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Abstract
Purpose – This paper aims to propose a translation library capable of generating robots proprietary code after their offline programming has been
performed in a software application, named AdaptPack Studio, running over a robot simulation and offline programming software package.
Design/methodology/approach – The translation library, named AdaptPack Studio Translator, is capable to generate proprietary code for the Asea
Brown Boveri, FANUC, Keller und Knappich Augsburg and Yaskawa Motoman robot brands, after their offline programming has been performed in
the AdaptPack Studio application.
Findings – Simulation and real tests were performed showing an improvement in the creation, operation, modularity and flexibility of new robotic
palletizing systems. In particular, it was verified that the time needed to perform these tasks significantly decreased.
Practical implications – The design and setup of robotics palletizing systems are facilitated by an intuitive offline programming system and by a
simple export command to the real robot, independent of its brand. In this way, industrial solutions can be developed faster, in this way, making
companies more competitive.
Originality/value – The effort to build a robotic palletizing system is reduced by an intuitive offline programming system (AdaptPack Studio) and
the capability to export command to the real robot using the AdaptPack Studio Translator. As a result, companies have an increase in
competitiveness with a fast design framework. Furthermore, and to the best of the author’s knowledge, there is also no scientific publication
formalizing and describing how to build the translators for industrial robot simulation and offline programming software packages, being this a
pioneer publication in this area.
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1. Introduction

The current competitive global trade scenario demands fast,
efficient, and flexible solutions from the modern industry [1].
This production environment leads to the increasing adoption
of robotic solutions in the factory shop floor, aligned with the
best practices and concepts of the Industry 4.0methodology. In
particular, the fast-moving consumer goods industrial sector is
constantly improved by the usage of robots at the production
scale. The adoption of robotic palletizing systems gives to this
industrial segment the solution to handle the palletization with
high performance and efficiency. However, these solutions are
not modular, lack flexibility and are usually focused on one type
of robot and product, making them unattractive for companies’
investment when considering highly dynamic production
environments. Given this, the studies and proposals of
techniques that support the fast and efficient development and

deployment of modular robotic cells and, that are easily
reconfigured, adapted and re-parameterized, are a current
trend in robotics. It was to respond to these requests,
particularly for the robotized palletizing industry, that the
AdaptPack Translator, described here, was developed. The
AdaptPack Project, which started at the beginning of 2016, has
as its main objective the development of tools, organized in a
modular architecture, to expedite the development,
programming and the shop floor deployment of palletizing cells
with robots fromdistinct brands.
Focusing on the robot programming procedure, today there

exist twomainmethodologies: online and offline programming.
Online programming, the most commonly used, consists of
manually teaching movement points to a robot, supervised by a
human operator. This approach can be implemented using a
Teach Pendant (by guiding the robot using a controller device
and then storing the points and movement instructions) or
through Lead-through Programming (physically guiding the
robot into the workspace and storing the path(s)). These
methods depend on the operator’s skill, and the development
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and test are time-consuming, expensive, tedious, and
repetitive. Furthermore, collisions may occur in case of
programming errors, which may damage the robot and its end-
effector and the robotic cell equipment. Thus, several works
have been presented in the literature, which are an example of
studies aiming to facilitate this task (Choi and Lee, 2001;
Sugita et al., 2004; Schraft and Meyer, 2006; Ferreira et al.,
2016). The offline programming method is commonly based
on developing the robot programming in a simulated
environment. It allows more complex, fast and flexible
solutions, besides the realization of tests in different situations
(Pan et al., 2010). This approach consists of a chain of steps,
including the 3D modeling of the robotic workcell, trajectory
and process planning, simulation, calibration and post-
processing (translation of the robot(s) programs to native code
of its controller; Pan et al., 2010). One drawback of the offline
programming methodology is the post-processing phase, and it
concerns the programs translation to the real robots.
There are several simulator and robot brands available on the

market and the effort to standardize both their interfaces and
the robot programming languages has been quite modest. The
Industrial Robot Language (IRL) (Industrial Robot Language
DIN Standard 66312, 1996) is an attempted example of
standardization that is not really used by any robot
manufacturer, according to the authors’ knowledge. Therefore,
this bottleneck goes against the competitive exigencies of the
global market, as it is necessary to program and test different
routines, according to the robot used in the real cell. Aiming to
help in this issue, some authors proposed a framework for
offline robot programming, that generates native code to
several robot brands (Bottazzi and Fonseca, 2005; Bruccoleri
et al., 2007); however, only some basic commands are
translated. Another framework is presented in Freund et al.
(2001). This tool interprets different native robot languages,
improving the simulation step, i.e., it is a native language
translator to a simulation language. However, it still requires
the knowledge of the proprietary languages.
In what respects tools to expedite the development of robotic

