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1 Departamento de Matemática, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal and Center for Research &

Development in Mathematics and Applications (CIDMA),
Universidade de Aveiro, Portugal
{mnrocha,tmendo}@fc.up.pt

2 INESC-ID/IST, Technical University of Lisbon, Lisboa, Portugal
jlml@inesc-id.pt

3 Faculdade de Economia da Universidade do Porto, Porto, Portugal,
and Center for Research & Development in Mathematics and Applications (CIDMA),

Universidade de Aveiro, Portugal
mesilva@fe.up.pt

Abstract. This work addresses the problem of computing the time evo-
lution of the probability density function (pdf) of the state in a nonlin-
ear neuromuscular blockade (NMB) model, assuming that the source
of uncertainty is the knowledge about one parameter. The NMB state
is enlarged with the parameter, that verifies an equation given by its
derivative being zero and has an initial condition described by a known
pdf. By treating the resulting enlarged state-space model as a stochas-
tic differential equation, the pdf of the state verifies a special case of
the Fokker-Planck equation in which the second derivative terms van-
ish. This partial differential equation is solved with a numerical method
based on Trotter’s formula for semigroup decomposition. The method is
illustrated with results for a reduced complexity NMB model. A com-
parison of the predicted state pdf with clinical data for real patients is
provided.

Keywords: Stochastic systems, state estimation, fokker-Planck
equation.

1 Introduction

The physiologic effect induced by drug administration is described by determin-
istic pharmacokinetic and pharmacodynamic models that represent the inter-
action of the drug with the patient body. These models are of compartmental
type [1] and describe, for a given drug dosage, the time evolution of the plasma
concentration, Cp, and the effect concentration, Ce, of the drug. Their mathe-
matical representation consists of a system of differential equations with several
unknown parameters. These dynamic processes may also be represented by re-
duced complexity models that, although not being compartmental modes, have
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the advantage of leading to simpler controllers and to avoid identifiability prob-
lems because these last models have less unknown parameters [2].

Like in most practical dynamical systems, physiological effects induced by
drug administration are subjects to stochastic disturbances, either internal or
external. Furthermore, model parameters vary from patient to patient and, for
both these reasons, anesthesia models are not deterministic. Thus, instead of
computing the exact state of the system, a stochastic process that would vary
from realization to realization, a probability density function (pdf) that reflects
our knowledge that the state is contained in some region is to be computed. In
this case, deterministic differential equations gives place to stochastic differential
equations. In particular, we are interested in Markov diffusion processes modeled
by stochastic differential equations and for which the pdf is a function of time
that satisfies the Fokker-Planck equation (FPE) [3].

The Fokker-Planck equation is a partial differential equation (PDE) used in
several fields of natural science and engineering [4–7]. In the context of Markov
diffusion processes, the transition probability density of the process, i.e., the
time evolution of the probability density of finding the state at a given time, in
a given point, is a fundamental solution of this equation.

The problem considered in this article consists of computing, as a function
of time, the probability density function (pdf) of the state of a neuromuscular
blockade (NMB) model given a pdf that encodes our knowledge about uncertain
model parameters (that in this case depend on the patient population consid-
ered). This problem is addressed by enlarging the state with the uncertain pa-
rameter and solving a special case of the Fokker-Planck equation known as the
Liouville equation [8] to propagate in time the state pdf. This PDF is solved
numerically by using an algorithm that relies on Trotter’s formula [9].

The contribution consists in the method to propagate the state pdf given
the pdf of the uncertain parameters and its application to the NMB model. It
is remarked that the method can be applied to other components of anesthe-
sia and to other dynamic systems whose state equations depend on uncertain
parameters.

The article is organized as follows. In section 2, and in order to make the text
self-contained, basic notions about Markov diffucion processes, the Foker-Plank
equation and Trotter’s formula are reviewed. Section 3 describes the NMB model
as a stochastic differential equation with uncertainty in the initial conditions cor-
responding to the parameter, writes the corresponding Fokker-Planck equation
and presents its numeric solution. Finally, section 4 draws conclusions.

2 Diffusions and the Fokker-Planck Equation

In this section, and for the sake of clarity, the definitions as well as restrictions
to the application of some of the models or equations used in the next section
are presented.
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2.1 Diffusion Processes

Let X(t) be a Markov process in n dimensions, described by the multi-
dimensional stochastic differential equation (SDE) defined in the Itô sense

dX(t) = f(X(t), t)dt+G(X(t), t)dW (t), (1)

with
X(t0) = c, t0 ≤ t ≤ T,

where G is n × d matrix valued function; W is an R
d -valued Wiener pro-

cess, i.e., all the coordinates Wi(t) are independent one-dimensional Wiener
processes; X , f are n-dimensional vector valued functions and c is a random
variable independent of W (t)−W (t0) for t ≥ 0 [3].

