the modal behavior of the
data entry system; the numeric algorithm for units conversion; the logic for interactive data entry; and the data
types used for computation (double, integer, Boolean). For the purposes of illustration this model is con�gured as
a collection of sub-models linked by import relations. Both the graphical Emucharts Editor and the PVS Emacs
editor were used to develop the models.

The following fragments illustrate the models produced.
Modal behavior of the data entry system. The Emucharts diagram show in Figure 12 includes:

• 3 modes of operation (color-coded boxes labeled STD, QNH, and EDIT PRESSURE);
• 23 user actions and automatic data entry events (e.g., time-out timers);
• 9 status variables, representing the state of the system (units, display value, programed value, etc.).

The initial system mode is STD, denoted graphically by an arrow originating from a solid circle and entering the
labeled box STD. In STD mode, the pilot can only change units. This is modeled using two actions, click_hPa
and click_inHg, that leave and re-enter STD. These actions update the state variable corresponding to the
pressure value based on the selected units (either hectopascal or inches of mercury). An action click_QNH_RADIO
from STD to QNH represents the e�ect of the pilot selecting a di�erent mode (QNH) which enables editing of the
pressure value. A corresponding action click_STD_RADIO changes the data entry mode from QNH back to STD.
An action click_editbox_pressure from QNH to EDIT_PRESSURE models the beginning of the interactive data
entry phase, which is initiated by pilots when they select �eld QNH on the FCU. When in EDIT_PRESSURE mode,
actions click_digit_0 ... click_digit_9model the e�ect of pressing a button on the numeric keypad. Pressing
the decimal point is modeled with click_point. Action click_ESC allows pilots to terminate data entry and
restore the pressure value that was stored in the system before starting data entry. Action click_CLR models the
e�ect of pressing the clear button, which resets the display value to zero. A further action tick models internal
timers used by the data entry system to handle inactivity – data entry is automatically terminated and the input
is discarded if key presses are not registered for 60 seconds. PVSio-web includes a model generator that translates
the Emucharts diagram into a PVS model. This can be used a starting point for the enhanced model while at the
same time producing an executable form of the model that can provide the basis for the sketch prototype.
Numerical computations of the data entry system. The PVS model de�nes how the display value is updated
in EDIT PRESSURE mode, when the pilot interacts with the numeric keypad. The model includes a function
processKey (see Listing 1) that computes the new display value based on the registered key press (function
argument key of type KEY_CODE) and the current state of the data entry system (function argument st of type
state).
Type KEY_CODE is an enumerated type adopted to assign unique identi�ers (KEY_1, KEY_2, etc.) to each key.

The body of function processKey is a switch statement COND-ENDCOND containing conditional expressions in the
form cond! expr, where cond indicates the switch condition and expr indicates the expression to be evaluated
when the condition is true. A function digit? checks whether the key code is a numeric key.

, Vol. 1, No. 1, Article . Publication date: May 2020.

22 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

Fig. 12. Emuchart Editor with the diagram of the FCU data entry system.

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 23

processKey(key:KEY_CODE , st:state): state =
COND
digit?(key) -> click_digit(key)(st),
key = KEY_POINT -> click_POINT(st),
key = KEY_OK -> validate_data_entry(st),
key = KEY_CLR -> clear_data_entry(st),
key = KEY_ESC -> restore_display(st)

ENDCOND

Listing 1. Function processKey in PVS.

Type state is a PVS record type with seven attributes (see Listing 2): a string display represents the content
of the display during data entry; a non-negative real number dispval represents the numeric value shown in
the display; a Boolean �ag pointEntered indicates whether a decimal point key press has been registered; a
non-negative real number programmedValue represents the pressure value currently stored in the system; a
�eld units indicates the current units (either inHg or hPa); and two bounded natural numbers (upto(MAX) is
a shorthand for identifying natural numbers up to a value MAX), integerDigits and decimalDigits, de�ne
how many integer and fractional digits have been registered. These two last attributes are necessary to limit the
number of digits that can be entered during data entry, and thus avoid exceeding the display capabilities.

1 state: TYPE = [#
2 display: string ,
3 dispVal: nonneg_real ,
4 pointEntered: bool ,
5 programmedValue: nonneg_real ,
6 units: UnitsType ,
7 decimalDigits: upto(MAX_DDIGITS),
8 integerDigits: upto(MAX_IDIGITS)
9 #]

Listing 2. Definition of type state in PVS.

The function click_POINT illustrates some of the fundamental features of the PVS language and some aspects
of the adopted modeling patterns. The other functions de�ned in the PVS theory have a similar structure.

1 click_POINT(st: state): state =
2 IF pointEntered(st) THEN st
3 ELSE st WITH [
4 pointEntered := TRUE ,
5 display := display(st) + �.�
6] ENDIF

Listing 3. Definition of function click_POINT

The function has one argument, st of type state, representing the current state of the data entry system. The
function returns the state of the data entry system after the execution of the function. The modeled behavior
is as follows. If the decimal point has already been registered (this is checked by assessing the value of �ag
pointEntered in the current state, see line 2 in Listing 3), the state of the system does not change12. Otherwise, if
the decimal point has not been entered, the pointEntered �ag is set to TRUE, and a decimal point is concatenated
12Ignoring decimal point presses after the �rst decimal point has been entered ensures that the display value is always well-formed (i.e., the
display value has at most one decimal point).

, Vol. 1, No. 1, Article . Publication date: May 2020.

24 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

Fig. 13. PVSio-web Prototype Builder while developing the EFIS prototype.

to the string currently shown on the display. In the PVS language, string concatenation is obtained using the
addition operator (+).

Summary modeling criteria
Modeling language: Emucharts, PVS;
Modeling paradigm: event-based, state-based, functional;
Structuring models: module-based;
Model editing features: graphical and textual editing of models, automatic generation of PVS models;
Suggestions for model improvements: strengthening of pre- and post- conditions of transition functions

(based on proof obligations generated by PVS);

6.3 Prototyping features of PVSio-web
A visual prototype can be built whose behavior is driven by the formal models described in the previous subsection.
The two approaches are illustrated. The PVSio-web Prototype Builder is designed to aid the construction of
sketch prototypes while the alternative requires the use of standard web development tools and enables the
development of functional prototypes that allow a more comprehensive customization of the front-end of the
prototype.
Prototype Builder. A picture of the EFIS panel and of the Keyboard and Cursor Control Unit are loaded into the
PVSio-web Prototype Builder (see Figure 13). Interactive areas are then created over relevant buttons and display
elements (see Figure 12). Fifteen input areas were created over the picture of the Keyboard and Cursor Control
Unit, to capture user actions over number pad keys, action keys (ENT, CLR, ESC), and the units conversion

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 25

button. Four display elements were created for rendering relevant status variables of the PVS model: two pairs of
overlapping display elements are used to model the rendering of the value and units of the barometric pressure in
STD mode and in QNH mode. Overlapping displays were necessary because in QNH mode the display elements
change visual appearance and become responsive to tap actions performed over the element. These tap actions
trigger the evaluation in the PVSio-web backend of function click_editbox_pressure. Two LED elements
render the status of the STD and QNH CheckButtons based on the current mode of operation of the system.
WebDevelopment Tools. Aweb page is created that uses a picture of the EFIS panel as a basis for the prototype.
This is done by creating an HTML �le with a <div> section that includes a standard tag (see Listing 4).
The style of the <div> section is used to render the image at a �xed position. The JavaScript module imported
at the end of the HTML �le (using the tag element <script>) contains the de�nitions of the widgets for the
prototype. These de�nitions are constructed using the APIs provided by the PVSio-web widgets library.

<html>
<div style=�position:absolute; top:0px; left:0px;�>

</div>
<script type=�text/javascript� src=�require.js� data-main=�index.js�></script>
</html>

Listing 4. File index.html used for importing the background image of the prototype and the JavaScript file with the widgets
definitions.

An example widget de�nition is in Listing 5. It uses a constructor BasicDisplay to create the display element
associated to the data entry display. The �rst parameter of the constructor is a unique identi�er for the display
element. The second parameter is a JavaScript object specifying the position and size of the display. The third
parameter is another JavaScript object specifying optional characteristics of the display. Di�erent widget types
support di�erent types of options. The options of the widget display allow developers to change the visual
appearance of the button (font size, font color, and background color), specify the state variable in the PVS model
associated with the display (data_entry.display in the example shown in Listing 5), and specify when the
widget is visible (in this case, when the system is mode STD).

var display_val = new BasicDisplay(�display_val�,
{ top: 333, left: 16, height: 28, width: 100 },
{ fontSize: 16,

fontColor: �white�,
backgroundColor: �dimgray�,
displayKey: �data_entry.display�,
visibleWhen: �mode = STD� });

Listing 5. Example display widget created using the APIs of the PVSio-web widgets library

The visual appearance of all widgets is refreshed every time the state of the PVS model changes. This is done
in a function onMessageReceived, which is automatically invoked by PVSio-web when the PVSio-web back-end
evaluates a new system state. The function has two parameters (see Listing 6): err, which is non-null only if
an error occurred in the back-end; and event, a JavaScript object containing the textual string returned by the
PVSio-web back-end. A state parser method provided by PVSio-web parses the string and transforms it into a
JavaScript object. This object is then passed as parameter to the render method of each widget.

function onMessageReceived(err , event) {
if (!err) {

var state = stateParser.parse(event);
display_val.render(state);

, Vol. 1, No. 1, Article . Publication date: May 2020.

26 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

...
}
...

