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Abstract—This paper addresses the tracking problem of the
state variables of a nonlinear planar dynamic model of an overac-
tuated electric vehicle with four-wheel independent drive (4WID)
topology. In order to track the state variables of the system
it is proposed a new sliding mode controller based on a non-
linear planar model. The controller explores the overactuated
system in order to redistribute the control effort to the remaining
actuators when a fault occurs. Although the system has multiple
solutions due to the access of the torque applied in each wheel
independently, there could be particular fault events where the
remaining healthy actuators may not be able to maintain the
system stability. In those particular cases the inclusion of the
steering control variable is an important advantage as it allows
the controller to manipulate the control effort in any directions.
The proposed controller is validated in various driving scenarios
with different fault schemes. The simulations are carried out
with a high-fidelity vehicular model provided by the simulation
software Carsim in co-simulation with Matlab/Simulink.

I. INTRODUCTION

The increasing interest in electric vehicles has posed numer-
ous problems and new challenges on ground vehicle motion
control systems. The technological breakthrough in electric
vehicles motivated the implementation of different multi-
motor architectures, unraveling the vast potential of torque
vectoring, making vehicles more responsive, controllable and
efficient. [1], [2].

One of the most promising multi-motor architectures is
the four-wheel independent drive topology, which is defined
by four electric actuators that can be controlled separately
allowing the definition of the torque in each wheel [1], [3],
[2]. Nevertheless, the increase in the number of actuators leads
to an increase of fault probability in the system or even total
failure. The fault of one actuator compromises the vehicles
dynamic control performance when conventional controllers
are applied, so the design of the fault-tolerant controllers for
electric vehicles is especially important. If the system is able
to identify and recover from the initial fault, by restoring the
system from a region of deprecated performance to a region of
required performance, the complete failure can be avoided [4].

In recent years, the fault-tolerant area have been carefully
studied, mostly in aerospace applications where the appearance
of faults has a more significant effect and where the physical
redundancy of actuators is generalized [5]. Nonetheless, the
fault-tolerant control can be applied to other overactuated
systems. The ground vehicle is one of the systems where this

theme has became more attractive due to implementation of
physical and analytical redundancy [1], [5]. The advantages of
overactuated system have been studied initially from a stability
point-of-view using four-wheel active steering to cope with
system disturbance improving handling of the vehicle [6].
An attempt has been made in [1] and its development [7]
to improved passive fault tolerant controller based on adaptive
control techniques. In addition to improved control methods,
the overactuated vehicles allowed the implementation of fault-
tolerant controllers, particularly in multi-motor topologies [8],
[9], [7]. Plenty of solutions have been proposed, from adaptive
sliding mode control [10] to model independent adaptive fault-
tolerant control [9].

The aim of this paper is to present a fault tolerant sliding
mode control with active front steering system to hinder the
vehicle from spin-out when failures or malfunctions in electric
motors occur. The proposed system have an independent
control in each wheel and steer-by-wire which allows the
modification of the steering information provided by the driver,
expanding the control variables in order to maintain a higher
order of freedom.This feature presents an important improve-
ment from [2] and enables a more robust fault-tolerant control
eliminating points of singularity created by some faults/failures
events. In this paper we assumed that the injected faults in
the system will only occur in the motors of each wheel and
are promptly detected by a fault detection and identification
algorithm. This assumption is reasonable according to the
literature [7]. The proposed structure of the fault-tolerant
control is presented in Fig. 1 which is composed by two sliding
mode controllers capable to track perfectly the state variables
and a control allocation subsystem that reconfigures the control
effort to the available actuators.

