The Last Mile: High-Assurance and High-Speed Cryptographic Implementations

José Bacelar Almeida*, Manuel Barbosal, Gilles Barthe?, Benjamin Grégoire§
Adrien KoutsosY, Vincent Laporte§,Tiago Oliveiraf, Pierre-Yves Strubl!
*University of Minho and INESC TEC
TUniversity of Porto (FCUP) and INESC TEC
YMPI for Security and Privacy and IMDEA Software
Inria
TLsv, CNRS, ENS FParis-Saclay
I Ecole Polytechnique

Abstract—We develop a new approach for building crypto-
graphic implementations. Our approach goes the last mile
and delivers assembly code that is provably functionally cor-
rect, protected against side-channels, and as efficient as hand-
written assembly. We illustrate our approach using ChaCha20-
Poly1305, one of the two ciphersuites recommended in TLS
1.3, and deliver formally verified vectorized implementations
which outperform the fastest non-verified code.

We realize our approach by combining the Jasmin frame-
work, which offers in a single language features of high-level
and low-level programming, and the EasyCrypt proof assistant,
which offers a versatile verification infrastructure that supports
proofs of functional correctness and equivalence checking.
Neither of these tools had been used for functional correct-
ness before. Taken together, these infrastructures empower
programmers to develop efficient and verified implementations
by “game hopping”, starting from reference implementations
that are proved functionally correct against a specification, and
gradually introducing program optimizations that are proved
correct by equivalence checking.

We also make several contributions of independent interest,
including a new and extensible verified compiler for Jasmin,
with a richer memory model and support for vectorized
instructions, and a new embedding of Jasmin in EasyCrypt.

1. Introduction

Vulnerabilities in cryptographic libraries are challenging
to detect and/or eliminate using approaches based on testing
or fuzzing. This has motivated the use of formal verification
for proving functional correctness and side-channel protection
for modern cryptographic libraries [17], [21], [22]], [36].
These approaches have been very successful, to the extent
that some of these verified libraries have been deployed
in popular products like Mozilla Firefox, Google Chrome,
Android, etc. In this paper, we go the last mile: we build
and leverage a framework for developing high-assurance and
high-speed cryptographic implementations. Our framework
delivers efficient, functionally correct, and timing side-

channel resistant (vectorized) implementations, without the
need to trust the compiler.

Methodology. Our methodology allows developers to follow
the typical optimization process for low-level code. We start
from a readable reference implementation, for which we
prove functional correctness. We then gradually transform
the reference implementation into an optimized (possibly
platform-specific and vectorized) implementation, and prove
that each transformation preserves functional correctness.
This approach is similar to the “game-hopping” technique
used in provable security, except that we use it for functional
correctness of implementations rather than security of high-
level algorithms. In parallel, we check that implementations
are safe using static analysis techniques, as the previous
proofs are carried out in a simpler semantics, which assumes
that programs are safe, and compiler correctness is generally
stated for safe programs. As a final step, we prove that that
the optimized implementations correctly deploy mitigation
against timing attacks: we adopt the cryptographic constant-
time approach [3]], and prove that both the control flow and
the memory accesses performed by the optimized program
are independent of secret values.

This simple approach has important conceptual benefits.
It emulates the developer’s mental process for writing opti-
mized implementations, and imposes a convenient separation
of concerns between optimization and verification. It also
minimizes and helps structuring verification work: functional
correctness of the reference implementation is established
once and for all, even if the reference implementation is used
to derive several platform-specific implementations. More-
over, correctness of transformations can be factored out using
generic lemmas. Finally, this approach is compatible with
approaches for proving concrete security of cryptographic
constructions.

Software infrastructure. We realize our methodology using
Jasmin [2], a language and compiler for high-assurance
and high-speed cryptography, and EasyCrypt [10], [11]], a
proof assistant for provable security. The Jasmin language
is designed to support “assembly in the head” programming,

i.e. it smoothly combines high-level (structured control-flow,
variables, etc.) and low-level (assembly instructions, flag
manipulation, etc.) constructs. This combination makes it
possible to program by “game-hopping”. The EasyCrypt
proof assistant supports program logics for reasoning about
correctness and equivalence of imperative programs. It has
been used to mechanize “game-hopping” security proofs for
many cryptographic schemes. Neither Jasmin nor EasyCrypt
has been used previously for proving functional correctness
of implementations. However, taken together, they provide
a convenient framework to develop efficient verified imple-
mentations by “game-hopping”.

We formally verify Jasmin implementations. These im-
plementations are predictably transformed into assembly
programs by the Jasmin compiler. Predictability empowers
Jasmin programmers to develop optimized implementations
with essentially the same level of control as if they were
using assembly or domain-specific languages such as ghasm.
This means, in particular, that one can express in Jasmin
the same optimizations performed in assembly, but using a
language with higher-level constructs that favour verification.
Moreover the compiler is verified (in the Coq proof assistant)
thus guarantees are carried to assembly code.

Technical contributions. We build on Jasmin and Easy-
Crypt to instantiate a new methodology for the develop-
ment of high-speed and high-assurance crypto code and
demonstrate the resulting framework by giving new, fully
verified, assembly implementations of standard cryptographic
algorithms that are faster than their best known (non-verified)
counterparts. In detail:

1) We enhance the Jasmin framework with a richer mem-
ory model, supporting values of different sizes, several
language extensions, including intrinsics for vectorized
instructions, and a new compiler design that favors
extensibility (the proof of compiler correctness has been
extended accordingly, as discussed in Section [3.3);

2) We obtain new, highly optimized vectorized implementa-
tions for ChaCha20, Poly1305 and Gimli. Our implemen-
tations leverage the flexibility of Jasmin, the enhance-
ments presented in this paper and our “game-hopping”
approach, to explore the combination of various low-level
optimizations to maximize performance beneﬁtsﬂ

3) We implement an embedding of Jasmin programs in the
EasyCrypt proof assistant [10]]. The embedding naturally
supports proofs of functional equivalence and functional
correctness. We also develop a variant of the embed-
ding to support automatic proofs of protection against
side-channel attacks, concretely that control flow and
memory accesses are independent from secret inputs (aka.
cryptographic constant-time);

4) We prove functional correctness of reference implementa-
tions, and equivalence between reference and optimized
implementations for ChaCha20, Poly1305 and Gimli.

1. While this could have been done in other frameworks, e.g. Vale, we
believe that Jasmin is unique in empowering the programmer to fine-tune
verification-friendly implementations.

Statements of functional correctness for the first two
primitives are taken from, or given in a style similar to,
HACL*, to guarantee formal interoperability. In the case
of Gimli we show how to use a readable Jasmin reference
implementation, which can be syntactically very close to
the specifications cryptographic standards, as a goal for
proving functional correctness of optimized code.

We note that a crucial factor in achieving these results
is our ability to tame the verification effort by relying on
equivalence checking. Due to the characteristics of Jasmin,
the verification workload for the reference implementations
is comparable (or even smaller, due to the less elaborate
memory model) to that of carrying out formal verification
of C code. The power of the relational reasoning offered by
EasyCrypt permits bridging reference implementations and
optimized implementations with relatively low effort, and
the automation offered by the tool suffices to deal with proof
goals for side-channel protection.