}

Listing 6. Function used to refresh the visual appearance of widgets based on the current state of the PVS model

Summary prototyping criteria
support for prototype building: visual editing, based on a picture of the real system;
execution environment of the prototype: Javascript execution environment, Lisp;
human-machine interaction techniques: Pre-WIMP, WIMP, post-WIMP, multimodal;
code generation: run-time execution of PVS executable models through the PVS ground evaluator (to support

rapid prototyping), and automatic generation of production code compliant to MISRA-C (only for formal
models developed using Emucharts diagrams)

6.4 Analysis and verification features of PVSio-web
Model Validation. The initial veri�cation e�ort is dedicated to checking well-formedness of the model and
ensuring that the behavior of the model is accurate with respect to the behavior of the real system.
Well-formedness is assessed by discharging proof obligations that are automatically generated by the PVS

theorem prover when type checking themodel. These proof obligations ensure coverage of conditions, disjointness
of conditions, and correct use of data types. The PVS model generated from the Emuchart generates 22 proof
obligations. The PVS model developed by hand generated 53 proof obligations. All the proof obligations were
discharged automatically by the PVS theorem prover thereby providing assurance that the developed model of
the FCU is well-formed.
Accuracy of the model’s behavior can be assessed manually, by interacting with the prototype, that is by

pressing buttons on the prototype user interface, and watching the results of the interaction using the prototype’s
displays. The prototype can also be assessed through usability evaluation, using appropriate communities of, for
example, pilots (see [42] for example). More exhaustive forms of validation based, for example, on co-simulation
of the model with the real system, could be realized using the PVSio-web infrastructure, but require substantial
e�ort.
Formal Analysis. Further analysis can be used to prove that requirements, either established during the
requirements elicitation process or as the design develops and details emerge, are true of the model. These
requirements include use centered requirements as discussed in [43], in particular use centered safety requirements
speci�ed by external regulators (see [46, 59]). To perform the analysis, relevant requirements need to be translated
into PVS theorems. PVSio-web helps developers to de�ne and analyze use related safety properties. A property
template editor allows developers to choose a property template, and to instantiate the template’s parameters for
the PVS model under analysis. A reversibility template allows easy formulation of the R4 requirement described
in Section 4 for example.
Formal analysis of the requirements described in Section 4 can be done using more details of the model

described in Section 6.2. Further information is required about the moding behavior of the proposed design. A
module which contains the data entry theory used for illustration in in Section 6.2 includes the data entry state.
The attribute data_entry of State was used when discussing the data entry theory.

1 State: TYPE = [#
2 mode: Mode ,
3 editbox_selected: bool ,

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 27

4 elapse: int ,
5 data_entry: state
6 #]

Listing 7. Definition of type State in PVS.

The mode of the FCU is represented by the type: Mode: TYPE = { EDIT_PRESSURE, QNH, STD }. An action
that describes the e�ect of selecting the STD button therefore is described by the function:

1 per_click_STD_RADIO(st: State): bool =
2 (mode(st) = QNH AND
3 (data_entry(st)�units = hPa)) OR
4 (mode(st) = QNH AND (data_entry(st)�units = inHg))
5

6 click_STD_RADIO(st: (per_click_STD_RADIO)): State =
7 COND
8 mode(st) = QNH AND (data_entry(st)�units = hPa)
9 -> LET st = leave(QNH)(st),
10 st = st WITH [data_entry := data_entry(st)
11 WITH [programmedValue := STD_HPA]],
12 st = st WITH [data_entry := data_entry(st)
13 WITH [dispVal := STD_HPA]],
14 st = st WITH [data_entry := data_entry(st)
15 WITH [display := trim(STD_HPA)]]
16 IN enter(STD)(st),
17 mode(st) = QNH AND (data_entry(st)�units = inHg)
18 -> LET st = leave(QNH)(st),
19 st = st WITH [data_entry := data_entry(st)
20 WITH [programmedValue := STD_INHG]],
21 st = st WITH [data_entry := data_entry(st)
22 WITH [dispVal := STD_INHG]],
23 st = st WITH [data_entry := data_entry(st)
24 WITH [display := trim(STD_INHG)]]
25 IN enter(STD)(st),
26 ELSE -> st
27 ENDCOND

Listing 8. Definition of function click_STD_RADIO

Two functions are described in Listing 8. The boolean function per_click_STD_RADIO speci�es when the
action is permitted to occur while click_STD_RADIO speci�es the e�ect of pressing the button. Additions to the
speci�cation such as these are su�cient information to enable an understanding of the PVS theorems that are
required to prove the requirements (R1-R4) of Section 4. The PVS theorems relating to R1-R3 are simply stated
while R4 is used to provide some insight into the proof process.
R1: reinitialisability.

This requirement is formulated in the PVS theorem speci�ed in Listing 9.

1 REINITIALISIBILITY: THEOREM
2 FORALL (pre , post: State):
3 ((mode(pre) = QNH AND per_click_STD_RADIO(post)
4 AND post = click_STD_RADIO(pre))

, Vol. 1, No. 1, Article . Publication date: May 2020.

28 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

5 IMPLIES (mode(post) = STD)) AND
6 (((mode(pre) = EDIT_PRESSURE) AND
7 (post = click_STD_RADIO(click_ESC(pre))))
8 IMPLIES (mode(post) = STD))

Listing 9. R1: reinitialisability

The “initial” state has mode STD. When the mode is QNH then the initial state can be reached by pressing the STD
button. When the mode is EDIT_PRESSURE, that is the pressure value is being edited, then an additional step is
required to leave that mode. For the purpose of the proof the ESC button is used and the theorem proves true. It
is clear therefore that the requirement, speci�ed in Section 4, of a single action is not satis�ed. The failure of the
requirement could trigger discussion about whether the EDIT_PRESSURE mode can be treated as a special case. It
should be noted that the failure of this property does not occur in the case of the ICO speci�cation (Section 5.4.1)
because the model in that case contains less detail relating to data entry. Similar issues arise in proving the other
requirements.
R2: availability of buttons.
This property checks that STD and QNH are always available. In fact this is not the case. When editing the

pressure, as discussed in relation to R1 it is necessary to exit the mode �rst.

1 QNH_STD_available(st: State): boolean =
2 (mode(st) = STD OR per_click_STD_RADIO(st)) AND
3 (mode(st) = QNH OR per_click_QNH_RADIO(st))
4 AVAILABILITY: THEOREM
5 FORALL (x: real , pre , post: State):
6 QNH_STD_available(init(x)) AND
7 ((trans(pre , post) AND (post /= click_editbox_pressure(pre)) AND
8 QNH_STD_available(pre)) IMPLIES QNH_STD_available(post))

Listing 10. R2: availability of bu�ons

This theorem (which can be found in Listing 10) requires a structural induction as will be discussed in more detail
when addressing the requirement R4. A function QNH_STD_available is formulated to simplify the expression
of the theorem. This property is not true of all states but it is true of all states that can be reached from the initial
state init(x), and by any of the states that can be reached by using any permitted action (these states are linked
by the relation trans). The proof of a theorem such as this one is discussed in relation to the requirement R4.
R3: mutual exclusion.

This requirement is formulated by PVS theorems (Listing 11) that treat each mode separately. The STD version
of the theorem is illustrated here. It also uses a structural induction. Here we want to prove that for all accessible
paths, if no explicit action is taken to change mode then the FCU will stay in the same mode.

1 EXCLUSIVITY_STD: THEOREM
2 FORALL (pre , post: State):
3 (trans(pre , post)
4 AND post /= click_QNH_RADIO(pre) AND mode(pre) = STD)
5 IMPLIES mode(pre) = mode(post)

Listing 11. R3: mutual exclusion (STD)

R4: Reversibility of user actions.
An action is reversible if the e�ect of the action on relevant state variables can be undone by some next action.

For the FCU data entry system, reversibility can be used to check, for example, that the escape (ESC) button

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 29

always allows pilots to exit data entry and revert the pressure value to the value before starting data entry. In
PVS, the property is expressed in Listing 12:

1 reversibility(st: State): bool =
2 (per_click_editbox_pressure(st) IMPLIES
3 (per_click_ESC(click_editbox_pressure(st))
4 AND
5 click_ESC(
6 click_editbox_pressure(st))�current_state
7 = st�current_state))

Listing 12. R4: Function used in reversibility

To prove the property for all inputs and all states, the PVS theorem in Listing 13 is formulated:

1 REVERSIBILITY: THEOREM
2 FORALL (pre , post: State):
3 (init?(pre) IMPLIES reversibility(pre))
4 AND ((reversibility(pre) AND
5 trans(pre , post)) IMPLIES
6 reversibility(post))

Listing 13. R4: reversibility

The PVS theorem uses structural induction. As already mentioned in relation to R2 and R3 the property
must hold for the initial system state, and given a generic state (pre) for which the property is true, then the
property is true of the next state (post) reached through any of the transitions available in that state. A predicate
trans identi�es which transitions are available in a given state (pre), and uses the transition relation to link
the given state (pre) to the next state (post). PVSio-web can generate the PVS theorem automatically, based on
instantiations indicated by the developer through the template dialog. The tool also generates a PVS tactic for
checking the property in the theorem prover. The tactic in this case involves the following steps:

• The �rst step is to remove the universal quanti�er. This is performed using the PVS command skosimp*
• The second step is splitting the formula, to treat separately the base case of the induction and the induction
step.

• The base case of the induction can be proved by using the prede�ned PVS strategy grind, which performs
automatic expansion of de�nitions and propositional simpli�cation.

• The induction step is proved by case splitting the available transition functions (this is done by expanding
predicate trans and the permission predicates for each transition action), and then applying grind to all
generated sub-goals.

This tactic is expressed as follows, using the language provided by the PVS proofLite extension:

REVERSIBILITY: PROOF
(then
(skosimp *)
(branch (prop)
((then(comment �induction base�)

(try (grind :if-match nil)
(propax) (postpone)))

(then(comment �inductive step�)
(expand �trans�)
(expand �per_click_editbox_pressure �)

, Vol. 1, No. 1, Article . Publication date: May 2020.