cells, the usual approach is the adoption of simulation software
applications. Presently, there are two “different classes” of
software packages for robot simulation and offline programming of
industrial robots: (i) there are software applications developed by
companies, such asAseaBrownBoveri (ABB) (RobotStudio), and
FANUC (FANUC RoboGuide), etc., that develop robots and
simulation software specifically for their robots – these software
applications only allow to simulate and offline program robots
from the company brand; and, (ii) there are software applications
developed by companies independent of the robot manufacturers,
that develop their applications for working with robots from
distinct brands and that also allow their offline programming.
Concerning commercial products on the market of this

“second” class, Delmia (Dassault Systemes, 2018),
RobotExpert (Siemens, 2018), RoboDK (RoboDK, 2018) and
Visual components (VC) (Visual Components, 2018) are a few
examples of tools that allow the development of offline
programming tasks, including the ability to translate its neutral
language into proprietary codes of different industrial robots.
Delmia and RobotExpert are proprietary simulators, i.e.
present “closed environments” that do not offer an API or
support to the development of new features and simulations.

The RoboDK is more limited regarding the simulation of fully
complex scenarios (as the case of palletizing cells) and has a
reduced robot model library in comparison with the VC
software. These were the main reasons that led to choose to
conduct the AdaptPack project using VC.
A literature review and a market consultation was performed

when this project started (beginning of 2016), and no tool was
found, at the date, able to transform a generic offline robot
program in a custom proprietary code for distinct robot brands.
Besides VC, that at the date did not had the required
translators, RoboDK was also considered then, but its
capabilities were still very limited, also in the number of robot
models available in its library. Therefore, to comply with the
project requirements, the authors had to develop, by its own, a
translator able to translate code from the adopted software for
the project (VC). In the AdaptPack complete solution, complex
codes are generated automatically (Castro et al., 2020), being
the program composed by different basic commands, and the
focus in the presented paper is the capability to transform
generic codes in proprietary codes.
Bearing the above presented ideas on mind, this paper

proposes the AdaptPack Studio Translator. This library is
focused on the automatic generation of native code to the ABB,
FANUC, Keller und Knappich Augsburg (KUKA) and
Yaskawa robot brands, using the simulation and offline
programming software VC (Visual Components, 2018). This
tool is an invisible layer capable of translating all statements
generated by a human operator, or by automatic programming
methods [such as AdaptPack Studio (Castro et al., 2020)], in an
offline programming stage. Therefore, one requirement is not to
interfere in the programming layer, increasing the reliability in the
translation procedure. The focus of this tool is also to easily
convert the programming code, reuse it in other robots and create
this code without the need to stop the production cell, i.e. avoid
production downtime and productivity losses.
A comparative evaluation of the proprietary robot languages

used in this translation library was performed and presented in a
previous work (Souza et al., 2019). This library is an extension of
the AdaptPack Studio project, presented in Silva et al. (2017),
Castro et al. (2019), whose main objective was the development
of a modular framework, aimed at accelerating the design,
development and programming of palletizing robot cells.
The remainder of the paper is structured as given. AdaptPack

Studio Translator library system description and its
explanation is presented in Section 2. The experiments
performed in simulation and in the real environment, including
the achieved results, are given in Section 3. The conclusion
discussing the results and applicability of the proposed library is
presented in Section 4.

2. AdaptPack studio translator library

As stated above, within the AdaptPack project was developed a
modular tool, based on a brand independent robot simulation
and offline programming software package (VC), for the
automatic development of programs for palletizing robots
(named AdaptPack Studio) (Castro et al., 2020) and a module
for the translation of the developed programs for distinct robot
brands (the AdaptPack Translator).
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Figure 1 depicts the translation procedure proposed in an
offline post-programming phase, using the AdaptPack Studio
Translator running on top of the VC software. The user only
needs to choose to which language should the simulated program
be translated, by clicking on a button in the translator’s section
(area marked in red on Figure 2), embedded into the VC
Program tab menu. After the code generation, the program can
be downloaded into the robot controller using a flash disk or the
File Transfer Protocol (FTP).
This library is developed inC# as a dynamic-link library for the

VC software. Three processing entities compose the translation
library architecture: the core, the parser and the translators. Each
one of these entities will be explained in the sequel.