Related Work. Appel and collaborators prove functional cor-
rectness of C implementations of SHA-256 [7], HMAC [14]
and HMAC-DBRG [35]]. Their proofs are carried in the
Verified Software Toolchain [|6], an interactive program veri-
fication tool for C programs. Their verified implementations
can be compiled to assembly using CompCert [26], a formally
verified optimizing compiler for C. Their work does not
analyze the penalty of using a verified compiler, nor does it
provide any guarantee with respect to side-channels.

HACL* [36] is a portable C library that implements
many modern cryptographic primitives. Implementations are
written in F* [32], a SMT-based verification-oriented lan-
guage, and formally verified against a readable mathematical
specification. By enforcing that secrets are used paramet-
rically, it is also possible to guarantee that F* programs
are protected against side channels in the cryptographic
constant-time model [3]]. Verified F* implementations are
first compiled into C using Kremlin, a highly optimized
compiler from F* to C [30], and to assembly, using the
Clang compiler or the CompCert compiler. Their library is
deployed in Mozilla Firefox, Wireguard and other popular
products. Their evaluation shows their libraries to be as fast
as unverified C libraries, but for this one must assume that
functional correctness and protection against timing attacks
is preserved by compilation. In contrast, Jasmin does not
include a C compiler in its Trusted Computing Base.

Vale [|17]] supports formal proofs of functional correctness
and side-channel protection of assembly-level cryptographic
implementations. Functional correctness is proved using the
Dafny verifier: implementations are annotated with assertions
and checked using verification condition generation and
SMT solvers. Vale and Jasmin are similar in the sense
that they can verify hand-tuned implementations, without
the need to trust a compiler. Vale is able to verify off-the-
shelf implementations. In contrast, Jasmin is conceived as
a framework (language, compiler, and verification infras-
tructure) for building new implementations. In particular,
the Jasmin language contains high-level constructs that

ease programming, optimization and verification, and the
EasyCrypt back-end provides support for proving functional
equivalence and reductionist arguments. In short, while the
assembly code that can be verified by Vale and Jasmin is
essentially the same (see Section [6)), the methodology and
tool support to obtain this code are different.

The Vale/F* framework [22]] builds on Vale to develop
an approach based on F* for proving correctness of C
programs with inlined x64 assembly. Their approach is
based on defining a deep embedding of x64 assembly
and formally verifying an executable verification condition
generator for x64 assembly programs. The latter is used
in combination with F* verification condition generator for
proving correctness proofs of hybrid programs. The Kremlin
compiler is then used to generate C programs with inlined
assembly, to get a performance similar to Vale. In contrast
with Jasmin, this approach simplifies the integration of
assembly code with general-purpose code written in the C
language. However, their Trusted Computing Base includes
a C compiler and the interaction between C and assembly.

Independently, Erbsen et al. [21] develop an infrastruc-
ture for generating verified C implementations of elliptic
curve arithmetic from high-level descriptions written in the
Coq proof assistant. In addition, their generated code is
protected against side channel attacks in the program counter
model [28]], since it does not contain any branching state-
ment. FiatCrypto implementations are deployed in Chrome,
Android and other popular products. As for HACL*, their
verified C implementations can be as efficient as the fastest
unverified C implementations, when compiled with a non-
verified compiler. In this case, their Trusted Computing Base
includes a C compiler.

Yang et al [19], [29], [33] develop highly automated
tools for proving functional correctness of efficient assembly
implementations of elliptic curve cryptography.

Lim and Nagarakatte [27] develop an automated method
for proving equivalence of assembly implementations of
cryptographic libraries. Their method is able to establish
equivalence of scalar and vectorized implementations.

In addition, many works focus exclusively on side-
channel resistance and/or provable security. In particular,
there exist several tools for proving constant-time security [3]],
[8]], [31] or for making programs constant-time by compila-
tion [18]], [34]. Finally, a recent work develops a certified
compiler [[13]] that preserves constant-time security.

Scope of the paper. We demonstrate our approach for
selected case studies. We focus on functional correctness, and
in particular on the “game-hopping” approach to functional
correctness. However, we stress that all of our implemen-
tations have also been verified for safety and timing side-
channel protection.

Our case studies (ChaCha20 and Poly1305) are limited
to the realm of symmetric cryptography and we have not
formally verified their concrete provable security. We chose
these examples to showcase the benefits of our approach,
specially for vectorized implementations. Verifying their
provable security is the subject of ongoing work.

Our framework can be used to verify other primitives
and connect their provable security to functionally correct
efficient implementations, as shown by follow-up work on
SHA3 [1]. Furthermore, Poly1305 relies on multi-precision
modular arithmetic computations that are similar to those
employed in several public-key primitives, so carrying out
functional correctness proofs for implementations of, for ex-
ample, the high-speed Jasmin implementation of Curve25519
in [2] is clearly within reach and is a direction for future work.
Finally, our framework currently supports x86 platforms, but
we plan to extend it to support ARM platforms.

Software and proofs. https://github.com/tfaoliveira/libjc.

Outline. In the next section we use an example to illustrate
our methodology. In Section [3| we describe our extensions
to Jasmin and in Section 4| we describe the supporting
development in EasyCrypt. Then, in Sections [5] and [6] we
describe the ChaCha20 case study and provide a thorough
performance evaluation of our code in comparison to al-
ternative implementations. Concluding remarks appear in
Section [/} The Gimli case study appears in Appendix

2. Motivating example: Poly1305

We illustrate our methodology using Poly1305 [15], an
authentication algorithm that is used together with ChaCha20
as one of the two ciphersuites recommended in the TLS
1.3 RFC. Poly1305 is a one-time authenticator (the key
should only be used once) that allows the sender to attach a
cryptographic tag ¢ to a transmitted message m. The receiver
of the message should be able to derive the same session
key k autonomously, and recompute the tag on the received
message. If the tags match, the receiver is assured that only
the sender could have transmitted it, provided k is secret
and authentic.

Algorithm overview. Poly1305 takes a 32-byte one-time
key k and a message m and it produces a 16-byte tag ¢. The
key k is seen as a pair (r, s), in which each component is
treated as a 16-octet little-endian number, with the following
format restrictions: octets r[3], 7[7], [11] and r[15] should
have their top 4 bits cleared, whereas octets r[4], 7[8] and
r[12] are required to have their two lower bits cleared. For
the purpose of this paper we will assume that k& = (r, s) is
generated as a pseudorandom 256-bit string, after which r
is clamped to its correct format.