Teorema 1 (Existence and Uniqueness[10]). If the following conditions are
satisfied

1. Coefficients are locally Lipschitz in x with a constant independent of t, that
is, for every T and N , there is a constant K depending only on T and N
such that for all |x|,|y| ≤ N and all 0 ≤ t ≤ T

|f (x, t)− f (y, t)|+ |G(x, t)−G(y, t)| < K |x− y| ,

then for any given X(0) the strong solution to SDE is unique.
2. The linear growth condition holds

|f(x, t)|+ |G(x, t)| ≤ KT (1 + |x|),

X(0) is independent of W , and E |X(t0)|2 < ∞,

then the strong solution exists and is unique on [t0, T ].

If the conditions of the above existence and uniqueness theorem are satisfied for
the SDE (1) and in addition the functions f and G are continuous with respect
to t, the solution X(t) is a n-dimensional diffusion process on [t0, T ] with drift
vector f and diffusion matrix b = GGT , with GT denoting the transposed
of G.

2.2 Fokker-Plank Equation

A property of diffusion processes is that their transition probability is, under
certain regularity assumptions, uniquely determined merely by the drift vector
and the diffusion matrix.
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Teorema 2 ([3]). Let X(t), for t0 ≤ t ≤ T , denote a n-dimensional dif-
fusion process with a transition density p(s,x, t,y). If the derivatives ∂p/∂t,
∂(fi(t,y)p)/∂yi and ∂2(bij(t,y)p)/∂yi∂yj exist and are continuous functions,
then, for fixed s and x such that s ≤ t, this transition density is a fundamental
solution of the Fokker-Planck equation

∂p

∂t
+

n∑

i=1

∂(fi(t,y)p)

∂yi
− 1

2

n∑

i=1

n∑

j=1

∂2(bij(t,y)p)

∂yi∂yj
= 0. (2)

The boundary condition for Eq.(2) is given by limt→s p(s,x, t,y) = δ(y − x).

This partial differential equation (PDE) has an analytical solution only in some
special cases and, in general, numerical methods are need to solve it. In this work
a method based on Trotter’s formula for semigroup decomposition, explained
below, is used.

2.3 Semigroup Definition

Consider the Banach space X of continuous functions equipped with the supre-
mum norm.

Definition 1 ([11]). A semigroup of operators of class C0 is a family of oper-
ators Ttdefined in X and indexed by the parameter t ∈ R (time) such that:

1. Tt is defined ∀t ≥ 0;
2. Tt satisfies the semigroup condition:

∀s,t∈R Tt+s = TtTs (3)

3. Tt satisfies the continuity condition

lim
t→∞Ttx = x ∀x∈X

4. Tt is bounded ∀t ≥ 0 :

∃c∈R : ∀x∈X ‖Tx‖ ≤ c ‖x‖

Definition 2 ([11]). The infinitesimal generator of the semigroup Tt is the
operator defined by

A = lim
t→0

t−1(Tt − I)

where I is the identity operator.

Remark 1. The set B(X) of bounded linear operators in a Banach space X is
itself a Banach space with respect to the norm induced by the norm defined in
X :

‖Tt‖ Δ
= sup

{‖Ttx‖
‖x‖ = x ∈ X {0}

}
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Under this norm, definition 2 states that the semigroup Tt satisfies the following
so called evolution equation

d

dt
Tt = ATt (4)

with the initial condition T0 = I. The solution Tt of (4) is referred to as the
integral operator corresponding to a A.