2.1 Core
The core code is the management entity that starts when any
translation button is pressed (Figure 2). First, it checks if a
robot has been selected (and which one), identifies the selected

language, activates the parser, runs the correspondent
translation procedure and exports the generated code to a user
predefined folder. Any warnings, information messages and
advise windows are also displayed by this core. The flowchart
depicted on Figure 3 illustrates this explanation.

2.2 Parser
The parser is responsible to identify the data and instructions
used in the VC program. More specifically, it is a software
structure that can get all information from the 3D simulation
environment (robots, grippers, frames, signals, etc.) and
programming code (variables and statements) and organize all
this data to be, later, used by the translator. For this task, the
parser code has a dependency on the .NET API that
implements the Robot Sequence Language (RSL) (Visual
Components, 2004). With this API it is possible to detect and
access all routines and subroutines inside a VC program,
besides the instructions, variables and any associated
parameters. After the access to all useful information, the parser
creates in memory a data structure to be used later by other
process entities of the AdaptPack Studio Translator library.
The data structure is basically an ordered stack of data in the

memory, with a transcription of all programming instructions
and its parameters, based on the 3D simulation model of the
palletizing cell. This data is based on three classes: the program,
variable and instruction classes. All program data, such as the
main structure and subroutines, path and created file name are
defined by the program class. The variable class defines the
data associated with all variables used in the program and stores
it in the data structure. The parser supported variables are of
the types: integer, double, string and Boolean. The properties

Figure 1 Translation procedure sequence

Figure 2 AdaptPack translator section in VC’s program tab (from left to right: RAPID, KAREL, Inform and KRL selection buttons)
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of each variable stored in the parser structure are as follows:
name and value. Furthermore, the parser also assigns a unique
identification to each variable, since some native languages use
the register declaration method. The instruction class registers
the necessary parameters that define a programmed operation
instruction.
Some of the supported instructions are presented in the

example code depicted on the left panel in Figure 2. These
instructions are commentaries, waiting for a digital signal, delay
command, motion order, flow control statements, subroutines
call, assignment of values and signals (including arithmetical
operations among them), configuration of base and tool
frames, break and continue statements. Following the
requirements of the AdaptPack project (Silva et al., 2017;
Castro et al., 2019), all required instructions and its properties
are presented in Table 1. Furthermore, Table 2 presents the
data types extracted from the instructions that use the target,
base and tool frames. These frames also have an ID assigned by

the parser. This ID is based on the first incidence of the frame
in the VC program to languages that depend on the register
declaration method. It is important to note that, some frames
and its relationships are calculated in the step.
The flowchart presented on Figure 4 shows how the parsing

procedure is performed. First, it checks if the VC robot’s
program is not empty and creates the program’s data stack,
already discussed in this section. Later, for each routine, the
parser stores each variable declared succeeding by the
instructions, following the incidence order in the program’s code.

2.3 Translator
The translator is the third entity class in the AdaptPack Studio
Translator. Generally, a translator is responsible for examining
a sequence of instruction statements and data inside all routines
and subroutines, added in the data structure stored in the
memory by the parser. Afterwards, it translates them to the
intended language. This concept can be seen as an “abstract”
entity and in fact there are four translation processing entities,
i.e., one for each language adopted in the project: RAPID from
ABB, Inform from Yaskawa, KAREL from FANUC and
KUKA Robot Language (KRL) from KUKA. All these
translators will be presented in the subsequent sections and, the
flowcharts of Figures 5, 6 and 7 elucidate each translation
procedures. RAPID and KAREL are grouped in a single
flowchart since its core is equal although minor differences are
noted in practical.

2.3.1 RAPID translator
As with any translator, the RAPID translator will get all
sequence of instructions and variables from the database, and it

Figure 3 Core flowchart

Start Translation

Was a robot
selected ?