To authenticate a message m, it is split into 16-byte
blocks m;, fori € [1,2,...]. Each block m; is then converted
into a 129-bit number b; by reading it as a 16-byte little-
endian value and then setting the 129-th bit to one (the last
block is treated differently). The authenticator ¢ is computed
by sequentially accumulating each such number into an
initial state a9 = 0 according to the following formula:
a; = (ai—1 +b;) x r (mod p), for i € [1,2,...] and where
p = 2130 — 5 is prime. Finally, the secret key s is added to
the accumulator (over the integers) and the tag ¢ is simply
the lowest 128 bits of the result serialized in little-endian

https://github.com/tfaoliveira/libjc

op poly1305_pre (r : zp) (s : int) (m : Zp_msg)
(mem : global_mem_t) (inn, inl, kk : int) =

let body i = let offset =i = 16 in

if i <sizem — 1

then load_block mem (inn+offset) 16

else load_block mem (inn+offset) (inl—offset) in
let n = ceil (inl / 16) in
m = [body 0; - --; body (n—1)] A
r = load_clamp mem kk A
s = to_uint (loadW128 mem (kk + 16)).

op poly1305_post mem_pre mem_post outt rr ss mm =
mem_post =
storeW128 mem_pre outt (W128.of_int (poly1305_ref rr ss mm)).

Figure 1: Poly1305 specification in EasyCrypt.

order. The choice of p is crucial for optimization, as it is
close to a power of 2: modular reduction can be performed
by first reducing modulo 2'3° and then adjusting the result
using a simple computation that depends on the offset 5.

Specification. Our goal is to prove that our optimized
implementation of Poly1305 is functionally correct with
respect to the high-level specification presented in Figure [T}
The specification is written in EasyCrypt and matches the
HACL* specification for Poly1305 in that the computation
of the tag is expressed as the following functional operators,
which iterate over a list of values in Z,, corresponding to the
message blocks and accumulate the state of the authenticator
as described above, before finally adding the secret key
component s.

op poly1305_loop (r : zp) (m : Zp_msg) (n : int) =
foldl funhi= (h+nthmi)=*r) Oz, [0 n—1I].

op poly1305_ref (r : zp) (s : int) (m : Zp_msg) =
let h' = poly1305_loop r m (size m) in
(((asint h) % 2128) +5) % 2128 |

This specification is used to express the following correctness
contract over the execution of our implementations:
Glob.mem = mem A args = (out,inn,inl,k) A

poly1305_pre r s m mem inn inl k =
poly1305_post mem Glob.mem out r s m

The contract relies on an axiomatic model of the Jasmin
language semantics that has been created in EasyCrypt. In
this particular case, the contract imposes that the memory
Glob.mem in the final state is identical to the initial memory,
except for the fact that it now encodes the correct authenti-
cator at position out. Correctness is defined with respect to
the values stored in the initial memory, whose contents are
interpreted (according to the encoding rules of Poly1305) as
containing a message m of length inl bytes stored at position
inn, and a key with components r and s stored at position k.

In detail, the precondition and post-condition are shown
in Figure |1} The pre-condition requires the implementation
to correctly /ift the message encoded in memory to some
representation of Z,,, tweaking the necessary bits as specified

EasyCrypt Specs Jasmin Code

. High-Speed
Functional Spec Vectorized Code
Hoare logic l l Relational Hoare logic
(single program) (equivalence checking)

Bridging
Implementation
(trivial to vectorize)

Imperative Spec
(folds as loops)

Relational Hoare logic i T Relational Hoare logic
(equivalence checking) (equivalence checking)

Reference
Implementation

Refined Spec

(match control-flow)

Relational Hoare logic Hoare logic
(equivalence checking) T (single program)

Correctness of non-
vectorized Zp ops

Figure 2: Sequence of hops for Poly1305 correctness proof.

by Poly1305. This lifting is defined by operators load_block
and load_clamp that specify how the provided memory region
is interpreted as a representative of Z,. We illustrate the
latter operator:
op load_clamp(mem: global_mem_t) (ptr : address) =

let x = loadW128 mem ptr in

let xclamp =

x & (W128.of_int OxXFFFFFFCOFFFFFFCOFFFFFFCOFFFFFFF) in
Zp.inzp (W128.to_uint xclamp).

The lifting to Z,, is specified by first interpreting the memory
region as a 128-bit integer, applying the bit resets prescribed
by Poly1305, and interpreting the resulting value as a residue
modulo p (the mapping between integers modulo p and Z,
is defined by operators inzp and asint). Conversely, the post-
condition requires the implementation to correctly encode
the final tag (a 128-bit integer) back into memory.

Implementations. We reach our optimized code from the

specification through a sequence of implementations, which

we depict in Figure [2]

abstract implementations: we first create an imperative
version of the specification (see Figure [5) that relies on
computations over the abstract type zp. We then apply a
series of transformations (including loop transformations
and code modularization using inlineable functions) to
obtain a code that approximates the control flow from
Figure [3] and which we explain below. This sequence is
shown on the left-hand side of Figure [2]

reference implementations: we replace computations in zp
with calls to functions that deal with explicit representations
of values in zp. Intuitively, this program corresponds to a
Jasmin program, whereas the abstract implementations are
just EasyCrypt programs which we use as proof artifacts.
However, this reference implementation is not yet fully
optimized. This hop is shown on the bottom of Figure [2}
each operation of Z, must be proved correct in isolation;
such results are then used to justify the jump from an
abstract implementation to a fully concrete implementation.

optimized implementations: we apply a series of transfor-
mations to restructure the reference implementation in a

code that exhibits parallelism and replaces sequential code
by vectorized instructions. This sequence of hops is shown
on the right-hand side of Figure 2} intuitively we restructure
the reference implementation into a new one, for which
replacing sequences of instructions with parallel ones is
trivial, which then enables the equivalence proof with the
fully optimized code.

In what follows, we first give a brief overview of
Jasmin, then describe our high-speed implementation of
Poly1305, and then explain the various parts of the functional
correctness proof.

Background on Jasmin. Jasmin [2] is a language designed
for building efficient and formally verified cryptographic
primitives within a single language. This entails empowering
Jasmin programmers to use different programming idioms for
different parts of the implementation, as shown in Figures]
[0 and [I0] In Appendix [A] we give a by-example overview
of the current status of Jasmin.

Jasmin aims to provide the highest level of control and
expressiveness to programmers. Informally, the essential
property that Jasmin aims to achieve is predictability: the
expert programmer will be able to precisely anticipate and
shape the generated assembly code, so as to be able to
achieve optimal efficiency. In this, Jasmin is heavily inspired
by ghasm. This means that the programmer must specify
the storage for program variables (stack, register) and must
handle spilling explicitly (the compiler will fail if it cannot
find a spill-free allocation). Jasmin also ensures that side-
effects are explicit from the program code by treating flags
as boolean variables; this not only gives explicit control over
flags, but also makes verification of functional correctness
and constant-time security significantly simpler, as all non-
memory-related instructions can be treated as pure operators.

On the other hand, Jasmin provides a uniform syntax
that unifies machine instructions provided by different micro-
architectures. The main purpose of this syntax is to ease
programming and to enhance portabilityE] Jasmin also sup-
ports (inlineable) function calls, which naturally leads to a
style of programming that favors modularity, and supports
high-level control-flow structures, rather than jumps. Jasmin
also supports functional arrays for describing collections of
registers and stack variables. This notation leads to compact
and intuitive code and simplifies loop invariants and proofs
of functional correctness. Arrays are meant to be resolved at
compile-time, and so they can only be indexed by compile-
time expressions. These can be used to describe statically
unrollable for loops and conditional expressions.