The organization of the paper is as follows: Section II
formulates the problem of planar vehicle dynamic and state
variables tracking in the presence of parametric modeling
uncertainty and system disturbance. In section III, the non-
linear control design, the proposed control structure and a
solution for sliding mode control design are described. Section
IV proposes the control allocation algorithm, and in section
V the performance of the described solution using computer
simulation is evaluated. Finally, section VI contains some
concluding remarks and presents a final assessment of the
presented work.
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Fig. 1. Proposed control structure with active steering and individual torque control

II. CONTROL PROBLEM FORMULATION

This section describes the planar model of the 4WID ground
vehicle using the yaw rate, longitudinal and lateral velocity as
system states. The formulation of the tracking problem of the
state variables is also discussed in the present section. The
control inputs defined for the proposed problem are the forces
applied to each of the four wheels and also an active action
of steering input of the vehicle.

A. Ground Vehicle Planar Model

In the planar model it will be neglected the vertical dynamic
imposed by the suspension considering the vehicle as a rigid
body without any roll or pitch influence [11]. This simplifica-
tion enables the study of the vehicle frame as an infinitesimal
point where all the forces are applied [11].

The vehicle planar dynamic is expressed by two key mo-
tions, the translation motion and the rotational motion, that
can be defined by the Newton-Euler equations of motion of a
rigid vehicle [12].

In this formulation the state variables are the longitudinal
and lateral velocity of the vehicle (vx , vy) and the rate at
which the vehicle is rotating over the z axis, yaw rate (ψ̇).
The mass of the vehicle is represented by m and the inertial
moment of the vehicle in the vertical axis is expressed as Iz .
The variables Fx and Fy denote the sum of all the external
and internal forces applied to the vehicle in the x and y axis
respectively, and Mz is the total sum of the forces/moment
generated in each individual wheel.

By combining the Newton-Euler equations of the vehicle-
with the definitions of total moment and lateral force [12] the
following planar model arise:

v̇x =
1
m

(FxFR + FxFL + FxRR + FxRL ) + ψ̇vy (1a)

v̇y =
1
m

(
2Cf

(
δ −

vy

vx
−

l f ψ̇
vx

)
+ 2Cr

(
lr ψ̇
vx
−
vy

vx

))
− ψ̇vx

(1b)

ψ̈ =
1
Iz

(
2Cf l f

(
δ −

vy

vx
−

l f ψ̇
vx

)
− 2Cr lr

(
lr ψ̇
vx
−
vy

vx

)
+ Mz

)
(1c)

where CF and CR denote the front and rear cornering stiffness
respectively, l f and lr express the distance between the front
and rear wheels respectively, the inertial moment of the vehicle

is defined by Iz and the mass of the vehicle is represented by
m. Furthermore, the steering component δ can be decomposed
in a driver input δIN and an active control input δu (δ =
δIN + δu).

B. Problem Formulation

Let vT = [Fx, uψ̇] be the virtual control variable
which will be mapped to real control variables, u =

[FxFR, FxFL, FxRR, FxRL, δu], defined by the four forces ap-
plied in each wheel and an increment for the steering variable
defined by the driver.

Consider the state model of an overactuated ground vehicle,
described by (1). Let e = (evx , eψ̇) = (vx −vxRef , ψ̇− ψ̇Ref ) be
the tracking error expressed in the vehicle coordinate frame,
where (vxre f , ψ̇Ref ) denote the desired reference signal. The
goal is to derive a nonlinear control law for the longitudinal
force Fx and the control variable obtained by the external mo-
ment Mz and the complementary steering input δu , based on
sliding mode techniques, so that the tracking errors converge
asymptotically to zero (or a small ball around zero when not
feasible), even in the presence of model uncertainty originated
by poor lateral velocity knowledge and/or parametric uncer-
tainty.

The overactuated nature of the system hinders the direct
translation of the virtual control variables into the available
actuators. To address this fact, we introduce a weighted
sum of squares problem with an objective function that
pursuit to minimize the total actuator effort [13]. The
weight matrix is defined as a diagonal matrix that mirrors
the effort required from each actuator and is defined as
W = diag(wFL,wFR,wRL,wRR,wδu ) where wi ∈ [0, 1]. The
control allocation algorithm must set the control variables as a
function of the respective virtual control in real time to ensure
the optimal solution in each given instant eliminating the effect
of actuators faults [14].