Send Advise
Message

True

Create a Parser
object and run it

Create a specific
Translator object

and run it

Wait
for user’s
feedback

End Translation

True

Specific Language
Button Clicked

Event

Send Error
Message

False

False

Table 1 Parser supported instructions

Instructions Properties

Comment Text
Wait BIN Port and digital binary value
Delay Time
Linear Motion Target�, speed, base and tool frames�

Point to Point Motion Target�, speed, base and tool frames�

Set BIN Port and digital value
While Condition and scope
If/Else Condition and scope
Call Routine Routine’s name
Assign Operators
SetBase Base’s name, ID and pose
SetTool Tool’s name, ID and pose
Print Text
Break —

Continue —

Notes: �See Table 2

Table 2 Target, base and tool frames supported by the parser

Data Properties

Target Target’s name, pose, joints and configuration
Base Frame Base frame’s name, ID and pose
Tool Frame Tool frame’s name, ID and pose
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writes the program by the RAPID syntax. The extension of the
created file is “.mod”. In detail, this translator writes the
program headers, followed by the base frames, tool frames and
target positions (identified by the motion commands)
declarations and definitions (as seen in Figure 5). As the
RAPID language changes the records of these frames
definitively if any instruction in the code modifies them, this
translator creates backups of the base frames and tool frames as
the next steps. The applicability of these backups concerns the
restore of the original values, at the end of the program
execution; this way, the code can be rerun. Subsequently, the
main routine is written with its scope, followed by all
subroutines (all these routines are placed in a unique file). Since
the variables are local, the RAPID translator declares and
defines them inside the scope onwhich they are used.

2.3.2 Inform translator
Since Inform is a low-level language [more detailed description
in Souza et al. (2019)] and some statements of the VC software
are not in conformity with it, this translator works according to

a different process. It generates at least three files: one file with
the extension “.JBI” for the main code, another file with the
extension “.JBI” for each subroutine (if it exists), and two other
files for base and tool frames declaration and definition, both
with the “.CND” extension.
The first generated codes in this translator are responsible

to declare and define the base frames and the tool frames into
“.CND” files. The frame registers, in these both files, are set
with the ID of each one, based on the first incidence in the VC
program. Afterwards, the main code and all subroutines are
created into “.JBI” files. For each routine, the translator writes

Figure 4 Parser flowchart

Is the robot’s
program null? True

Create Program Data
Stack

False

Were all
routine verified?

i = 0

Were all i-th routine’s
variable verified?

False
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store it in the

program data stack
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Export program data
stackTrue

End Parsing

Were all i-th routine’s
instructions verified?

Identify the instruction
and store it with its

properties in the program
data stack

False

True

True
i++

Start Parsing

Send Error Message

Figure 5 RAPID and KAREL translator flowchart
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Were all i-th routine’s
instructions written?
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variable defined?

Define it in the ouput
file

False

Generate program’s
output file

End translation

False

True
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the header that defines all the targets registers used in the scope,
followed by the instructions, as described in the flowchart of
Figure 7. The variables are defined in the main routine. The if-
else and the control loops statements are mapped using
pointers instructions.

Figure 6 KRL translator flowchart

Start translation

Create ouput data
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header

Get the program’s
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Define all
program’s frames
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Define all motion
targets without
duplicate

Were all routine
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variable defined?
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Define it in the
ouput file
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Were all i-th routine’s
instructions written?

Write it in the output file
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Create program’s
file and add the
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Generate output
data file
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program’s output

file

End translation

Figure 7 Inform translator flowchart
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2.3.3 KAREL translator
After reading the database, the KAREL translator generates a
file with the extension “.kl”, in the folder specified by the user,
based on the KAREL language syntax. It starts by writing the
headers and the declaration of the frames (base and tool), target
positions (identified by the motion commands) and variables.
In the case of this translator, the subroutines are defined and
transcribed before the main one. Inside the main routine are
defined all frames, targets and global variables, besides the
instructions that constitute the program. The flowchart of
Figure 5 shows the processing flow core idea of this translator.
The KAREL translator performs the declaration and definition
of target positions using registers. Therefore, the user can
perform modifications and adjustments, using the teach
pendant to access the register, without the need to translate the
code again. The registers have an index based on the first
incidence of the data in the VCprogram.