30 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

(prop)
(try (grind :if-match nil)

(propax) (postpone)))))) QED

Using the tactic above, the PVS theorem prover is able to demonstrate that the reversibility property is true of
the model for all inputs in all states. The proof was completed in 28.56 seconds on an Intel i5 processor. Note that,
in the general case, the tactic above may not be su�cient to prove the property, e.g., because additional lemmas
and assumptions need to be used. In that case, the proof is interactive, and carried out using the PVS theorem
prover.

Summary of analysis and verification criteria
veri�cation type: functional analysis, including: coverage of conditions, disjointness of conditions, correct use

of data types, compliance with design requirements; simulation-based analysis through model animation;
veri�cation technology: theorem proving; interactive simulations;
scalability of the analysis: user interface prototype of stand-alone devices, range of mainly medical examples

see pvsioweb.org.
user interface testing: automated execution of input test sequences recorded during interactions with the

prototype;
support for the analysis of the wider socio-technical system: modeling patterns based on distributed cog-

nition theory have been explored in PVS but are not currently integrated in the IDE.

7 EVALUATION OF IVY
IVY is a tool that provides a front-end to the NuSMV model checker [23]. This front-end is designed to enable
the analysis of interactive systems. The tools supported provide a modeling notation and the means of proving
properties and diagnosing property failure.

7.1 General aspects of IVY
IVY enables the modeling and analysis of user actions and feedback attributes of critical user interfaces. The
work�ow supported by the tool includes four main steps:
Step 1. Modeling the interactive system. The focus of the model of the interactive system is to specify the
user actions and the attributes of the states that are changed by the actions. Some of these state attributes are
perceivable (usually visible). However a key aspect of the analysis is to understand the attributes that are not
visible or understood in the context of the action. It is also important to recognize when and how an action is
a�ected by an attribute that may or may not be perceivable. For example, for certain values, the action may not
be permitted or its e�ect (its mode) may change. Finally not all actions are user initiated. Some are autonomous
and these actions, that occur in the background, may have an e�ect on user action and/or may require particular
types of response from the user. These actions must be understood and made explicit in the model. The focus
of the model, and therefore the modeling language, is to specify actions and attributes (and whether they are
perceivable). The simple notation used (Modal Action Logic) follows this pattern and is therefore considered to
be easy to use.
Step 2: Validating the model. An important �rst step in the analysis process is to check the veracity of the
model. This can be done in two ways using the IVY tool. The �rst is to check properties that show how sequences
supported by the model re�ect precisely the actual or planned behavior of the physical implementation. This
is done by demonstrating that de�ned goals can be reached. A typical property checks that it is never possible
to reach a goal, with the aim that the property fails and a counter-example (a sequence of states) is produced
that shows one way in which the goal can be reached. This trace can be animated using IVY’s animator and

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 31

alternative paths may also be investigated. The traces may then be explored dynamically and compared with
sequences of actions in the intended or modeled actual design.

Step 3: Formulating properties. Properties of the model include those that capture assumptions about the
perceivability of the state attributes and the potential ambiguity of actions. The IVY tool provides a set of property
templates that can be used to simplify the process of formulating these properties. They relate to issues such as
the visibility of the e�ect of an action, the transparency of the model of the system and the ease with which an
action or actions can be reversed.
Further analysis involves scrutiny of paths that achieve activity goals when actions are constrained by

information resources. This process is typically interdisciplinary, involving communication between modeling,
domain and human factors experts. The IVY tool is designed to produce representations of relevant sequences
that can be readily understood by this mix of disciplines.

Step 4: Visualizing traces. The process of analysis is algorithmic. The advantage of this is that proof is automatic
(as opposed to interactive, as in the case of PVSio-web). The disadvantage is that because the approach aims
to provide an exhaustive analysis of the states of the model, and there can be many states of the model, this
may lead to a slow or intractable process for some model checkers. A typical proof process is interactive. A
property is checked and the counter-example is scrutinized if it fails. Failure may arise because the property has
been incorrectly formulated, or because the model does not capture the properties of the actual device or it may
indicate that the device does not exhibit the required property. In this case, the exception may be acceptable and
therefore be excluded in the property or it may indicate a �aw in the design.

The IVY tool has a plug-in architecture which enables communication with individual tools. Tools are currently
under development to support simulation and prototypes based on models. There is also a tool to convert an
Emuchart speci�cation into a MAL model.

Summary criteria
scope/purpose: user interface software modeling and analysis;
support for multi-disciplinarity: Software engineers, HCI specialists via formalized usability heuristics;
related development process: user centered design, heuristic evaluation;
tool features: logic modeling, veri�cation of safety requirements and usability properties, veri�cation results

(counter-examples) analysis;
tool extensibility: IVY uses a plug-in based architecture that facilitates the introduction of new functionalities;

plug-ins need only comply with a prede�ned API, supporting both communication and information sharing;
Prerequisites: behavioral modelling, temporal logic (to express more complex properties, when the use of

patterns is not feasible);
IDE instance and principle: Java;
IDE availability: downloadable at http://ivy.di.uminho.pt.

7.2 Modeling features of IVY
The modeling of the FCU using MAL is focused on the actions that are supported by the device, both actions that
can be carried out by users and autonomous actions that do not require user initiative but will have e�ects that
will require interpretation or action on the part of the user. The logic provides:

• a modal operator [_]_ : [ac]expr is the value of expr after the occurrence of action ac — the modal operator
is used to de�ne the e�ect of actions;

• a special reference event []: []expr is the value of expr in the initial state(s) — the reference event is used to
de�ne the initial state(s);

, Vol. 1, No. 1, Article . Publication date: May 2020.

32 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

• a deontic operator per : per(ac) meaning action ac is permitted to happen next — to control when actions
might happen;

• a deontic operator obl: obl(ac) meaning action ac is obliged to happen some time in the future. Note that
obl is not used in this analysis.

The modal operator makes it possible to prescribe the e�ect of actions in the state but says nothing about
when actions are permitted or required to happen. For this, permission and obligation operators must be used.
As in [82], only the assertion of permissions and the denial of obligations are considered:

• per(ac) ! guard — action ac is permitted only if guard is true;
• cond ! obl(ac) — if cond is true then action ac becomes obligatory.

Permissions are asserted therefore by default and obligations are o� by default. This makes it easier to add
permissions and obligations incrementally when writing speci�cations. For example, the two permission axioms
per(ac) ! guard1 and per(ac) ! guard2 together yield: per(ac) ! (�uard1 & �uard2) (note that & is used to
denote logical and — | for logical or, and ! for not). This logic is particularly appropriate for describing a system
in which components can be reused.

The interactor presentation is de�ned by annotating actions and attributes to show that they are perceivable.
The modality of the perceivable attribute/action is given using further attributes. For example [vis] asserts
that the attribute/action is visibly perceivable. In addition if attached to an action it can be invoked by the user.
Additional annotations are introduced for further modalities.

Attributes and action parameters are typed. Types are represented as enumerations of the “key values” or as
subranges of integer:

types
T_enum = { a, b, c }
T_range = { 0 .. 10 }

The notation also supports the usual propositional operators. The fragments of the model of the example FCU
below illustrate the style of the speci�cation. This model was actually developed from the same Emuchart as
the PVS model described in Section 6.2. The main interactor includes a further interactor FCUDataEntry that
describes data entry properties. In fact this interactor is simpli�ed because MAL does not handle real values and
mode properties are the main focus of concern in the analysis of the requirements R1-R4 of Section 4. The use
of the inclusion aggregates speci�es that elements within this included interactor are to be referred to by fcud.
Attributes st, msg, display, editboxselected, and elapse are associated with types: some are standard types,
for example boolean, the others are user de�ned.

interactor main
aggregates

FCUDataEntry via fcud
attributes

st: MachineState
msg: MsgType
editboxselected: boolean
display: string
elapse: int

actions
clickCLR
... more defs. omitted for brevity ...

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 33

The fragment used for illustration speci�es an action clickCLR. The action is permitted only if st =
EDITPRESSURE.

per(clickCLR) ->
(st = EDITPRESSURE)

The action clears the values of the displayed pressure to blank. The numbers in the case of this model have
been simpli�ed to make analysis tractable. The attribute elapse is used to determine the time between user
actions and keep preserves the value of the speci�ed attributes across the state transition. If there is no constraint
on an attribute then it will change randomly.

[clickCLR]
display[id]�=blank &
display[pt]� = blank &
display[dd]� = blank &
elapse � = MAXELAPSE &
keep(msg ,st,editboxselected)

There is a further action that occurs as a result of triggering clickCLR. This is achieved by introducing an asser-
tion that states that either action clickCLR or clickeditboxpressure occurs if and only if fcud.processclrKey
is triggered. Here the pre�x fcud ... indicates that the action is speci�ed in the interactor FCUDataEntry. The
equivalence is expressed as follows.

effect(fcud.processclrKey) <->
(effect(clickCLR) | effect(clickeditboxpressure))

The action therefore is de�ned to invoke the corresponding action in the data entry interactor and also to
update the displayed value (the array display). The user has performed an action and so the elapsed time since
the last user action is set to MAXELAPSE. The �nal part of the speci�cation indicates that the remaining state
attributes do not change value.

More details of MAL can be found in [17, 18, 20]. This speci�cation captures, in simple terms, the interactive
behavior of the FCU. A further fragment of the model is shown, within the IVY editor, in Figure 14.
The activity that is being modeled in this case has already been represented as a HAMSTERS task model in

Section 5.2.1. The speci�c concern is with descent (though presumably the activity is similar in the case of climb).
The cockpit receives a barometric target that consists of a value and an explicit noti�cation of units. The target
must be memorized and, if it di�ers from the current settings as displayed in the FCU, the information is used to
make a change. This involves changing the value and potentially changing the units. The resources in this case
involve two elements that must be remembered. The activity that is captured in this illustrative example is to
change the barometric pressure: changepressure. The resources that are used in this process are the pressure
value and the pressure units: mvalue and munits.