III. NON-LINEAR CONTROL DESIGN

In this section, two decoupled sliding mode control laws to
track the lateral and longitudinal motion of the vehicle even in
the presence of parametric modeling uncertainty are proposed.
The controller is first derived by considering the virtual input
control variables Fx and uψ̇ = f (Mz, δu). It is also assumed
that the lateral velocity, although unknown, can be estimated
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through the present model and the error between the estimation
and the real value is bounded.

A. Control Structure

The input introduced by the driver is used to calculate the
desirable yaw rate and longitudinal velocity of the vehicle.
The controlled steering angle is superimposed to the steering
wheel angle resulting into road wheel angle applied to the
model. The longitudinal velocity has a much slower dynamic
than the yaw rate which allows a decoupled approach to this
problem. Thus, the yaw rate and longitudinal velocity are
treated independently enabling a decoupled study as well as a
separated control of each variable.

B. Sliding Mode Control

From (1) it is possible to define a strategy for the control
design as following: i) Manipulate the control variable defined
by Fx = (FxFR + FxFL + FxRR + FxRL ) to regulate the
longitudinal velocity vx to the desired value vxRef and ii)
Actuate on the control variable uψ̇ which forces the vehicle’s
yaw rate to a desired maneuver. The next result shows the
proposed control laws.

Theorem 1 Consider the nonlinear system described by the
ground vehicle model (1) in closed-loop with the control law
(2a) and (2b).

Fx =

(
v̇xRef + ψ̇vy + κvx (vx, ψ̇)

)
m (2a)

uψ̇ = −
2Cf l f

Iz
δIn +

2Cr l f − 2Cf l f
vx Iz

vy +
2Cf l2

f − 2Cr l2
r

vx Iz
ψ̇

(2b)
+ ψ̈Ref + κψ̇ (vx )

where κvx (vx, ψ̇) and κψ̇ (vx ) are non-linear functions de-
scribed by

κvx (vx, ψ̇) = −Kvx (vx, ψ̇)sign(svx ) (3a)
κψ̇ (vx ) = −K (vx )sign(sψ̇) (3b)

where Kvx (vx, ψ̇) > 0 and K (vx ) > 0 are control parameters.
The variables svx and sψ̇ are defined as the error between

the state variable and the desired reference.

sψ̇ = ψ̇ − ψ̇Ref = eψ̇ (4a)

svx = vx − vxRef = evx (4b)

The motion of the system will be restricted to the manifold
s = 0, for all time t → ∞, even in the presence of bounded
modeling uncertainty.

Proof. The proof is organized as follow: Initially it will be
shown that the error of the yaw rate eψ̇ converges asymptot-
ically to zero as t → 0, assuming the longitudinal velocity
remains constant (vx ∈ R+). It will also be shown that the
error of the longitudinal velocity evx converges asymptotically
to zero as t → 0.

a) Convergence of yaw rate:
Consider the following Lyapunov candidate:

V =
1
2

s2
ψ̇

(5)

Let x = 0 be an equilibrium point for ẋ = f (x) and D ∈
Rn be a domain containing x = 0. Let V : D → R be a
continuously differentiable function such that:
• V (0) = 0,V (x) > 0;∀x ∈ D{0}
• V̇ ≤ 0,∀x ∈ D
Then, x = 0 is stable. Moreover, if

V̇ < 0,∀x ∈ D{0}

then x = 0 is asymptotically stable, according to Lyapunov’s
stability theorem [15].