2.4 Trotter’s Formula

Consider the situation in which A is the sum of two operators A1 and A2. Let
T 1
t and T 2

t be the corresponding integral operators (semigroups), i. e., assume
that

d

dt
T i
t = AiT

i
t , i = 1, 2 (5)

with Tt satisfying the evolution equation

d

dt
Tt = (A1 +A2)Tt. (6)

In general, it is not true that Tt results from the composition of T 1
t and

T 2
t . However, this is approximately true for small t, meaning that Tt can be

approximated by the iterated composition of T 1
Δ ans T 2

Δ over small intervals of
time Δ. This is stated in the following theorem:

Teorema 3 ([9]). Let T 1
t and T 2

t satisfy the norm condition:

∃w∈R : ∀t>0

∥∥T i
t

∥∥ ≤ ewit, i = 1, 2

and that D(A1 +A2) = D(A1) ∩D(A2) is dense in X, where D(A) denotes the
domain of A. Then, (the closure of) A1 +A2 generates a semigroup of class C0

iff (the closure) R(λI − A1 − A2) is dense in X for some λ > w1 + w2, where
R(A) denotes the range of A. If A1 +A2 (or its closure) generates a semigroup
of class C0, this is given by

Tt = lim
Δ→0

(T 1
ΔT

2
Δ)�t/Δ� (7)

where 
t/Δ� represents the greatest integer that does not exceed t/Δ.

Expression (7) is commonly known as Trotter’s formula. It embodies an approx-
imation that may be extended to a finite sum of operators.

3 Transition Probability in NMB

The neuromuscular blockade dynamics can be represented by a Wiener model
comprising a linear state-space model and a nonlinear output equation. The
influence of the parameter uncertainty on NMB state and output (the NMB
level) is studied hereafter using the method previously described.
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3.1 NMB Dynamics

Recently a reduced complexity model for the neuromuscular blockade induced by
Atracurium was proposed [2] that has compartmental features and is represented
by ⎧

⎨

⎩

ẋ1 = −k3αx1

ẋ2 = k2αx1 −k2αx2

ẋ3 = k1αx2 −k1αx3

(8)

Here the dot denotes the time derivative; k1, k2 and k3 are known process param-
eters; x1, x2 and x3 are state variables; and α is an unknown model parameter.
The advantage of this model consists in the fact that the description of inter-
patient variability is reduced to the unknown parameter α, considered to be a
random variable described by a probability density function. Therefore, all state
variables are random outputs and the system can be rewritten as a stochastic
system with a state enlarged by the parameter, as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = −k3αx1

ẋ2 = k2αx1 −k2αx2

ẋ3 = k1αx2 −k1αx3

α̇ = 0

(9)

or
dX = f(X(t), α(t), t)dt (10)

with f defined from (9), and
dα = 0dt (11)

with initial conditions X0 = [x1(t0), x2(t0), x3(t0)]
T

and α = α(t0) a random
variable with a known pdf.

Since the conditions of theorem 1 (Existence and Uniqueness) are verified and
the functions fi are continuous, an equivalent description can be given in terms
of a three-dimensional Fokker-Planck equation, and the time propagation of the
probability density function of state variables obtained

∂p
∂t = k3α(p+ x1

∂p
∂x1

) + k2α(p− (x1 − x2)
∂p
∂x2

) + k1α(p− (x2 − x3)
∂p
∂x3

) (12)

with boundary condition limt→0 p(x1, x2, x3, α, t) = p(x1, x2, x3, α, 0).
Actually, (12) is a degenerate form of the Fokker-Planck equation (Liouville

Equation [8]) because the second derivative term associated to diffusion is as-
sumed to vanish. The solution of (12) represents how the state pdf is influenced
by the pdf of the parameter α and evolves along time. A numerical method based
on Trotter’s formula is applied hereafter in order to approximate the solution of
(12). For that purpose, (12) is rewritten as

∂p(x1, x2, x3, α, t)

∂t
= (L1 + L2 + L3 + L4)p(x1, x2, x3, α, t) (13)

where the infinitesimal generators L1, L2, L3 and L4 are defined by

L1p(x1, x2, x3, α, t) = (k1 + k2 + k3)αp(x1, x2, x3, α, t) (14)
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L2p(x1, x2, x3, α, t) = k3αx1
∂p(x1, x2, x3, α, t)

∂x1
(15)

L3p(x1, x2, x3, α, t) = k2α(x2 − x1)
∂p(x1, x2, x3, α, t)

∂x2
(16)

L4p(x1, x2, x3, α, t) = k1α(x3 − x2)
∂p(x1, x2, x3, α, t)

∂x3
(17)

The operators T i
t generated by the infinitesimal generators Li, i = 1, 2, 3, 4

are given by

T 1
Δp(x1, x2, x3, α, t) = eα(k1+k2+k3)Δp(x1, x2, x3, α, t) (18)

T 2
Δp(x1, x2, x3, α, t) = p(x1e

−k3αΔ, x2, x3, α, t) (19)

T 3
Δp(x1, x2, x3, α, t) = p(x1, x1 + e−k2αΔ(x2 − x1), x3, α, t) (20)