These choices have no impact on the efficiency of the
generated code, as low-level cryptographic routines usually
have a simple control-flow, which is easily captured by these
high-level constructions. Moreover, it considerably simplifies
verification of functional correctness, safety and side-channel

2. Platform-specific instructions are also available and can be used
whenever important, e.g., for efficiency. In particular, programmers may
always use a Jasmin dialect where there is a strict one-to-one mapping
between Jasmin instructions and assembly instructions.

5to 3 limb
conversion

| I

F final
addition
: J

sequential
3 limbs

preproc. 3to 5limb 4x parallel
3 limbs conversion 5 limbs

Figure 3: Structure the optimized Poly1305 implementation.

security, and is critical to leverage off-the-shelf verification
frameworks, which are often focused on high-level programs.

High-speed high-assurance implementation. Our fully
optimized code takes advantage of the “assembly in the
head” style of programming supported by Jasmin. We rely
on the high-level constructs in Jasmin to deploy mixed
representation optimizations, which combine sequential and
parallel processing as shown in Figure [3]

The implementation first checks whether we are dealing
with a small or large message (over 256 bytes). For small
messages, it calculates the tag by representing values in
Z,, packed into three 64-bit words (the most significant
word for a residue will only use 2 bits). For large messages,
a mixed representation computation is used. First, some
precomputation necessary for parallel calculations is per-
formed using the packed representation; then the values are
converted to a 5-limb representation using radix 226 stored
into five 64-bit words. This leaves room in each word so that
limb-wise multiplication can be performed safely in 64-bit
architectures, as well as accumulating multiple additive carry
operations. Parallel computation of 4 message blocks at a
time is then implemented using vectorized operations over
this representation. Finally, the result is converted back to
the packed representation and any remaining message blocks
are processed as for short messages.

The high-level control flow and (inlineable) function
modularization of Jasmin are crucial to allow managing
the code complexity, whereas the low-level features permit
controlling instruction selection and scheduling in order to
fine-tune performance. An example of our use of the low-
level features of the language is given in Figure [The
optimized implementation relies on AVX2 SIMD instructions,
for which Jasmin provides syntactic sugar: shift and add
operators are annotated with type information (4u64) indicat-
ing that the selected instructions act on 4 unsigned 64-bit
words in parallel. Indeed, this code snippet is a part of the
parallelized 5-limb implementation, as can be seen by the
type of the input x, which contains 4 values in Z,, each
represented using 5-limbs. All of these values are processed
in the same way using the SIMD instructions.

Correctness of abstract and reference implementations.
The proof of the baseline abstract implementation with
respect to the functional specification uses standard Hoare
logic. The proof of the remaining abstract implementations
is carried by “game hopping”, i.e. each step is justified using
relational Hoare logic.

fn carry _reduce(reg u256[5] x, reg u256 mask26) — reg u256[5] {
reg u256[2] z;
reg u256 t;

z[0] = x[0] >>4u64 26;
x[0] &= mask26;
x[1] +4ub4= z[0];
z[0] = x[1] >>4u64 26;

z[1] = x[3] >>4ub4 26;
x[3] &= mask26;
x[4] +4ub4= z[1];
z[1] = x[4] >>4u64 26;

t = z[1] <<4ub4 2;

z[1] +4ubd=t;

x[1] &= mask26; x[4] &= mask26;

x[2] +4u64= z[0]; x[0] +4u64= z[1];

z[0] = x[2] >>4u64 26; z[1] = x[0] >>4ub4 26;
x[2] &= mask26; x[0] &= mask26;

x[3] +4u64= z[0]; x[1] +4ub4= z[1];

N

0] = x[3] >>4u64 26;
3] &= mask26;
x[4] +4u64= z[0];

X

return Xx;

Figure 4: Example of optimized Jasmin low-level code.

proc poly1305 (out in_0: address, inlen: int, k: address) : unit = {
var r,h,x: zp;
var bl6: u64;
var s, h_int : int;

r < load_clamp Glob.mem k;
h « OZP 5

while (16 < inlen) {
x < load_block Glob.mem in_0 16;
h <+ h+x; (s Addition in Zp =)
h <+ h=r (= Multiplication in Zp =)
in_0 < in_0 + 16;
inlen < inlen — 16;
}
if (0 < inlen) {
X < load_block Glob.mem inlen in_0;
h + h+x;
h <+ h=r;
}
h_int < (asint h) % 2128 ;
s <— W128.to_uint (loadW128 Glob.mem (k + 16));
h_int < (h_int +s) % 2128

Glob.mem < storeW128 Glob.mem out (W128.of_int h_int);

Figure 5: Imperative reference specification in EasyCrypt.

The proof of equivalence from the baseline abstract im-
plementation uses a series of functional correctness lemmas
that modularize the computation of each operation in zp in
the two representations described above, including arithmetic,
conversion and load/store operations.

Figure [6] shows one such auxiliary lemma for the con-
version of the results of the 4 parallel computations over

lemma add_Rep5_Pack_spec hhl hh2 hh3 hh4 :
phoare [Mhop3.add_Rep5_Pack_Rep3 :
bRep5 27 hhl A bRepS 27 hh2 A bRep5 27 hh3 A bRep5 27 hh4
hhl =hl A hh2 =h2 A hh3 =h3 A hh4 =h4 =
ubWo64 4 res[2] A
repres3 res = represS hhl + repres5 hh2 +
represS hh3 + repres5 hh4 | = 1%r.

Figure 6: Example of representation correctness lemma. In
addition to functional correctness, the contract binds the
implementation to using only 4 bits on the most significant
output limb, assuming that all the input limbs are using at
most 27-bits.

the 5-limb representation to a single value over 3-limb
representation. Unlike the rest of the correctness proof, which
requires minimal effort, the proofs of these lemmas require
ingenuity and user interaction. This is because the proofs
of these auxiliary lemmas use algebraic reasoning similar
to proofs of other multi-precision computations that are
common in cryptography [19]. These proofs are reusable
and they could be partially automated (see Sections [and [T).

We note that this strategy of performing several hops
with abstract implementations considerably simplifies the
equivalence proofs.

Equivalence checking the vectorized implementation. At
this point in the proof, all the non-vectorized code in the
reference implementation matches the code in the extracted
Jasmin implementation. The final part of the proof connects
our reference implementation to the fully optimized code
via three hops that rely on two new dedicated EasyCrypt
features:

o The first hop rearranges code so that code corresponding
to each single-instruction-multiple-data (SIMD) instruction
is modularized as a call to a procedure in a special
EasyCrypt module called Ops. Here we take advantage
of a new EasyCrypt meta-tactic that permits rearranging
n repetitions of the same sequence of k instructions into
a sequence of k blocks, each with n identical instructions
(intuitively each of these blocks corresponds to a SIMD
instruction).

The second hop replaces calls to Ops with calls to a different

module OpsVv, where the content of each procedure now

makes a single call to the corresponding SIMD instruction

(see Figure [/| for an illustrative example). This hop is

justified with a once-and-for-all proof that, using the

axiomatic semantics of Jasmin expressed in EasyCrypt,
establishes the functional equivalence of the Ops and Opsv
modules.

o The final hop simply shows that the EasyCrypt imple-
mentation obtained from the previous transformation is
equivalent to the extracted optimized Jasmin code.