Summary modeling criteria
Modeling language: MAL;
Modeling paradigm: modal logic;
Structuring models: module-based;
Model editing features: text editor supporting model hierarchy, syntax highlighting and code completion;
Suggestions for model improvements: no explicit suggestions;

, Vol. 1, No. 1, Article . Publication date: May 2020.

34 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

Fig. 14. The IVY editor showing a fragment of the model.

7.3 Prototyping and simulation features of IVY
IVY’s simulation capabilities are designed to support an understanding of the behavior of the system from the
perspective of the modeler or analyst. The goal is to support model validation as well as the exploration of
alternative scenarios during counter-example analysis. The simulator therefore provides views of how the state
of the system evolves over time rather than a traditional prototypical view of what the user interface will look
like. Two views are provided: a tabular view and a state-based view (plus the log of the communication between
IVY and NuSMV).

In the tabular view (see Figure 15) rows represent state attributes and action execution, and columns represent
the states in a particular execution trace. Hence, in Figure 15 the sequence of actions (last row of the table)
clickqhradio, clickeditboxpressure, clickdigitone and clickdigit zero have been executed. Actions are attached to
the column that describes the target state of the transition associated with that action. Hence, nil, in column 1,
indicates that in the initial state no action has been executed. As a consequence of these actions, the state of
the FCU (row labeled st) changes from STD (in the initial state) to QNH to EDITPRESSURE. Yellow is used to
highlight values that change with a state transition.

In the state-based view (see Figure 16) each interactor is represented as a lifeline. Each lifeline is the sequence
of states of the execution trace for that interactor. Hence, in Figure 16 there is a lifeline for the main and fcud
interactors. States are annotated with attributes and actions are represented as labels on the transitions between
them.

Actions can be executed from the ACTIONS panel to the left. The panel shows all available actions at a given
point. By selecting an action, the resulting state is presented in the STATE INFO panel. Executing it triggers

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 35

Fig. 15. IVY’s animator tabular view

the corresponding transition in the model, updating tabular and model-based views and the ACTIONS panel
contents.

MAL models are not necessarily deterministic and therefore the less speci�ed the model, the larger the number
of alternative behaviors. Such a model’s action is likely to have more than one outcome. In the extreme, this can
create conditions in which NuSMV is unable to provide the next possible states for the current state. To help
mitigate this, it is possible to impose constraints on the generation of possible next states. This is done using the
constraints panel (see bottom left of Figures 15 and 16).
The goal of the simulator is to support model validation. This is illustrated in Figure 16 where a situation is

identi�ed in which the model goes into a deadlock state. Only the nil action is available (see ACTIONS panel)
and this indicates that no further action is possible at this stage. Executing the nil action, as illustrated in the
�gure, causes no change to the state. Investigation of clickOK, the last action to be executed, highlights an issue
with the speci�cation of the modal axiom, due to a modeling error committed by the developer. An alternative
to using the simulator is to validate the model by attempting to prove basic properties of the model behavior.
The model checker demonstrates counter-examples when a property fails. The bene�t of the simulator is that
alternative examples can be considered more �exibly thereby making it possible to recognize the appropriate
quali�cation to properties more readily.

Summary prototyping criteria
support for prototype building: no facility for building prototypes is currently available (prototyping plug-in

under development), animation of traces;
execution environment of the prototype: inside the tool (plug-in under development);
human-machine interaction techniques: pre-WIMP, WIMP, post-WIMP, multimodal;
code generation: run-time execution of the models via NuSMV simulation facilities, no code generation.

, Vol. 1, No. 1, Article . Publication date: May 2020.

36 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

Fig. 16. IVY’s animator state-based view

7.4 Analysis and verification features of IVY

Model validation. These properties include the necessity that certain states should never be reached, or, if the
state is reached, a particular property should hold of the state. They are safety properties or they are liveness
properties. CTL [24] enables the exploration of properties over the possible behaviors (paths) of a system.

CTL provides two kinds of temporal operator, operators over paths and operators over states. Paths represent
the possible future behaviors of the system. When p is a property expressed over paths, A(p) expresses the
property that p holds for all paths and E(p) that p holds for at least one path. Operators are also provided over
states. When q and s are properties over states, G(q) expresses the property that q holds for all the states of the
examined path; F(q) that q holds for some states over the examined path; X(q) expresses the property that q
holds for the next state of the examined path; while [qUs] means that q holds until s holds in the path.
CTL contains a subset of the possible formulas that arise from the combination of these operators. AG(q)

means that q holds for all the states of all the paths; AF(q) means that q holds for at least one state in all the
paths; EF(q) means that q holds in at least one state in at least one path; EG(q) means that q holds for all states
in at least one path; AX(q) means that q holds in the next state of all paths; EX(q) means that there is at least
one path for which q holds in the next state; A[qUs] means that q holds until some other property s holds in all
paths; E[qUs] means there exists at least one path in which q holds until some property s.

A typical property designed to assess the plausibility of the model is as follows.

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 37

Fig. 17. Constructing guarded consistency properties

AG(!(display[id] = three &
display[pt] = point &
display[dd] = seven &
fcud.actualintegerDigits = 3 &
fcud.actualpoint &
fcud.actualdecimalDigits = 7 &
fcud.units = hPa))

This property asserts that there are no states of the model for which the number 3.7 is displayed and the
internal stored actual value is also 3.7 and the atmospheric units are “hPa”. Checking this property yields an
answer false with a counter-example represented by a trace (see Figure 18). The trace shows a sequence of states,
numbered columns 1..8 and the actions and state attributes relative to the data entry interactor (fcud) and then
the main interactor. The �rst main action, Clickqnhrad (column 2), changes state to QNH and ensures that the
actual values are equal to the display values (fcud.update). The next step (column 3) involves the clickeditbox
action that selects the edit box and clears the display. The next three states in the sequence 4..6 show the key
strokes involved in entering “three”, “point” and “seven”. The last action before clicking “OK” changes the units
of the pressure to hPa. Clicking “OK” sets the actual values of the device to the entered values. These actions and
their e�ect are consistent with the behavior of the FCU.
To make MAL models simpler to understand, and CTL properties simpler to express, the notation allows

de�nitions of enumerated sets and of expressions (for example the conjunctions of actions).
Formal Analysis. The requirements introduced in Section 4 can be expressed in CTL and proved of the model.

, Vol. 1, No. 1, Article . Publication date: May 2020.

38 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

Fig. 18. Checking the plausibility of the MAL model

R1: reinitialisability. The property states that if the mode is not intially STD there always exists a path that
leads eventually to a change of mode to STD.

AG(st != STD -> AX(EF(st = STD)))

R2: availability of buttons. The two properties expressing this requirement state that the actions that represent
the buttons, namely clickstdradio and clickqnhradiowill always immediately change the state to the required
mode.

AG(st != STD -> AX(clickstdradio -> st = STD))
AG(st != QNH -> AX(clickqnhradio -> st = QNH))

R3: mutual exclusion. These properties state that if the mode is STD then the only action that will possibly
change the mode is clickqnhradio and if the mode is QNH then the only actions that can change the mode are
clickstdradio or clickeditboxpressure.

AG(st = STD -> AX(!clickqnhradio -> st = STD))
AG(st = QNH -> AX(!(clickstdradio | clickeditboxpressure) -> st = QNH))

R4: reversibility. The reversibility property is expressed in CTL as

AG(display[id] = $number1 &
display[pt] = $pointval &
display[dd] = $number2 ->

AX(clickeditboxpressure ->
EF(clickESC ->

display[id] = $number1 &
display[pt] = $pointval &
display[dd] = $number2))

This property satisfying the R4 requirement was created in the IVY property editor by instantiating the “re-
versibility” template with the relevant parameters, see Figure 19.

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 39

Fig. 19. Checking a reversibility property

Summary of analysis and verification criteria
veri�cation type: well formedness of the model, requirements checking, simulation-based analysis through

model animation;
veri�cation technology: model checking;
scalability of the analysis: user interface prototype of stand-alone devices: medical devices and space systems.
user interface testing: automated execution of input test sequences recorded during interactions with the

prototype;
support for the analysis of the wider socio-technical system: automated testing currently not supported,

manual testing via simulation.

8 RESULTS
In this section, the results of the evaluation of the tools are discussed.
General aspects of the tools. From a high-level perspective, the scope of the three tools is the same — model-
based analysis of critical user interfaces. The three tools support modeling and analysis of the interaction logic
of the user interface. However, each tool o�ers a di�erent modeling and analysis technology that is tailored
to di�erent, and complementary, styles of assessment of user interfaces. CIRCUS supports explicit modeling
of user tasks and goals, allowing developers to simulate user tasks and check their compatibility with the
interactive behavior of the system. PVSio-web supports rapid prototyping and formal veri�cation of usability

, Vol. 1, No. 1, Article . Publication date: May 2020.

40 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

and safety requirements. IVY facilitates modeling of general usability and safety properties. Whilst a certain
level of background knowledge is needed to use the tools e�ectively, basic knowledge about Petri nets and task
models (for CIRCUS) and state machines and state charts (for PVSio-web) and temporal logic (for IVY) is already
su�cient to get started with illustrative examples. This is extremely useful to reduce the typical knowledge
barriers faced by novice users that come from the software engineering community. The three tools are developed
using standard technologies supported by multiple platforms (Netbeans Visual API for CIRCUS, Web technologies
for PVSio-web, Java for IVY), and can be executed on a standard desktop/laptop computer.