T 2
Δp(x1, x2, x3, α, t) = p(x1, x2, x2 + e−k1αΔ(x3 − x2), α, t) (21)

Since all the operators satisfy the conditions of definition 1 as well as the
norm condition of theorem 3 is valid to apply Trotter’s formula. Accordingly,
the solution of (12) is approximated by

p(x1, x2, x3, α, t+Δ) ≈ T 1
ΔT

2
ΔT

3
ΔT

4
Δp(x1, x2, x3, α, t), (22)

meaning that

p(x, α, t+Δ) ≈ eα(k1+k2+k3)Δp(x1e
−k3αΔ,

x1 + e−k2αΔ(x2 − x1), x2 + e−k1αΔ(x3 − x2), α, t).
(23)

3.2 State Uncertainty Characterization

In order to illustrate the results, start by addressing a simplified one-dimensional
case. Two parameter distributions are considered, namely the lognormal (LN)
and the uniform distribution (U) defined as:

– For the lognormal distribution

f(α) =
1√

2πσα
exp

{
− (ln(α)− μ)2

2σ2

}

with μ = −3.287 and σ = 0.158.
– For the uniform distribution

f(α) =

{
1/(b− a) , for a ≤ α ≤ b

0 , for α < a or α > b
,

with a = 0.027 and b = 0.052.
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The four parameters used in the two distributions are the maximum likelihood
estimates for a real database of patient data with 48 samples. To apply Trotter’s
formula the interval Δ is made constant and equal to 0.1 minute.

One Dimensional Case. Before computing the impact of the state uncertainty
on the system output (measured NMB level), and for the sake of illustration in
a simple case, consider the one-dimensional case, in which

k1 = 0, k2 = 0 and k3 = 10

and the initial condition is x1(0) = 500k3α with initial probability density func-
tion

p(x1, α, 0) = fα(α)δ(x1 − x1(0))

where fα(α) is the probability density function of the parameter α.
First, the time evolution of the probability density function induced by each

one of the two operators used in the Fokker-Planck equation is computed sep-
arately. Then, the approximated solution yielded by Trotter’s formula, i.e., the
time evolution of the probability density function induced by the two operators,
is represented and discussed.

The operator L1 acts in the transition probability by means of one factor
that depends on the value of α. This action deforms the transition probability
by increasing pointwise the pdf, but does not change the position of the pdf to
which it is applied, with respect to the values of x1. Instead, the operator L2 acts
in the transition probability by causing a shift and a change of the independent
variable i.e., this operator replaces x1 by x1e

−k3αt. When the two operators are
applied in sequence, the result is represented on figure 1.
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Fig. 1. Action of both operators, L1 +L2-parameter distribution LogN (left) and uni-
form distribution (right)

Neuromuscular Blockade. The NMB level is computed from the state vari-
able using the output equation. This equation is nothing more than a static
function that allows to compute the NMB level r as function of one of the state
variables [2]. Therefore, the NMB signal pdf as a function of time t is computed
using a pdf transformation associated to the output function.

Figure 2 shows the NMB pdf at 6 different time instants. In the plane [r, t] a
set of responses from 13 real patients (clinical results) are also plotted.
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Fig. 2. Neuromuscular blockade pdf as computed from the model and a set of 13
responses from real patients

4 Conclusions

This work allows to see that the physiological effect induced by atracurium
administration has different density transition probability for different parameter
distribution. Moreover, the range of values for the state variables that may occur
depends not only of the parameter distribution but also on the instance under
consideration.

In this problem, Trotter’s formula provides an adequate approximation for
the transition probability given by the solution of the Fokker-Planck equation
for this stochastic system.

The time evolution of the transition density probability to the administration
of an atracurium bolus of 500 μg/kg (that corresponds to the usual procedure
at the beginning of a general anesthesia), given by the solution of the Fokker-
Planck equation is in accordance with the expected. This means that, for the
same drug dosage applied, different patient have states that evolve in time in a
different way. Nevertheless, all the states will converge for zero, and that is also
expected since the drug will be eliminated from the body of the patient.

This work shows that the parameters uncertainty has an important role in
the states uncertainty, and it is immediately after the drug administration that
it is most noted. For further work the authors intend to study the influence of
the parameters uncertainty over time, assuming that the unknown parameter
instead of being constant in time is affected by disturbances. This may be seen
as a stochastic approach to the on-line parameter identification problem.
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