By computing the derivative of V results:

V̇ = sψ̇
(
ψ̈ − ψ̈Ref

)
(6)

And let’s assume, without lost of generality, that the steering
variable can be decomposed in two signals (δ = δIn + δu).
Applying (1c) to (6) and after some straightforward manip-
ulation, we obtain:

V̇ =sψ̇
(2Cf l f

Iz
δIn −

2Cr l f − 2Cf l f
vx Iz

vy −
2Cf l2

f − 2Cr l2
r

vx Iz
ψ̇

+
Mzext

Iz
+

2Cf l f
Iz

δu − ψ̈Ref

)
(7)

From (7) it is possible to identify the control inputs uψ̇ , given
by:

uψ̇ =
Mzext

Iz
+

2Cf l f
Iz

δu (8)

This control variable uψ̇ is now defined as presented in (2b).
Substituting (2b) in (7) results:

V̇ = sψ̇

(
−

2Cr l f − 2Cf l f
vx Iz

ṽy + κψ̇ (vx )
)

(9)

where ṽy denote the error of the estimated lateral velocity,
which it is assumed bounded by

�����
−

2Cr l f − 2Cf l f
vx Iz

ṽy
�����
≤ %(vx ) (10)

Let κψ̇ (vx ) = −K (vx ).sign(sψ̇) where K (vx ) ≥ %(vx ) +
K0, K0 > 0 Then

V̇ ≤ sψ̇
(
%(vx ) − K (vx ).sign(sψ̇)

)
V̇ ≤ |sψ̇ | (%(vx ) − K (vx ))

V̇ ≤ −K0
���sψ̇

��� (11)

The inequality (11) guarantees the final condition to the
asymptotic convergence imposed by the Lyapunov’s stability
theorem, proving that the yaw rate error converges asymptot-
ically to zero as t → ∞.
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b) Convergence of longitudinal velocity:
Using the Lyapunov candidate expressed in (5) the first con-

dition for asymptotic convergence is guaranteed. Computing
the time derivative of the candidate results:

V̇ = svx
(
v̇x − v̇xRef

)
(12)

The longitudinal dynamic expressed in (1a) is substituted in
(12), yielding

V̇ = svx

(
1
m

(FxFR + FxFL + FxRR + FxRL )

+ ψ̇vy + γ(vx ) − v̇xRef

)
(13)

where γ(vx ) ≥ 0 is the bounded resistance forces that acts in
the vehicular system, such as the friction forces acting in each
individual tire and the drag resistance force [11].

�����
1
m

(
4.FR +

1
2
ρv2

xCD A
) �����
≤ γ(vx ) (14)

The total control effort can be expressed as the sum of the
forces applied at each wheel as (Fx). The design control law
defined in (2a) is replaced in (13) resulting:

V̇ = svx
(
ψ̇ṽy + γ(vx ) + κvx (vx, ψ̇)

)
(15)

Assume once again that the error of the lateral velocity esti-
mation is bounded and the total system uncertainty is bounded
as ξ (vx, ψ̇) ≥ ���ψ̇.ṽy + γ(vx )���. By defining κvx (vx, ψ̇) =
−Kvx (vx, ψ̇)sign(svx ) with Kvx (vx, ψ̇) ≥ ξ (vx, ψ̇) + Kvx0, and
Kvx0 > 0, results the condition (16)

V̇ ≤ svx
(
ξ (vx, ψ̇) − Kvx (vx, ψ̇)sign(svx )

)
V̇ ≤ |svx |

(
ξ (vx, ψ̇) − Kvx (vx, ψ̇)

)
V̇ ≤ −Kvx0 |svx | (16)

The two conditions of asymptotic stability were successfully
proven through the Lyapunov candidate (5) and the resulting
condition (16), thus proving the stability of both proposed
control laws to the planar vehicle system.

IV. CONTROL ALLOCATION

In Fig. 1 it is clear the presence of the control allocation
block that is designed to distribute the effort of the actuators
in an optimal way and to eliminate the disturbance created by
the actuators faults. The virtual control v introduced in Section
II is mapped into the physical actuators through least squares
regression obtaining an overall solution that minimizes the sum
of the squares of the errors. In this particular case the system
can have more than one solution, so there is a weighting
factor imposed to each variable which reflects the significance
of that variable. This paper proposes a dynamic weighting
matrix that expresses the importance given to each actuator in a
particular moment, redefining the weighting matrix according
to the system conditions (system faults, wheel workload, etc).
In this analysis it is assumed that the system faults and failures
are tackled by a fault detection and identification system,
providing this information to the proposed controller.