Modeling. CIRCUS and PVSio-web provide graphical IDEs designed to assist developers in the creation of
formal models. The notations used in IVY are textual and therefore the model editor is textual with some support
for structure. CIRCUS uses specialized graphical notations and diagrams: the ICO notation is used for building
system models; the HAMSTERS notation is used for describing user tasks. ICOs are based on object-oriented
extensions to Petri nets, and support both event-based and state-based modelling. HAMSTERS is a procedural
notation. The complexity of models is handled using information hiding (as in object-oriented programming
languages), and component-based model structures. This facilitates the creation of complex models, as well as
the implementation of editing features that are important for developers, such as auto-completion of models
and support for parametric models. The use of speci�c notations, however, limits the ability of developers to
import external models created with other tools, or export CIRCUS models to other tools. PVSio-web, on the
other hand, uses modeling patterns to support the modeling process. Developers can use either a graphical
notation (Emuchart diagrams), or a textual notation (PVS higher-order logic), or a combination of both, to specify
the system model. This has many bene�ts: software developers that are familiar with Statecharts can build
models using a language that is familiar for them, and gradually learn PVS modeling by examples, checking how
the Emucharts model translates into PVS; Emucharts models can be translated into popular formal modeling
languages other than PVS (e.g., VDM); expert PVS users can still develop entire models using PVS higher-order
logic only, and software developers can import these PVS models as libraries, thus facilitating model reuse. The
main drawback is that the current implementation of Emucharts lacks mechanisms for model optimisation (e.g.,
a battery of similar PVS functions is generated instead of a single function with a parameter), and technical skills
are necessary to understand model improvements suggested by the tool (through the PVS type-checker). The
IVY tool is designed for simplicity. The MAL notation is designed to re�ect a simple view of action and state
attribute. A framework is provided for producing a constraint based model of the information resources used in
interaction with the device that provides an alternative to the normative task modelling approach.

Prototyping. CIRCUS and PVSio-web provide a visual editor for rapid generation of prototypes supporting
a range of interaction styles, including: graphical user interfaces with windows, icons, menus, and pointer
(WIMP); user interfaces with physical buttons (pre-WIMP); touchscreen-based user interfaces (post-WIMP); and
multi-modal user interfaces (e.g., providing both visual and auditory feedback). IVY has more limited prototyping
features, and only mockup prototypes can be created using an experimental plugin. Thanks to their architecture
that separates the formal model from the visual appearance of the prototype, all three tools promote the use
of the Model-View-Controller (MVC [53]) paradigm, with a clear separation between the visual appearance of
the prototype and the logic behavior. Whilst prototypes developed with the two IDEs share these similarities,
prototype building and implementation is substantially di�erent in the two IDEs. CIRCUS prototypes are developed
in Java (for their visual appearance) and in ICO models (for their behavior). Developers can de�ne their own
widgets library. For example, for the case study presented in Section 4, we created a library of widgets whose
visual aspect and behavior is compatible with that described in the ARINC 661 standard. PVSio-web prototypes
are developed in JavaScript, and their behavior is de�ned by a PVS executable model. Rapid prototyping is enabled
by a lightweight building process where the visual aspect of the prototype is de�ned by a picture of the real device,
virtually reducing to zero the time and e�ort necessary to de�ne the visual appearance of the prototype. Initial

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 41

support for code generation is also available for MISRA-C, for behavioral models developed using Emucharts [62].
A specialized tool (Prototype Builder) is provided with the IDE, to facilitate the identi�cation of interactive areas
over the picture, and to link these areas to the PVS model. The current implementation of the Prototype Builder
supports only the de�nition of push buttons and digital display elements, and developers need to edit a JavaScript
template manually to introduce more sophisticated widgets (e.g., knobs, graphical displays, etc.). Integration of
these more sophisticated widgets in the Prototype Builder is currently under development.

Analysis and veri�cation. Multiple veri�cation technologies are used in the three tools to enable the e�cient
analysis of human-machine interaction. They build on established formal methods technologies, and enable
lightweight formal analysis based on simulation and testing.
CIRCUS implements static analysis techniques from Petri nets theory to perform automatic analysis of well-

formedness properties of the model (absence of deadlocks, token conservation), and of basic aspects of the
interactive system design (e.g., reinitiability of the user interface and availability of widgets). Simulation is used
for functional analysis and quantitative assessment of the system. Either direct interaction with the prototype and
automated execution of task models can be used during simulations. Properties veri�ed by this means include:
compliance with task models; statistics about the total number of user tasks, and estimation of the cognitive
workload of the user based on the types of human-machine interactions necessary to operate the system.

PVSio-web uses the standard PVS theorem proving system to analyze well-formedness properties of the
model (coverage of conditions, disjointness of conditions, and correct use of data types). Usability and safety
requirements can be veri�ed using both lightweight formal veri�cation and full formal veri�cation. Lightweight
veri�cation is based on interactive simulations with the prototypes. User interactions can be recorded and used
later as a basis for automated testing in a way similar to the way task models are used in CIRCUS. Full formal
veri�cation is carried out in the PVS theorem prover, and provides initial support for property templates capturing
common usability and safety requirements described in the ANSI/AAMI/IEC HF75 usability standard. Although
the full formal analysis is in general not fully automatic, the combined use of property templates and modeling
patterns usually leads to proof attempts where minimal human intervention is necessary to guide the theorem
prover (typically, for case-splitting and instantiation of symbolic identi�ers). Proof tactics for full automatic
veri�cation of a standard battery of property templates are currently under development. Dedicated front-ends
presenting veri�cation results in a form accessible to human factors specialists are also being investigated.

The IVY tool supports an established set of property templates for the analysis of common usability concerns
in critical systems. The property editor is designed to simplify the process of using these templates to generate
properties that are speci�c to the requirements of the interactive system. Properties that can be represented include
reachability properties that can only be proved using a theorem prover by representing possible sequences of
interactions explicitly. This means that the analysis phase of the IVY process can be used to check the plausibility
of the model where a prototyping approach would be required with PVSio-web. When properties fail to be true
counter-examples are presented in a clear format that can be readily understood and acted upon.

Dealing with scale. The three tools have been applied to case studies based on real-world systems.
CIRCUS has been used on multiple case studies including Air Tra�c Control workstations [55], large civil

aircraft cockpit interactive applications [4] and satellite ground segments [55]. Each of these application domains
brought speci�c concerns that resulted in extensions to both the notations and the tools. For the interactive
cockpit work the modelling of the MPIA application compliant with ARINC 661 speci�cation included more
than 200 ICO models. This application brought interesting issues related to performance in the simulation of
the models and Petshop kernel required refactoring to reach a 20ms response time on the user interface. These
performance improvements have been reported in [7]. While each ICO model is usually small in size (this is due
to the fact that the decomposition follows the object-oriented principles) the model of the ARINC 661 server
was huge (hundreds of places and transitions). This required additional developments in PetShop for supporting

, Vol. 1, No. 1, Article . Publication date: May 2020.

42 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

slicing of models (using layering of models) and the addition of virtual places (to reduce the length of the arcs by
duplicating places close to the transitions using them). Descriptions of case studies and examples in CIRCUS are
available13.

PVSio-web and IVY have been used to analyze a range of medical devices. For example, in the case of PVS, full
models of the interactive behavior of two infusion pumps (Alaris [43] and BBraun [41]) have been produced. The
generated simulations provide full functionality for exploration of use. In the case of the IVY model, restrictions
to the model relate to number entry. However full models of the devices’ modal behavior were generated as
described in [41]. The PVS model of the Alaris device, as discussed in [43], involves two main theories describing
38 pump actions and 18 user interface actions. The speci�cation and theorems can be found on Github14. The
analysis involved 138 theorems based on the templates. The theory �les amount to approximately 4000 lines
including comments, and the theorem �les approximately 5000 lines. The run time for each proof is indicated in
the template �les. Times range from less than 1 second to 80 minutes. The PVS system was installed on an Apple
Macbook Pro with a 2.9 GHz Intel Core i5.
The IVY tool was applied in the safety analysis of a neonatal dialysis machine [45]. In this case the model

was based on the device’s control table and currently forms part of the safety analysis. The model involved
682 lines, including 119 lines of state de�nitions and 152 lines of type and constant de�nitions. The model has
not been decomposed into sub-models. However a model of the Alaris and BBraun models described in the
previous paragraph had a similar structure to the PVS models. The development of the dialyser control component
took about seven hours. It was possible to make most changes to the model and show the results interactively
during meetings with the development team without disturbing the �ow of the meeting. Hence the re�nement of
requirements and the careful analysis of the hazards were facilitated by the process. A set of 252 requirements
were identi�ed in the risk log of which 47 mitigations used the MAL analysis at least in part. The analysis
involved 23 properties. These supported mitigations relating both to aspects of protection and design. On the rare
occasions when it was not possible to re�ne a property during the meeting, for example when meta-attributes
were required, this could be achieved within an hour outside the meeting. Verifying all the properties together
on a MacBook Pro with Intel Core i5 clocked at 2.9GHz, with 8GB RAM and SSD memory, took 1.7 seconds.

9 OTHER RELATED TOOLS
The contribution of the three tool sets described in this paper is that they are distinctive in combining more than
one element of the design process described in Section 3. Several tools exist that have value at the di�erent stages
of the process but do not link as e�ectively between elements of the design process.

9.1 Work and task analysis stage
ADEPT [51] is an early example of a tool that enabled the description of tasks. However this early tool is no
longer available and provided no means of analysis of the tasks represented. More recently, tools have been
developed that enable the analysis of task descriptions. For example MAESTRO [11] is concerned with “assuring
�tness of purpose”. It provides systematic guidance for the design and evaluation of work needs so as to produce
designs that are �t for purpose. The technique develops a matrix that identi�es clusterings of work functions
in terms of their inputs and outputs. Other tools use task representations and use model checking analyses to
explore the tasks, exploring the reachability of speci�c task goals and shared tasks (for example). In this category
are tools produced by Mori and Paternò [64] using tools based on LOTOS, and Bolton [13] using tools based on
EOFM (as task modelling languages) and SAL (as model checker). Paternò’s work goes further developing a full
range of tools covering a broader spectrum of the design process.