In Section [5] we report on other equivalence proofs we
have completed and also on the performance enhancements
obtained via the associated optimizations.

type vt4u64 = u256.
type t4u64 = u64 array4.

module OpsV = {
proc iVPBROADCAST_4u64(v : u64) : vtdu64 = {
return x86_VPBROADCAST_4u64 v;
e

module Ops = {
proc iVPBROADCAST_4u64(v : u64) : t4u64 = {
var r : t4u64;
r[0] <—v; r[1] <v; r[2] <v; 1[3] <V
return r;

boe b

Figure 7: Ops and OpsvV modules.

Protection against timing attacks. Low-level crypto-
graphic software implementations are expected to satisfy
a security-critical non-functional property commonly known
as constant-time, as mitigation against timing attacks. This
mitigation consists of the following two restrictions: i. all
branching operations depend only on public values (here
public is defined by explicitly identifying which parts of
the initial state can influence the control-flow); and ii. the
memory addresses that are accessed by the implementations
depend only on public values. Intuitively, these restrictions
combined with mild assumptions on the underlying hardware
processor guarantee that the execution time of the program
(even accounting for micro-architectural features like cache
memories) will be fixed once the public part of the input is
fixed, ruling out timing attacks.

It is well-known that mitigation against timing attacks
can be modeled as observational non-interference. That
is, one can define an instrumented semantics, where a
distinguished leakage variable (modeled as a list of events)
records execution of time-varying instructions, targets of
conditional jumps and memory accesses. Then, a program is
secure iff every two executions with possibly different secret
inputs (but equal public inputs) yield equal leakage.

We define an embedding of the instrumented semantics
of Jasmin programs in EasyCrypt and use this embedding
to translate our optimized implementation of Poly1305. The
proof that a program correctly implements mitigation against
timing attacks is carried out with minimal user interaction
using existing tactics for relational Hoare 10gicE]

Guarantees over assembly code. The Jasmin compiler
is formally verified for functional correctness (in Coq),
therefore we know that safe Jasmin source programs are
compiled into safe and functionally equivalent assembly
programs—we discuss safety in detail in Section [3] In

3. This method for checking constant-time works for a wide range of
adversary models, and the translation to EasyCrypt can be easily adjusted
to take into account that a given instruction cannot be securely used on
secret-dependent data, or only under some restrictions. Considering refined
models of leakage, where a richer semantics of instruction is required (e.g.,
for floating point operations [5] not currently supported by Jasmin) is an
interesting direction for future work.

addition, Almeida et al [2] informally argue that the Jasmin
compiler preserves mitigations against timing attacks in the
constant-time model. This informal claim has been reinforced
by a formal proof that many optimization passes preserve
such mitigations [/13], although the connection between these
two works has not been established yet.

Efficiency. HACL* contains a verified C implementation of
Poly1305. Vale [[17] and Vale/F* [22] also prove functional
correctness of the assembly implementation of Poly1305 for
64-bit operations. In section Section [6| we compare our code
with these and other implementations and show that, by
fine-tuning it at the Jasmin level, we are able to match and
even outperform the best non-verified code.

We note that there is no magical way of improving
performance and we do not claim to have a way to replace the
expert programmer. Indeed, we apply the same optimization
ideas used by the best implementations, namely those adopted
in OpenSSL and [24]]. What we do claim is that we have
a tool-supported methodology that allows us to bring the
expert programmer on-board in the process of verifying
functional correctness, in that many of the hand-crafted
optimization steps can be justified with equivalence-checking
proofs that are simple to carry out with the developers’ input.
This includes vectorization and instruction scheduling as
prominent examples. Furthermore, the more challenging parts
of the functional correctness proofs are not harder (or even
simpler due to the memory model of Jasmin) than proofs
carried out over high-level languages such as C.

3. Enhancements to Jasmin

In this section we describe the improvements to Jas-
min required for writing our highly-optimized fully-verified
implementations. This includes language extensions and a
significant refactoring of the infrastructure and compiler.
Here we start by listing the main challenges we addressed
in improving previous work [2]].

The original Jasmin framework [2]] has been used for
writing high-speed cryptographic code. Unfortunately, this
framework exhibits three key limitations:

« simplified memory model: only 64-bit values were sup-
ported in the original Coq formalization, which excluded
implementations that rely, for example, on byte-level
access to memory or different views of arrays, and vector
instructions;

« monolithic design: the original Coq formalization was
developed in the prevailing style for verified compilers,
and not intended to be easily extensible;

e basic proof infrastructure: the original implementation
featured a verification condition generator (the standard
tool for deductive verification) and did not support the
process of writing optimized implementations described
in the previous section.

We address these issues as follows. First, we develop a

new memory model to support value of any width and
idioms for efficient low-level code. Second, we propose a

mechanism, called instruction descriptor, which incorporates
the information required to handle the instruction from source
to assembly, and implement the language and compiler based
on instruction descriptors. Third, we develop a verification
infrastructure that supports proofs by game hopping. We
develop the first two points in this section, and the third
point in the next section.

3.1. Compiler design

Compilers, and in particular verified compilers, are
typically written for well-defined source languages and
architectures. Moreover, it is generally assumed, at least
implicitly, that compiler extensions will be developed by
compiler writers. This is perfectly reasonable, but has
concrete practical implications: any extension or modification
to the compiler requires multiple modifications spread over
the codebase of the compiler. Furthermore, in the case of
verified compilers, it is also necessary to perform multiple
modifications across the compiler proof.

In our context, this status quo is unsatisfactory for
two reasons: first, the source language is not as closed
as traditional languages: in particular, it is designed to
support assembly in the head and to grow organically to
support richer sets of instructions and eventually multiple
platforms. Ideally, these extensions should be manageable by
external contributors with limited skills in formal verification.
Therefore, we introduce the notion of instruction descriptor,
which packs all the knowledge and the proof obligations
required for adding new instructions to the compiler. The
use of descriptors makes the compiler more easily extensible.
The approach is generic and applicable to other compilers.

Machine instructions can be made available as intrinsic
operators at the source level. Due to historical reasons
and micro-architectural constraints, each instruction has a
specific “calling-convention”. For instance, many instructions
implicitly write part of their output to the flags register. Also,
several instructions operate in place: their main destination
should be the same as one of their sources. These constraints
are irrelevant to program verification and enforcing them
early in the compilation process would not bring any benefit.
As an example, the x86 MUL instruction takes two inputs:
one explicitly and the other one implicitly from the RAX
register; its output is always written to the RDX, RAX and
flags registers. On the opposite, these operators are uniformly
described as pure functions at the source level. In the case of
the #x86 _MUL intrinsic, it takes two values as input and
produces seven values as output. Therefore, the compilation
of these simple instructions is not trivial: on one hand register
allocation must enforce the various architectural constraints;
on the other hand the generation of assembly code should
check that it is safe to move from a functional semantics to an
imperative one with side effects. The associated correctness
proof is also tedious and slightly involved.