A. Weighting Matrix

The weighting matrix W is chosen in order to:
• Redistribute the control in the presence of faults in the

system;
• Explore the tire load to improve the grip.
Considering that the lateral forces that the tire originates

are negligible (Fxi j � Fyi j), the workload of each tire can be
expressed as [10], [13]

ηFL =
FxFL

µFzFL
; ηFR =

FxFR

µFzFR
;

ηRL =
FxRL

µFzRL
; ηRR =

FxRR

µFzRR
; (17)

A weighting matrix J regarding the tire workload can be
expressed as

J =diag((µF̄zFL )2, (µF̄zFR)2, (µF̄zRL )2, (µF̄zRR)2, 1/100)
(18)

where F̄zi j is the normalized value of the vertical force
expressed by:

F̄zi j =
Fzi j

max(Fzi j )
(19)

The matrix J in (18) is a diagonal weighting matrix, where
jii ≤ 1, i ∈ {1, 2, 3, 4, 5}. The weight defined for the steering
increment j55 is ×100 lower then the remaining variables and
relieves the effort applied to the steering component.

In order to express the effect of actuator faults, it will be
assumed that the occurrence of a fault has a direct impact on
the available torque of the actuator. Considering the matrix K
that represents the actuator fault expressed as

K = diag(kFL, kFR, kRL, kRR, kδ ) (20)

with ki j ∈ [0, 1], where ki j expresses the lost of effectiveness
of the i jth actuator. Then it is possible to define a weighting
matrix M that exploit the actuator effectiveness

M = (I − K ) (21)

where I is the identity matrix.
The final weighting matrix W can be obtained by combining

the M matrix (21) relative to the system faults with the load
restriction (17) obtaining:

W =diag((1 − kFL )(µF̄zFL )2, (1 − kFR)(µF̄zFR)2, (22)

(1 − kRL )(µF̄zRL )2, (1 − kRR)(µF̄zRR)2, kδ/100)

B. Weighted sum of Squares

The virtual control variable is the result of a linear combi-
nation of control effort in each actuator:

Gu = v (23)

In this particular problem, the G matrix is a non-square
singular matrix, where the number of columns of the matrix
(n) is greater than the number of lines (m) (m = 2n = 5),
which means that the problem is under determined. This
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characteristic emerges from the fact that we are trying to
map the virtual control variables (v ∈ R2) into five physical
actuators (u ∈ R5). Nonetheless, it is possible to define the
following transformation:

u = G†v (24)

where G† is the right pseudo-inverse of G. One choice of G† is
obtained from the following minimization problem [5], [10]:

min
u

uTW−1u

subjected to Gu = v (25)

W ∈ Rn×n is a symmetric positive definite diagonal weight-
ing matrix [5]. This minimizes the cost associated with the
control vector u at each time instant. The optimal solution
to (25) is presented as [5], [10]:

u =
[
WGT (GWGT )−1

]
v (26)

V. SIMULATION RESULTS

To illustrate the performance of the control scheme proposed
in Fig. 1 to parametric model uncertainty, actuators faults or
even total failure, a series of tests were carried out with help
of a high-fidelity simulator, the CarSim in co-simulation with
Matlab/Simulink. In order to demonstrate the fault-tolerant
control capability it is defined two maneuvers: the J-turn
maneuver with constant acceleration and Double Lane Change
maneuver with constant longitudinal velocity.

A. J-turn

In the first maneuver the vehicle starts at the origin(0,0)
with an initial longitudinal velocity of 45Km/h and is moving
in a straight line with null yaw rate. At the time t = 1s
it is enforced a ramp longitudinal velocity reference with a
constant slope until it reaches 60Km/h. The turning maneuver
starts at the time t = 2s and continues for the remaining
time of the simulation. In order to evaluate the performance
of the controller to complete failure of multiple actuators, it
is imposed a double failure of the two left wheel actuator’s
(Front and Rear) at time t = 4s.