13https://www.irit.fr/recherches/ICS/documentation/
14http://github.com/haslab/hcispecs/archive/1.1.zip

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 43

An alternative approach at this early stage uses formal models to express assumptions about the context or the
user. These assumptions are expressed as constraints that replace the task models and respond to criticisms that
formal task representations such as those provide by HAMSTERS prescribe behaviors that do not necessarily
represent typical user assumptions (see for example [87]). These constraints, referred to as resources, are described
in a modelling context using IVY in [15]. These resources are assumed to be relevant when interacting with
the system under analysis. A further layer of the model may be developed to incorporate these assumptions
about the design. Resources may include the attributes that are speci�ed in the model but may also include
information that is not part of the device or speci�c user interface under consideration. It may also include, for
example, assumptions about physical displays, labels or handy references to operating procedures. In addition to
constraints based on attributes or other information, the speci�cation may also include a speci�cation of the
assumed “activities” that the user is engaged in. Activities are de�ned as actions in the MAL model, they de�ne
the achievement of “goal” states and are also constrained by information resources.
Modeling may further include assumptions about the salience of information resources [44]. Both an un-

derstanding of resource and of salience may be part of the design process, driving a consideration of the role
that actions play in the user’s activities and what information is assumed to help the user choose actions that
are appropriate to the use of the device. This layer of modeling is based on these activities subject to resource
constraint rather than an explicit plan. It takes note of the approaches of cognitive work analysis [87] and
distributed cognition [50]. These additional layers are to be seen therefore as an alternative to the task model
described by the HAMSTER model of the CIRCUS toolset.

9.2 Early prototyping loop
Formal analysis tools, aimed at describing interfaces and systematically analyzing the properties of the interface,
have been developed by a number of researchers. Degani [28] used statecharts [40] to describe interfaces.
Thimbleby and others [36, 86] describe the interface as a graph, and prove graph properties of the available user
actions also using MATLAB [85], while ADEPT [25] (a more recent tool called ADEPT than the task representation
described in the previous section) describes interfaces as Labeled Transition Systems. Their focus is on matching
operator understanding of an interface with the interface itself. The process therefore involves a model of operator
assumptions. Analysis detects mismatches between the cognitive and system models. This work echoes earlier
work of Rushby [81] and others who used murphi to perform a similar though more speci�c analysis. Rushby’s
work analyzes properties of a �ight management system, exploring the potential for user error. Other work
considers issues of salience [80] and integrates user errors [22] within a cognitive model. The latter work is
performed as part of a hazard analysis. None of these techniques have been used to address problems of the scale
of the tools compared in this paper.

Bowen and Reeves’ work [14] separates the interactivity of the environment from its functionality. Their work
employs a notation (Presentation Interaction Model - PIM) that describes the interactivity and Z or µcharts (a
variant of statecharts [40]) that describes the functionality. A relation (Presentation Model Relation) is used
to describe the relation between user interface and system functionality, and this relation provides a basis for
re�nement.
Other types of environment involving user interfaces have been a focus for research. For example, formal

development environments have used Petri nets as a �rst stage in developing virtual environments. Initial work
by Willans [88] has been extended in the Apex project [83]. Other research is concerned with functional mock-up
interfaces involving the co-simulation of discrete logic models for controllers and continuous models based on
di�erential equations (see for example [73, 74]). Matlab and Simulink have also been used to model these systems
(for example [77]). Finally, industrial tools such as SCADE [21] and SCADE Display [54, 79] exploit a data�ow
paradigm such as the one promoted by LUSTRE notation [27] that allow the checking of user interface properties.

, Vol. 1, No. 1, Article . Publication date: May 2020.

44 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

However, these tools are rarely presented in scienti�c publications and thus hard to assess and compare with
academic contributions.

10 CONCLUSIONS
In this paper, we presented a detailed evaluation of three tools for model-based analysis of critical user interfaces,
CIRCUS, PVSio-web, and IVY. The evaluation results can be used by developers to understand which formal
tool can be used most e�ectively for which kind of analysis of interactive systems. The tools were evaluated
against 22 criteria covering important elements in user centered design. A common example was used to assess
the tools against the identi�ed criteria. The result of this comparison led to the conclusion that the three tools
are complementary rather than competitive. Whilst they have roughly the same scope (formal development of
critical user interfaces), the tools enable di�erent kinds of modeling and analysis: CIRCUS is tailored to task
modeling and analysis; PVSio-web is tailored to rapid prototyping using PVSio for formal veri�cation; IVY is
tailored to formal veri�cation of general usability concerns. These three types of analysis are complementary,
and provide di�erent insights about how to develop high-con�dence user interfaces which corresponds to real
problem in industry particularly in the area of safety-critical systems. The three tools presented here provide
formal modeling and formal analysis that go beyond HCI toolkit research that have been presented in the survey
of [26]. The set of criteria presented in this paper have the overall objective of being descriptive, comparative
and generative as expected from “good” models as argued in [9]. We have demonstrated their descriptive and
comparative nature. We hope they will be used by HCI and Software Engineering researchers to contribute to the
de�nition of formal approaches and tools for interactive systems design, development and evaluation. This is the
way to go to increase deployment of HCI contributions in terms of interaction techniques to dependable and safe
safety critical command and control systems.

REFERENCES
[1] J. Accot, S. Chatty, S. Maury, and P. Palanque. 1997. Formal transducers: Models of devices and building bricks for the design of

highly interactive systems. In Design, Speci�cation and Veri�cation of Interactive Systems’97, Proceedings of the Fourth International
Eurographics Workshop, June 4-6, 1997, Granada, Spain (Eurographics), M. D. Harrison and J. C. Torres (Eds.). Springer, 143–159.
https://doi.org/10.1007/978-3-7091-6878-3_10

[2] SAS Airbus. 2016. Airbus A380 Flight Crew Operating Manual. http://www.airbus.com/.
[3] Airlines Electronic Engineering Committee. 2002. ARINC 661 speci�cation: Cockpit Display System Interfaces To User Systems.

Aeronautical Radio Inc.
[4] E. Barboni, S. Conversy, D. Navarre, and P. Palanque. 2006. Model-Based Engineering of Widgets, User Applications and Servers

Compliant with ARINC 661 Speci�cation. In Interactive Systems. Design, Speci�cation, and Veri�cation, 13th International Workshop,
DSVIS 2006, Dublin, Ireland, July 26-28, 2006. Revised Papers. Springer, 25–38. https://doi.org/10.1007/978-3-540-69554-7_3

[5] E. Barboni, S. Conversy, D. Navarre, and P. Palanque. 2007. Model-Based Engineering of Widgets, User Applications and Servers
Compliant with ARINC 661 Speci�cation. In Interactive Systems. Design, Speci�cation, and Veri�cation, G. Doherty and A. Blandford
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 25–38.

[6] E. Barboni, J.-F. Ladry, D. Navarre, P. Palanque, and M. Winckler. 2010. Beyond Modelling: An Integrated Environment Supporting
Co-execution of Tasks and Systems Models. In Proceedings of the 2Nd ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS ’10). ACM, 165–174. https://doi.org/10.1145/1822018.1822043

[7] E. Barboni, D. Navarre, P. Palanque, and S. Basnyat. 2006. Exploitation of formal speci�cation techniques for ARINC 661 interactive
cockpit applications. In Proceedings of the HCI Aero Conference (HCI Aero 06). Cepadues, 81–89.

[8] R. Bastide, D. Navarre, P. Palanque, A. Schyn, and P. Dragicevic. 2004. A Model-based Approach for Real-time Embedded Multimodal
Systems in Military Aircrafts. In Proceedings of the 6th International Conference on Multimodal Interfaces (ICMI ’04). ACM, 243–250.
https://doi.org/10.1145/1027933.1027974

[9] M. Beaudouin-Lafon. 2000. Instrumental interaction: an interaction model for designing post-WIMP user interfaces. In Proceedings of
the CHI 2000 Conference on Human factors in computing systems, The Hague, The Netherlands, April 1-6, 2000, T. Turner and G. Szwillus
(Eds.). ACM, 446–453. https://doi.org/10.1145/332040.332473

[10] D. Billman, C. Fayollas, M. Feary, C. Martinie, and P. Palanque. 2016. Complementary Tools and Techniques for Supporting Fitness-for-
Purpose of Interactive Critical Systems. In International Conference on Human-Centred Software Engineering. Springer, 181–202.

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 45

[11] D. Billman, S-C. Wu, and C. Fan. 2016. Representing work for device design and evaluation using biclustering. In Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, Vol. 60. SAGE Publications Sage CA: Los Angeles, CA, 138–142.

[12] B Boehm. 1986. A Spiral Model of Software Development and Enhancement. SIGSOFT Softw. Eng. Notes 11, 4 (Aug. 1986), 14–24.
https://doi.org/10.1145/12944.12948

[13] M.L. Bolton, N. Jiménez, M.M. van Paassen, and M. Trujillo. 2014. Automatically Generating Speci�cation Properties from Task Models
for the veri�cation of Human-Automation Interaction. IEEE Transactions of Human Machine Systems 44, 5 (2014), 561–575.

[14] J. Bowen and S. Reeves. 2017. Combining models for interactive system modelling. In The Handbook of Formal Methods in Human-
Computer Interaction. Springer, 161–182.

[15] J. C. Campos, G. Doherty, andM. D. Harrison. 2014. Analysing interactive devices based on information resource constraints. International
Journal of Human Computer Studies 72 (2014), 284–297.