Therefore, we have built a novel verified compiler infras-
tructure so that new instruction can be added by constructing
a descriptor and adding it to the development. This permits
automatically implementing compilation and extending the

correctness proof to support the new instruction. In particular,
descriptors permit extracting rules for register allocation,
as they include meta-data about which registers are read
or written by an assembly instruction, which instruction
performs memory accesses, etc. This information is also
useful to extend support for verification of non-functional
properties, in our case mitigation of timing attacks.

For instance, the descriptor for the #x86 MUL sz (non-
truncated unsigned multiplication of words of sz bits) is
constructed from the following data:

e [: F OF; F CF; F SF; F PF; F ZF; R RDX; R RAX]
the list of destinations where to write the output values,
here implicitly to some flag registers and to the RDX
and RAX registers;

e [R RAX; E sz 0] the list of sources from where to
read the input values, here implicitly from the RAX
register and from the first argument;

e [:: TYoprd] the type of the emitted instruction, here it
has one operand;

e (MUL sz) the instruction to emit.

The descriptor also contains a few well-formedness argu-
ments (proved by computation) and a correctness argument
which links the high-level functional semantics of the in-
trinsic operator to the low-level imperative semantics of the
machine instruction.

As an additional advantage of this design, pseudo-
instructions can be seamlessly introduced. For instance, a
common pattern for zero-initializing a register is to XOR
it with itself. However in the Jasmin source language,
uninitialized registers have undefined values that should not
be used in computations. We have thus added an operator set0
which takes no input and returns a zero value; its descriptor
maps it to the r — XOR r r instruction which takes only
one argument: its destination.

3.2. Jasmin language and memory model

Memory model. Although x86_64 microprocessors mainly
provide 64-bit registers, programs may manipulate values
of various bit widths. Ultimately, there are only registers
of 64 bits. Values of smaller sizes do fit, but some bits are
undefined. If the value is larger than what is expected by
an operation, this is not an issue: only the relevant bits are
used. The behavior when writing a small value into a register
depends on the operation and its size: the high bits of the
destination registers may be preserved or zeroed. The exact
behavior at the micro-architectural level is very intricate: it
would be unwise to expose it to the programmer. Therefore,
we define two semantics: a source semantics that is uniform
and convenient for reasoning; and a compiler semantics, in
which variables may hold “partial” values, i.e., with some
of their most significant bits being undefined.

In any case, operators at some size may be applied to
arguments of a larger size: arguments are implicitly truncated.
The compiler needs not do anything special, since this is
the semantics at the assembly level: operators extract the
relevant part from their register operands. Technically, we

fn load _add(reg u64[3] h, reg u64 in, reg u64 len) — reg u64[3] {
reg bool cf;
reg u64 j;
stack u64[2] s;
reg u8 c;
s[0] = 0; s[1] = 0;
i=0;
while (j <u len) {
c = (u8)[in + j]; s[u8 (int) jl =c¢; j+=1;

s[u8 (int) j] = 1;

cf, h[0] += s[0];

cf, h[1] += s[1] + cf;
_,h[2] +=0 + cf;
return h;

Figure 8: Load and add the final bytes

require that functions have a signature and every assignment
be decorated with the type of the assigned value. By analogy
to an identity operator, assignment truncates the value to the
given type, which enables to soundly compile copies using
a (truncating) mov instructions.

Another extension that permits dealing with varying
length operations is a refinement of the memory model
specification to allow “type-punning” — reading and writing
distinct but overlapping ranges of addresses. Interestingly,
the precise behavior need not be specified in order to
prove the correctness and security of the compilation. Note
however, that to reason about Jasmin programs relying on
such memory access patterns, the instance of the memory
model might need to be refined.

Flexible views of stack arrays. To efficiently implement
functions like the C function memcpy, or the processing of
the last (potentially incomplete) block of plaintext in a stream
cipher, it is important to be able to use the same pointer to
read and store data of varying sizes. For memory accesses,
this follows a direct consequence of supporting various sizes
in Jasmin. However, the stack in Jasmin is not seen as
addressable memory at the source level, although stack arrays
are compiled as pointers into the stack. To allow the same
flexibility in stack operations, we have added a special feature
for arrays in the stack, which allows reading/writing words
of different sizes, as illustrated in Figure

As can be seen in the figure, a stack array can be seen
as a contiguous sequence of bytes, which is very convenient
when only a part of the array ends up being used. Aliasing
and overlapping accesses issue may thus arise, but they are
scoped to a single array: at the source level, stack arrays as
a whole enjoy a value semantics, are disjoint, etc.

Vector instructions. Instruction descriptors and our more
general memory model allow us to integrate vector instruc-
tions in the Jasmin language. Following the design principles
of Jasmin, we consider both generic, zero-cost, portable and
non-portable instructions.

One example of portable instructions is parallel addition.
For these operations, the language provides a convenient

fn shuffle state(reg u256[4] k) — reg u256[4] {
k[1] = #x86_VPSHUFD_256(k[1], (4u2)[0, 3, 2, 1]);
k2] = #x86 VPSHUFD _256(k[2], (4u2)[1, 0, 3, 2]);
k[3] = #x86 VPSHUFD_256(k[3], (4u2)[2, 1, 0, 3]);
return k;

Figure 9: Shuffling function of ChaCha20

inline fn R4(inline int ¢, reg u256 x) — reg u256 {
inline int d;
reg u256 a, b, r;
global u256 cr, dr;
cr =g
a = #x86_VPSLLV_4ub4(x, cr);
d = (4u64)[64, 64, 64, 64] - c;
dr = d;
b = #x86_VPSRLV _4u64(x, dr);
r=a"b;
return r,

Figure 10: Parallel rotation function

syntax. For instance, the instruction x +4u64= z; in which
variables x and z have type u256, performs four parallel
64-bit additions on vectors x and z and assigns the result to
variable x.

Non-portable instructions are available through the gen-
eral syntax for intrinsics, e.g., #x86 _VPSHUFD 256. This
operator shuffles the four 64-bit elements of its first argument.
The exact shuffling is specified by its second argument, which
is an 8-bit value. This value is best seen as a vector of four
2-bit numbers describing, for each element of the destination
vector, its original position in the source vector. We have
introduced a convenient syntax to represent this kind of
constant values. For example, Figure [9] shows a shuffling
routine that is part of the ChaCha20 operation.

Dynamic globals. The initial version of Jasmin allowed
parameters in source code: constants that are inlined very
early in the compilation process similarly to C macros.
However, not all constants are the same and, for performance
reasons, some constants are best stored in the code segment,
e.g., to take advantage of RIP-based addressing

To permit taking advantage of these features, our ex-
tension to Jasmin permits tagging local variables as global.
These will behave as any other local variable, but will be
compiled to a code-segment constant value. For this to be
possible, their value should be known at compile-time, after
expansion of parameters, function call inlining, loop unrolling
and constant propagation. The compiler will ensure that
globals with equal values are merged.

This is a very useful mechanism, when an immediate
argument to an instruction is best described by a computation,
as in vector instructions in which the immediate value
describes a permutation, or a vector of shift counts. As
an example, the R4 function shown in Figure |10| performs
four parallel rotations on a vector of 64-bit values. The first

4. In this mode, the data is stored within the code segment and referenced
through a small offset relative to the current value of the instruction pointer.

argument is a vector of inline values that correspond to the
bit counts of these different rotations. These rotations are
implemented using one left shift by the given bit count, one
right shift by the complementary bit count, and a final XOR
of the results of the two shifts. The bit counts are computed
as inline values and stored in the code segment.