From the analysis of the result in Fig. 2 it is possible to
see that the global trajectory of the vehicle is significantly
affected by the failure of both actuators. On the other hand,
the proposed controller is able to maintain the system stability
even in the presence of multiple actuators failure. The torque
applied at each individual wheel and the steering input variable
is presented in Fig. 3.
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Fig. 2. Global position of the vehicle in J-turn
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Fig. 3. Control variables in J-turn a)Torque applied in each wheel b)steering

In the instant t = 4s the amount of torque applied in the left
wheels becomes null, as they suffer a simultaneous complete
failure. However, the proposed controller is able to reconfigure
and redistribute the total control effort in order to maintain the
longitudinal velocity of the vehicle by increasing the torque
applied in the right wheels. From this fault scheme rise another
fundamental problem, the external moment Mzext applied to
the vehicle can not be controlled as the two healthy actuators
are at the same side of the vehicle which means that there
is no degrees of freedom to actuate in the lateral dynamic
of the vehicle. In this situation, the steering component is
the only control variable that can control the yaw rate of the
system. As seen in Fig. 3(b) the steering input of the system
adapts in order to maintain the trajectory of the vehicle, and
so reestablishing the stability of the system.

B. Double Lane Change

The Double Lane Change is a more demanding maneuver
that will be carried out at constant speed (vx = 90Km/h)
and starts with a null yaw rate, heading straight until t =
0.8s. In this simulation it is introduced three actuators faults:
a complete failure of the actuator at the front left wheel at time
t = 4s, a 60% lost of effectiveness in the rear right wheel at
the instant t = 6s and another complete failure of the actuator
at the rear left wheel at t = 8s.

The state variables yaw rate and longitudinal velocity are
represented in the Fig. 4. We can see that the vehicle converges
to the desired references, even in the presence of multiple
actuators faults. The velocity error presented in Fig. 4(b)
results from a quasi-sliding switching function.

Fig. 5(a) expresses the torque applied in each individual
wheel, once again, the proposed controller redistributes the
control effort through the remaining actuators. At the instant
t = 4 the lost of the effectiveness of the actuator in the front
left wheel is promptly compensated by increasing the torque
of the rear left wheel actuator and with that maintain the total
longitudinal force applied to the vehicle. Furthermore, there is
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a distinction between the torque applied in each wheel since
the very beginning of the maneuver. This is a direct result of
the proposed optimal distribution that target the wheels with
most vertical force applied. From the time instant t = 0.8
(beginning of the DLC maneuver) until time t ≈ 3.5 the
vehicle is curving to the left, as a result, there is a lateral
acceleration that ultimately result in a difference of vertical
force between the right and the left tires. It is also possible
to identify a small difference between the front and rear tires,
that is originated,by the difference of vertical load in each
wheel. This optimal allocation promotes the system stability
by targeting the wheel that is less likely to suffer slip.

By examining the result expressed on Fig. 5(b) it is possible
to conclude that, although the system faults at time t = 4s
and t = 6s perturb the steering variable, it is just in the
failure, at time t = 8s, that the steering variable as a significant
action and becomes most valuable. Just like in the previous
simulation, at time t = 8s, the external moment defined by the
longitudinal forces applied to the wheel is no longer available
and it becomes essential to take an additional action over the

steering variable.

VI. CONCLUSION

The paper addressed the problem of the planar dynamic of
the overactuated ground vehicle, in the presence of parametric
modeling uncertainty and actuators fault. The proposed solu-
tion uses a decoupled double sliding mode controller in order
to promote stability to the two state variables yaw rate and
longitudinal velocity. The paper validates the controller for
a four wheel independent drive topology including an active
steering control variable that promotes stability to the system,
particularly in situations where a singularity arise from the
fault scheme.

In future research it will be proposed a state observer in
order to obtain a more reliable information of the vehicle
side slip therefore eliminating the disturbance originated in the
system. The inclusion of other system faults on the steering
actuator and the fault detection and identification system will
also be introduced in the near future.
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