[16] J. C. Campos, C. Fayollas, C. Martinie, D. Navarre, P. Palanque, and M. Pinto. 2016. Systematic Automation of Scenario-based Testing
of User Interfaces. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS ’16). ACM,
138–148. https://doi.org/10.1145/2933242.2948735

[17] J. C. Campos and M. D. Harrison. 2001. Model checking interactor speci�cations. Automated Software Engineering 8 (2001), 275–310.
[18] J. C. Campos and M. D. Harrison. 2008. Systematic analysis of control panel interfaces using formal tools. In Interactive systems: Design,

Speci�cation and Veri�cation, DSVIS ’08 (LNCS), N. Graham and P. Palanque (Eds.). Springer, 72–85.
[19] J. C. Campos and M. D. Harrison. 2009. Interaction Engineering Using the IVY Tool. In Proceedings of the 1st ACM SIGCHI Symposium on

Engineering Interactive Computing Systems (EICS ’09). ACM, 35–44. https://doi.org/10.1145/1570433.1570442
[20] J. C. Campos and M. D. Harrison. 2009. Interaction engineering using the IVY tool. In Proceedings of the ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, G. Calvary, T.C.N. Graham, and P. Gray (Eds.). ACM, 35–44.
[21] J. L. Camus. 2012. SCADE: Implementation and Applications. Published 2012 by ISTE Ltd, Chapter 6, 225–272.
[22] A. Cerone, P. A. Lindsay, and S. Connelly. 2005. Formal analysis of human-computer interaction using model-checking. In Third IEEE

International Conference on Software Engineering and Formal Methods (SEFM’05). IEEE, 352–361.
[23] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella. 2002. Nusmv 2: An opensource

tool for symbolic model checking. In International Conference on Computer Aided Veri�cation. Springer, 359–364.
[24] E. M. Clarke, O. Grumberg, and D. A. Peled. 1999. Model Checking. MIT Press.
[25] S. Combé�s, D. Giannakopoulou, and C. Pecheur. 2015. Automatic detection of potential automation surprises for ADEPT models. IEEE

Transactions on Human-Machine Systems 46, 2 (2015), 267–278.
[26] Ledo D., Houben S., Vermeulen J., Marquardt N., Oehlberg L., and Greenberg S. 2018. Evaluation Strategies for HCI Toolkit Research. In

Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). Association for Computing Machinery, New
York, NY, USA, Article Paper 36, 17 pages. https://doi.org/10.1145/3173574.3173610

[27] B. d’Ausbourg, C. Seguin, G. Durrieu, and P. Roché. 1998. Helping the Automated Validation Process of User Interfaces Systems. In
Forging New Links, Proceedings of the 1998 International Conference on Software Engineering, ICSE 98, Kyoto, Japan, April 19-25, 1998,
K. Torii, K. Futatsugi, and R. A. Kemmerer (Eds.). IEEE Computer Society, 219–228. https://doi.org/10.1109/ICSE.1998.671121

[28] A. Degani. 2003. Taming HAL: designing interfaces beyond 2001. Palgrave, Macmillan.
[29] D. J. Duke and M. D. Harrison. 1993. Abstract Interaction Objects. Computer Graphics Forum 12, 3 (1993), 25–36.
[30] R. Fahssi, C. Martinie, and P. A. Palanque. 2015. Enhanced Task Modelling for Systematic Identi�cation and Explicit Representation

of Human Errors. In Human-Computer Interaction - INTERACT 2015 - 15th IFIP TC 13 International Conference, Bamberg, Germany,
September 14-18, 2015, Proceedings, Part IV (Lecture Notes in Computer Science), J. Abascal, S. D. J. Barbosa, M. Fetter, T. Gross, P. A.
Palanque, and M. Winckler (Eds.), Vol. 9299. Springer, 192–212. https://doi.org/10.1007/978-3-319-22723-8_16

[31] Camille Fayollas. 2015. Generic Software Architecture and Model-Based Approach for the Dependability of Interactive Critical Systems.
(Architecture logicielle générique et approche à base de modèles pour la sûreté de fonctionnement des systèmes interactifs critiques). Ph.D.
Dissertation. University of Toulouse, France. https://tel.archives-ouvertes.fr/tel-01241504

[32] C. Fayollas, C. Martinie, D. Navarre, and P. Palanque. 2015. A Generic Approach for Assessing Compatibility Between Task Descriptions
and Interactive Systems: Application to the E�ectiveness of a Flight Control Unit. In i-com: Vol. 14, No. 3. De Gruyter, 170–191.

[33] C. Fayollas, C. Martinie, P. Palanque, E. Barboni, R. Fahssi, and A. Hamon. 2017. Exploiting Action Theory as a Framework for Analysis
and Design of Formal Methods Approaches: Application to the CIRCUS Integrated Development Environment. In The Handbook of
Formal Methods in Human-Computer Interaction, B. Weyers, J. Bowen, A. J. Dix, and P. Palanque (Eds.). Springer, 465–504.

[34] C. Fayollas, C. Martinie, P. Palanque, Y. Deleris, J.-C. Fabre, and D. Navarre. 2014. An Approach for Assessing the Impact of Dependability
on Usability: Application to Interactive Cockpits. In Proceedings of the 2014 Tenth European Dependable Computing Conference (EDCC
’14). IEEE Computer Society, 198–209. https://doi.org/10.1109/EDCC.2014.17

[35] C. Fayollas, C. Martinie, P. Palanque, P. Masci, M.D. Harrison, J.C. Campos, and S.R. Silva. 2017. Evaluation of formal IDEs for human-
machine interface design and analysis: the case of CIRCUS and PVSio-web. In Proceedings of the Third Workshop on Formal Integrated
Development Environment (Electronic Proceedings in Theoretical Computer Science), Vol. 240. 1–19. https://doi.org/10.4204/EPTCS.240.1

, Vol. 1, No. 1, Article . Publication date: May 2020.

46 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

[36] A. Gimblett and H. W. Thimbleby. 2013. Applying theorem discovery to automatically �nd and check usability heuristics. In Proceedings
of the 5th ACM SIGCHI symposium on engineering interactive computing systems. 101–106.

[37] A. Hamon, P. Palanque, J. L. Silva, Y. Deleris, and E. Barboni. 2013. Formal Description of Multi-touch Interactions. In Proceedings of the
5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS ’13). ACM, 207–216. https://doi.org/10.1145/2494603.
2480311

[38] A. Hamon, P. A. Palanque, and M. Cronel. 2015. Dependable multi-touch interactions in safety critical industrial contexts: Application
to aeronautics. In 13th IEEE International Conference on Industrial Informatics, INDIN 2015, Cambridge, United Kingdom, July 22-24, 2015.
IEEE, 980–987. https://doi.org/10.1109/INDIN.2015.7281868

[39] A. Hamon, P. A. Palanque, M. Cronel, R. André, E. Barboni, and D. Navarre. 2014. Formal modelling of dynamic instantiation
of input devices and interaction techniques: application to multi-touch interactions. In ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS’14, Rome, Italy, June 17-20, 2014, F. Paternò, C. Santoro, and J. Ziegler (Eds.). ACM, 173–178.
https://doi.org/10.1145/2607023.2610286

[40] D. Harel. 1987. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Programming 8 (1987), 231–274.
[41] M.D. Harrison, J.C. Campos, and P. Masci. 2015. Reusing models and properties in the analysis of similar interactive devices. Innovations

in Systems and Software Engineering 11, 2 (June 2015), 95–111.
[42] M.D. Harrison, P. Masci, and J.C. Campos. 2018. Formal modelling as a component of user interface design. In Software Technologies:

Applications and Foundations STAF 2018 collocated workshops (revised selected papers) (Lecture Notes in Computer Science), M. Mazzara,
I Ober, and G. Salaün (Eds.). Springer, 274–294.

[43] M.D. Harrison, P. Masci, and J.C. Campos. 2019. Veri�cation Templates for the Analysis of User Interface Software Design. IEEE
Transactions on Software Engineering 45, 8 (2019), 802–822.

[44] M. D. Harrison, J. C. Campos, R. Ruksenas, and P. Curzon. 2016. Modelling information resources and their salience in medical device
design. In EICS ’16 Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems. ACM, 194–203.

[45] M. D. Harrison, L. Freitas, M. Drinnan, J. C. Campos, P. Masci, C. di Maria, and M. Whitaker. 2019. Formal techniques in the
safety analysis of software components of a new dialysis machine. Science of Computer Programming 175 (2019), 17 – 34. https:
//doi.org/10.1016/j.scico.2019.02.003

[46] M. D. Harrison, P. Masci, J. C. Campos, and P. Curzon. 2017. Veri�cation of User Interface Software: the Example of Use-Related
Safety Requirements and Programmable Medical Devices. ACM Transactions on Human Machine Systems 47, 6 (2017), 834–846.
https://doi.org/10.1109/THMS.2017.2717910

[47] E. Hollnagel. 2017. FRAM: the functional resonance analysis method: modelling complex socio-technical systems. CRC Press.
[48] I. Horrocks. 1999. Constructing the User Interface with Statecharts. Addison-Wesley Longman Publishing Co., Inc.
[49] P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen. 1986. Reachability Trees for High-level Petri Nets. Theor. Comput. Sci. 45, 3 (1986),

261–292. https://doi.org/10.1016/0304-3975(86)90046-0
[50] E. Hutchins. 1994. Cognition in the Wild. MIT Press.
[51] P. Johnson, S. Wilson, P. Markopoulos, and J. Pycock. 1993. Adept: Advanced design environment for prototyping with task models. In

Proceedings of the INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems. 56.
[52] B. Kirwan and L. Ainsworth. 1992. A Guide to Task Analysis. Taylor and Francis.
[53] G. E. Krasner and S. T. Pope. 1988. A Cookbook for Using the Model-view Controller User Interface Paradigm in Smalltalk-80. Journal

of Object Oriented Programming 1, 3 (Aug. 1988), 26–49. http://dl.acm.org/citation.cfm?id=50757.50759
[54] T. Le Sergent, A. Bouakaz, and G. Goretkin. 2018. SCADE AADL.
[55] C. Martinie, E. Barboni, D. Navarre, P. Palanque, R. Fahssi, E. Poupart, and E. Cubero-Castan. 2014. Multi-models-based engineering of

collaborative systems: application to collision avoidance operations for spacecraft. In ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS’14, Rome, Italy, June 17-20, 2014. 85–94. https://doi.org/10.1145/2607023.2607031