3.3. Compiler correctness and safety analysis

We have formalized the operational semantics of Jasmin
programs and x86 assembly code in the Coq proof assistant.
The formalization is based on the new memory model, and
supports instruction extensions, including STMD. We have
also developed an extensible compiler architecture based on
instruction descriptors, and proved that the compiler is correct.
This means that the result of the compilation preserves the
semantics of the original Jasmin program, assuming that the
program is well-typed, safe, terminating, and accepted by
the compiler—the compiler may still fail for well-typed and
safe programs, for instance because the compiler does not
perform spilling.

We have also extended the Jasmin compiler to verify that
the source program is safe, using a fully automated static
analyser, as well as terminating, using a simple analysis
based on ranking functions. Concretely, for safety we check
for the absence of division by zero, out-of-bound array
accesses and variable initialization. Moreover, we need to
ensure that, during the execution of the Jasmin program,
all loads and stores take place in allocated chunks of the
memory (i.e. a specification of valid memory regions, which
define the memory calling contract). We do not require
the user to supply the static analyser with the allocated
memory ranges. Instead, we automatically compute an over-
approximation of the offsets that must be allocated in the
memory. Once the analysis is complete, the user is notified
of the inferred ranges, which are sufficient conditions under
which the program is safe. Since the offsets accessed in the
memory may depend on the inputs of the program, these
are symbolic conditions involving the initial value of the
inputs. We consider polyhedral conditions, i.e. conjunctions
of linear inequalities. For example, in the case of Poly1305,
we automatically infer the following ranges:

range(out): out + [0; 16]
: k+[0;32]

range(inlen): 0

range(k) range(in) : in+ [0;inlen]

Our analysis is based on abstract interpretation tech-
niques [20], and uses the Apron [25] library of numerical
domains. To over-approximate the memory accesses, we
use a symbolic points-to abstraction combined with the
polyhedra domain. Operations in the polyhedra domain
have a worst-case exponential complexity in the number
of variables. Therefore, we perform a pre-analysis to detect
which variables must be included in the relational domain.
Moreover, we allow to user to help the analysis by indicating
which input variables are pointers (k,in and out in Poly1305),
and which variables must be included in the relational domain
(inlen in Poly1305).

4. Source-level verification

This section describes our embedding of Jasmin in
EasyCrypt. We use this embedding for proving correctness
of reference implementations, equivalence between reference
and optimized implementations, and finally correct mitigation
of timing attacks.

4.1. Overview of EasyCrypt

EasyCrypt [10] is a general-purpose proof assistant
for proving properties of probabilistic computations with
adversarial code. It has been used for proving security of
several primitives and protocols [4]], [9f, [L1], [[12].

EasyCrypt implements program logics for proving proper-
ties of imperative programs. In contrast to common practices
(which use shallow or deep embeddings), the language
and program logics are hard-coded in EasyCrypt—and thus
belong to the Trusted Computing Base. The main program
logics of EasyCrypt are Hoare logic, and relational Hoare
logics—both operate on probabilistic programs but we only
used their deterministic fragments. The relational Hoare logic
allows to relate two programs, possibly with very different
control flow. In particular, the rule for loops allows to relate
loops that do not do the same number of iterations. This is
essential for proving correctness of optimizations based on
vectorization, or when the optimization depends the input
message length.

The program logics are embedded in a higher-order
logic which can be used to formalize and reason about
mathematical objects used in cryptographic schemes and
also to carry meta-reasoning about statements of the program
logic. Automation of the ambient logic is achieved using
multiple tools, including custom tactics (e.g. to reason about
polynomial equalities) and back-end to SMT solvers. For
the purpose of this work, we have found it convenient to
add support for proof by computation. This tool allows
users to perform proofs simply by (automatically) rewriting
expressions into canonical forms.

4.2. Design choices and issues

Rather than building a verified verification infrastructure
on top of the Coq formalization of the language (a la
VST [6]), we opt for embedding Jasmin into EasyCrypt.
We choose this route for pragmatic reasons: EasyCrypt
already provides infrastructure for functional correctness and
relational proofs and achieves reasonable levels of automation.
On the other hand, embedding Jasmin in EasyCrypt leads
to duplicate work, since we must define an embedding of
the Jasmin language into EasyCrypt. Although we already
have an encoding of Jasmin into Coq, we cannot reuse
this encoding for two reasons: first, we intend to exploit
maximally the verification infrastructure of EasyCrypt, so the
encoding should be fine-tuned to achieve this goal. Second,
the Coq encoding uses dependent types, which are not
available in EasyCrypt. However, these are relatively simple
issues to resolve, and the amount of duplicate work is largely

compensated by the gains of using EasyCrypt for program
verification (also note that building a verified verification
infrastructure in Coq requires some effort).

4.3. Embedding Jasmin in EasyCrypt

The native language of EasyCrypt provides control-flow
structures that perfectly match those in Jasmin, including if,
while and call commands. This leaves us with two issues: 1)
to encode the semantics of all x86 instructions (including
SIMD) in EasyCrypt; and 2) to encode the memory model
of Jasmin in EasyCrypt.

Instruction semantics. Our formalization of x86 instructions
aims at being both readable and amenable to building a
library of reusable properties over the defined operations,
in particular over SIMD instructions. The first step is to
define a generic theory for words of size k, with the
usual arithmetic and bit-wise operations. The semantics of
arithmetic operations are based on two injections (signed
and unsigned) into integers and arithmetic modulo 2*. For
bit-wise operations, we rely on an injection to Boolean arrays
of size k. Naturally a link between both representations (int
and Boolean array) is also created, which allows proving
for example that shifting a word n < ¢ is the same as
multiplying it by to_uint 2°.

Scalar x86 operations are formalized using the theory
for words, and useful lemmas about the semantics of these
instructions are also proved as auxiliary lemmas. For example,
the formalizations of shl and shr permit proving lemmas like
shl x i@shr o (k—1i) = rol i, under appropriate conditions
on i.

The semantics of SIMD instructions rely on the theories
for 128/256 bit words, but the semantics must be further
refined to enable viewing words as arrays of sub-words,
which may be nested (e.g., instruction vpshufd sees 256-bit
words as two 128-bit words, each of them viewed as an
array of sub-words). To ease this kind of definition, we have
defined a bijection between words and arrays of (sub-)words
of various sizes. Then vector instructions are defined in terms
of arrays of words.

Memory model. EasyCrypt does not provide the notion of
pointer natively. We rely on the concept of a global variable
in EasyCrypt, which can be modified by side effects of
procedures, to emulate the global memory of Jasmin and the
concept of pointer to this memory. A dedicated EasyCrypt
library defines abstract type global_mem_t equipped with two
basic operations for load mem[p] and store mem[p + x] of one
byte, as follows:

type address = int.

type global_mem_t.

op "_[_]" : global_mem_t — address — W8&.t.

op "_[_«_]": global_mem_t — address — W8.t — global_mem_t.
axiom get_setE m x y w : m[x < w][y] = if y = x then w else m[y].