2.3.4 KRL translator
The KRL translator generates the code into two different files,
with extensions “.dat” (the file where are declared and defined
all the programdata) and “.src” (the file where the program and
routines are defined), as represented in the flowchart of
Figure 6. First, the KRL translator creates the “.dat” file with
its header, followed by the declaration and definition of the
base frames, tool frames and target positions, identified by the
VC motion commands. It also includes the declaration and
definition of the properties that constitute these motions. The
KRL translator defines the base and tool frames using registers;
thus, the translations are done according to the first incidence
of the data in the VC program. The generation of the “.src” file
starts with its header, according to the KRL syntax. The main
scope of the code is defined and written, as for all other
subroutines. It is worth noting that all routines are transcribed
in the same file. The Inline Form Documentation method

Figure 8 VC program test
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(Souza et al., 2019) is also created. Hence, the KRL code
instructions are exposed in the robot’s teach pendant.

3. Tests and evaluation results

A simple test program was created using VC, adopting the
offline programming procedure. Afterwards, the translation
step was performed by the AdaptPack Translator. The
programs in the robot’s native code, resulting from the
translation phase, were submitted to both simulated and real
controlled scenarios. For evaluation purposes, during these
tests, the proprietary simulators adopted were ABB
RobotStudio, FANUC Roboguide and Yaskawa MotosimEG.
The robots used in the tests were the ABB IRB 2600–20/1.6,
FANUC LR Mate 200iD 7L and Motoman YR-HP6-B10/
NX100. The simulation step in proprietary simulators were
used to check the functionality and syntax of the generated
programs before they are uploaded in the real robots.
Figure 8 depicts the VC test program. The full code

generated by the AdaptPack Translator, for each robot
programming language, is extensive to be included in the
paper; therefore, only some excerpts of it are presented. The
resulting codes excerpts for RAPID, Inform, and KAREL
languages are presented in Figure 8. The following link shows
how the translation procedure is performed after the offline
programming: http://bit.ly/2PJfzgh
No difference between the VC and the proprietary simulators

was detected using the translated codes, i.e. the robot has the
same behavior and realizes the same trajectory in both cases.

Besides that, the real robots also behaved as predicted, validating
the proposed translator library. Furthermore, it was verified that
the programs generated by the AdaptPack Studio Translator
allowed modification through the teach pendant. This feature is
essential since, in the post-process translation phase, it is necessary
to perform the calibration process. This process tries to correct the
differences between the simulation and the real environments.

3.1 Industry environment tests
A more complex real scenario validation was performed in the
JPM Industry company industrial facilities. During these
validation tests, it was used a real palletizing cell, with the
FANUC Robot R-2000iC/270F, as can be seen in Figure 9.
The AdaptPack Studio allowed to automatically generate the
program, following the procedure explained in Silva et al.
(2017) and Castro et al. (2019) and the tests were realized in
the VC software. After some calibration adjustments between
the simulated and the real scenarios, the KAREL code was
generated by the AdaptPack Studio Translator, and the robot
task was performed as predict during the offline simulation
phase.

4. Conclusion

This paper presented the AdaptPack Studio Translator. The
focus of this library is the automatic generation of the robot
controller native codes, after offline programming has been
performed in the VC software. The native robot languages
supported are RAPID (ABB), KAREL (FANUC), KRL

Figure 9 AdaptPack Studio Translator real experimental tests and validation at JPM industry industrial facilities, on a palletizing cell with a FANUC
robot
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(KUKA) and Inform (Yaskawa). The performed tests in native
simulators, in a controlled scenario, and in the real industrial
environment allowed us to validate this library.
This proposal improves the post-process procedure during

offline programming and supports engineers in the project
development. Furthermore, this methodology can handle the
present demands of companies for fast design of flexible
solutions, as verified during the tests at the JPM Industry
facilities, with the proprietary palletizing cell.
Currently, and based on the feedback from the industrial

users, we are considering adding functionalities to allow the
motions instructions to accept variables as parameters for the
motion targets coordinates, instead of accepting only real
values. Furthermore, we are also considering adding
instructions to allow performing relativemotions.

Note

1. This is an extended and improved version of a paper that was
originally presented at the ICARSC 2019 conference, that
took place last April in Porto, and which received, ex-aequo,
the best paper award granted by the Industrial Robot journal
to the papers presented at this event. The original version of
the paper was entitled “Converting Robot Offline Programs to
Native Code Using the AdaptPack Studio Translators” and is
available for download from the IEEEXplore, at the following
URL: https://ieeexplore.ieee.org/document/8733631/
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