[56] C. Martinie, P. Palanque, and M. Winckler. 2011. Structuring and Composition Mechanisms to Address Scalability Issues in Task Models.
In Human-Computer Interaction – INTERACT 2011: 13th IFIP TC 13 International Conference, 2011, Proceedings, Part III. Springer Berlin
Heidelberg, 589–609. https://doi.org/10.1007/978-3-642-23765-2_40

[57] C. Martinie, P. A. Palanque, E. Bouzekri, A. Cockburn, A. Canny, and E. Barboni. 2019. Analysing and Demonstrating Tool-Supported
Customizable Task Notations. PACMHCI 3, EICS (2019), 12:1–12:26. https://doi.org/10.1145/3331154

[58] C. Martinie, P. A. Palanque, M. Ragosta, M. A. Sujan, D. Navarre, and A. Pasquini. 2013. Understanding Functional Resonance through a
Federation of Models: Preliminary Findings of an Avionics Case Study. In Computer Safety, Reliability, and Security - 32nd International
Conference, SAFECOMP 2013, Toulouse, France, September 24-27, 2013. Proceedings (Lecture Notes in Computer Science), F. Bitsch, J. Guiochet,
and M. Kaâniche (Eds.), Vol. 8153. Springer, 216–227. https://doi.org/10.1007/978-3-642-40793-2_20

[59] P. Masci, A. Ayoub, P. Curzon, M.D. Harrison, I. Lee, O. Sokolsky, and H. Thimbleby. 2013. Veri�cation of interactive software for medical
devices: PCA infusion pumps and FDA regulation as an example. In Proceedings ACM Symposium Engineering Interactive Systems (EICS
2013). Association of Computing Machinery, 81–90.

, Vol. 1, No. 1, Article . Publication date: May 2020.

So�ware Tools for Model Based Analysis of Critical User Interfaces • 47

[60] P. Masci, P. Mallozzi, F. L. De Angelis, G. Di Marzo Serugendo, and P. Curzon. 2015. Using PVSio-web and SAPERE for rapid prototyping
of user interfaces in Integrated Clinical Environments. In in Verisure2015, Workshop on Veri�cation and Assurance, co-located with CAV.

[61] P. Masci, P. Oladimeji, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby. 2015. PVSio-web 2.0: Joining PVS to HCI. In Computer Aided
Veri�cation: 27th International Conference, CAV 2015, Proceedings, Part I, D. Kroening and S. C. Păsăreanu (Eds.). Springer International
Publishing, 470–478. https://doi.org/10.1007/978-3-319-21690-4_30 Tool available at http://www.pvsioweb.org.

[62] G. Mauro, H. Thimbleby, A. Domenici, and C. Bernardeschi. 2016. Extending a user interface prototyping tool with automatic MISRA C
code generation. In 3rd Workshop on Formal Integrated Development Environment (F-IDE), satellite workshop of Formal Methods 2016.
Electronic Proceedings in Theoretical Computer Science (EPTCS).

[63] A. F. Monk, M. Curry, and P. C. Wright. 1991. Why industry doesn’t use the wonderful notations we researchers have given them to
reason about their designs. In User-centred requirements for software engineering, D.J. Gilmore, R.L. Winder, and F. Detienne (Eds.).
Springer, 185–189.

[64] G. Mori, F. Paternò, and C. Santoro. 2002. CTTE: Support for Developing and Analyzing Task Models for Interactive System Design.
IEEE Transactions of Software Engineering 28, 8 (2002), 797–813.

[65] C. A. Muñoz and R. Butler. 2003. Rapid prototyping in PVS. http://ntrs.nasa.gov/search.jsp?R=20040046914 NASA/CR-2003-212418,
NIA Report No.2003-03.

[66] D. Navarre, P. Dragicevic, P. Palanque, R. Bastide, and A. Schyn. 2005. Very-High-Fidelity Prototyping for Both Presentation and
Dialogue Parts of Multimodal Interactive Systems. In Engineering Human Computer Interaction and Interactive Systems, R. Bastide,
P. Palanque, and J. Roth (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 179–199.

[67] D. Navarre, P. Palanque, R. Bastide, and O. Sy. 2001. A Model-Based Tool for Interactive Prototyping of Highly Interactive Applications.
In Proceedings of the 12th International Workshop on Rapid System Prototyping (RSP ’01). IEEE Computer Society, 136–. http://dl.acm.org/
citation.cfm?id=882480.883731

[68] D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni. 2009. ICOs: A Model-based User Interface Description Technique Dedicated to
Interactive Systems Addressing Usability, Reliability and Scalability. ACM Transactions on Computer-Human Interaction (TOCHI) 16, 4,
Article 18 (Nov. 2009), 56 pages. https://doi.org/10.1145/1614390.1614393

[69] D. Navarre, P. A. Palanque, R. Bastide, and O. Sy. 2001. A Model-Based Tool for Interactive Prototyping of Highly Interactive Applications.
In 12th IEEE International Workshop on Rapid System Prototyping (RSP 2001), 25-27 June 2001, Monterey, CA, USA. IEEE Computer Society,
136–141. https://doi.org/10.1109/IWRSP.2001.933851

[70] S. Owre, J. M. Rushby, and N. Shankar. 1992. PVS: A Prototype Veri�cation System. In Proceedings of the 11th International Conference on
Automated Deduction: Automated Deduction (CADE-11). Springer Berlin Heidelberg, 748–752. https://doi.org/10.1007/3-540-55602-8_217

[71] P. Palanque, E. Barboni, C. Martinie, D. Navarre, and M. Winckler. 2011. A Model-based Approach for Supporting Engineering Usability
Evaluation of Interaction Techniques. In Proceedings of the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS ’11). ACM, 21–30. https://doi.org/10.1145/1996461.1996490

[72] P. A. Palanque and R. Bastide. 1997. Synergistic Modelling of Tasks, Users and Systems using Formal Speci�cation Techniques. Interacting
with Computers 9, 2 (1997), 129–153. https://doi.org/10.1016/S0953-5438(97)00013-1

[73] M. Palmieri, Cinzia B., and P. Masci. 2017. Co-simulation of semi-autonomous systems: the line follower robot case study. In International
Conference on Software Engineering and Formal Methods. Springer, 423–437.

[74] M. Palmieri, C. Bernardeschi, and P. Masci. 2019. A framework for FMI-based co-simulation of human–machine interfaces. Software and
Systems Modeling (2019), 1–23.

[75] M. Palmieri, C. Bernardeschi, and P. Masci. 2019, to appear. A Framework for FMI-based Co-Simulation of Human-Machine Interfaces.
Software and Systems Modeling (2019, to appear).

[76] F. Paternò and G. Faconti. 1992. On the Use of LOTOS to Describe Graphical Interaction. In People and Computers VII: HCI ’92 Conference,
A. Monk, D. Diaper, and M. D. Harrison (Eds.). BCS HCI Specialist Group, Cambridge University Press, 155–174.

[77] A. Rajhans, S. Avadhanula, A. Chutinan, P. J. Mosterman, and F. Zhang. 2018. Graphical Hybrid Automata with Simulink and State�ow.
In Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week). 267–268.

[78] W. Reisig. 1985. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science, Vol. 4. Springer. https://doi.org/10.
1007/978-3-642-69968-9

[79] V. Rossignol. 2009. Optimized Safety-Critical Embedded Display Development with OpenGL SC. SAE International Journal of Aerospace
2, 2009-01-3140 (2009), 91–94.

[80] R. Rukšėnas, J. Back, P. Curzon, and A. Blandford. 2009. Veri�cation-Guided Modelling of Salience and Cognitive Load. Formal Aspects
of Computing 21 (2009), 541–569.

[81] J. Rushby. 2002. Using Model Checking to Help Discover Mode Confusions and Other Automation Surprises. Reliability Engineering and
System Safety 75, 2 (Feb. 2002), 167–177.

[82] M. Ryan, J. Fiadeiro, and T. Maibaum. 1991. Sharing Actions and Attributes in Modal Action Logic. In Theoretical Aspects of Computer
Software. LNCS, Vol. 526. Springer, 569–593.

, Vol. 1, No. 1, Article . Publication date: May 2020.

48 • J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, P. Palanque

[83] J. L. Silva, J. C. Campos, and M. D. Harrison. 2014. Prototyping and analysing ubiquitous computing environments using multiple layers.
International Journal of Human Computer Studies 72, 5 (2014), 488 – 506.

[84] J. L. Silva, C. Fayollas, A. Hamon, P. A. Palanque, C. Martinie, and E. Barboni. 2013. Analysis of WIMP and Post WIMP Interactive
Systems based on Formal Speci�cation. ECEASST 69 (2013). https://doi.org/10.14279/tuj.eceasst.69.967

[85] S. Simakov. 2005. Introduction to MATLAB graphical user interfaces. Technical Report. DEFENCE SCIENCE AND TECHNOLOGY
ORGANISATION EDINBURGH (AUSTRALIA) MARITIME

[86] H. W. Thimbleby. 2007. Press on: principles of interaction programming. MIT press.
[87] K. J. Vicente. 1999. Cognitive Work Analysis. Lawrence Erlbaum Associates.
[88] J.S. Willans and M.D. Harrison. 2001. A tool supported approach for designing and testing virtual environment interaction techniques.

International Journal of Human-Computer Studies 55, 2 (2001), 145–165.
[89] F. Zambonelli, A. Omicini, B. Anzengruber, G. Castelli, F. L. De Angelis, G. Di Marzo Serugendo, S. Dobson, J. L. Fernandez-Marquez, A.

Ferscha, M. Mamei, et al. 2015. Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive and Mobile
Computing 17 (2015), 236–252.

, Vol. 1, No. 1, Article . Publication date: May 2020.