From this basic axiom we build the semantics of load and
store instructions for various word sizes. The Jasmin memory
library then defines a single global variable Glob.mem of type

global_mem_t, which is accessible to other EasyCrypt modules
and is used to express pre-conditions and post-conditions on
memory states.

Soundness. The embedding of a Jasmin program into Easy-
Crypt is sound, provided the program is safe. This is because
the axiomatic model of Jasmin in EasyCrypt is intended to
be verification-friendly, and assuming safety yields much
simpler verification conditions and considerably alleviates
verification of functional and equivalence properties. This
assumption is perfectly fine, since Jasmin programs are
automatically checked for safety before being compiled
and embedded into EasyCrypt. As potential future work,
it would be interesting to make our safety checker certifying,
in the sense that it automatically produces a proof of
equivalence between the Coq and EasyCrypt semantics of
Jasmin programs—technically, this would be achieved by
formalizing in Coq a simpler semantics for safe programs,
and proving automatically that the two semantics coincide
for safe programs. The coincidence between the simpler
semantics in Coq and the Jasmin semantics would still need
to be argued informally.

Reusable EasyCrypt libraries. In the course of writing
correctness proofs for our use cases we have created a few
EasyCrypt libraries that will be useful for future projects. In
addition to the interchangeability of generic vectorization
modules Ops and Opsv which we mentioned in Section [2]
significant effort was put into enriching the theories of words
in order to facilitate proofs of computations over multi-
precision representations. Concretely, a theory was created
that permits tight control over the number of used bits within
a word (a form of range analysis), which is crucial for dealing
with delayed carry operations and establishing algebraic
correctness via the absence of overflows. The central part of
this library is generic with respect to the number of limbs, so
that operations like addition and school-book multiplication
can be handled in a fully generic way (here we rely heavily
on the powerful ring theory in EasyCrypt). When dealing
with constructions such as Poly1305, base on primes which
are very close to a power of 2, this means that only the
prime-specific modular reduction algorithm needs special
treatment. Moreover, this theory was fine-tuned to interact
well with SMT provers, enabling the automatic discharge of
otherwise tedious to prove intermediate results.

4.4. Verification of timing attack mitigations

The EasyCrypt embedding of Jasmin programs is in-
strumented with leakage traces that include all branching
conditions plus all accessed memory addresses (this also
includes array indexes since an access in a stack array will
generate a memory access at the assembly level). It is then
possible to check that the private inputs do not interfere
with this leakage trace in the classical sense that, for all
public-equivalent input states 21 =pup 2, the program will
give rise to identical leakages ¢; = 5. Figure [I 1| shows an
example of the generated instrumented EasyCrypt code.

fn store2(reg u64 p, reg u64[2] x) {
[p + O] = x[0];
[b + 8] = x[1];

proc store2 (p:u64, x:u64 array2) : unit = {
var aux: u64;
leakages <— LeakAddr [0] :: leakages;
aux < x[0];
leakages <— LeakAddr [to_uint (p + 0)] :: leakages;
Glob.mem < storeW64 Glob.mem (to_uint (p + 0)) aux;
leakages <— LeakAddr [1] :: leakages;
aux < x[1];
leakages <— LeakAddr [to_uint (p + 8)] :: leakages;
Glob.mem < storeW64 Glob.mem (to_uint (p + 8)) aux;

Figure 11: EasyCrypt code (bottom) instrumented for
constant-time verification of a Jasmin program (top).

Pleasingly, EasyCrypt tactics developed to deal with
information flow-like properties handle the particular equiva-
lence relation associated with so-called constant-time security
extremely effectively. In particular, EasyCrypt provides the
sim tactics which is specialized on proving equivalence of
programs sharing the same control flow (which is the case
here, as we are reasoning about two executions of the same
program). The tactic is based on dependency analysis and
also proved very useful in justifying simple optimizations
like spilling, which do not affect the control flow. In the
case of constant-time verification there is a very interesting
side-effect to the dependency analysis performed by this
tactic: it is able to infer sufficient conditions (equality of
input variables) that guarantee equality of output variables.
When applied to constant-time verification this means that,
when this tactic is successful (which was the case for our
use-cases) the user just needs to check if the inferred set
of variables are all public. We note that performing this
kind of analysis at the assembly level is usually hard. We
take advantage of the fact that Jasmin provides a high-level
semantics that makes it suitable for verification; in particular,
the clear separation between memory, stack variables and
stack arrays at source level greatly simplifies the problem.

5. Case Study: ChaCha20

Algorithm overview. ChaCha20 is a stream cipher, which
we describe as specified in TLS 1.3. It defines an algorithm
that expands a 256-bit key into 296 key streams (each stream
is associated with a 96-bit nonce) each consisting of 232
blocks (each 64-byte block is associated with a counter
value) | ChaCha20 defines a procedure to transform an initial
state into a keystream block. The initial state is constructed

5. The typical composition with Poly1305, also adopted in TLS 1.3,
uses ChaCha20 with counter O to generate the key material for Poly1305;
the keystream generated for increasing counters starting at 1 is used
for encryption by XOR-ing with the plaintext. Poly1305 is then used to
authenticate the ciphertext (prefixed with any metadata that must also be
authenticated) after adding a length-encoding padding. We analyse the two
algorithms in isolation to facilitate comparison with other implementations,
and because the verification challenges are significantly different.

using the 256-bit key k (seen as eight 32-bit words), the
96-bit nonce n (seen as three 32-bit words), a 32-bit counter
b and four 32-bit constants c. Pictorially, the initial state
can be seen as the following matrix, where on the left-hand
side we show the arrangement of 32-bit words and on the
right-hand side we show the matrix entry numbering.

c ¢ ¢ c o 1 2 3
k k k k 4 5 6 7
k k k k 8 9 10 11
b n n n 12 13 14 15

The state transformation, which is repeated for 10 rounds,
is based on the following operation that acts upon four 32-bit
words at a time:

Qround(a, b, ¢, d):

a+a+b;, d+dda; d<+rold16;
c <+ c+d; b+ b®dc b <+ rol b 12;
a<—a+b d<+—d®a; d + rol d 8;
c+ c+d; b+ b®dc b<rol b T;

Return (a, b, ¢, d)

Each round updates the state by gradually modifying
the state, four words at a time using the Qround function
above, according to the following sequence of 4-word selec-
tions: (0,4,8,12), (1,5,9,13), (2,6,10,14), (3,7,11,15),
(0,5,10,15), (1,6,11,12), (2,7,8,13) and (3,4, 9, 14). The
final keystream block results from the XOR combination of
the output of the 10 rounds with the initial state.

Our implementation. We have defined and proved two
versions of ChaCha20, one relying only on scalar operations
(no vectorization) and the second one relying on AVX2.

The AVX2 version combines two approaches to the
optimization of ChaCha20: for short messages (up to 256
bytes) we follow the lines of [23]], whereas for large messages
we adopt the strategy of OpenSSL. Both approaches were
ported to Jasmin, and further optimization of instruction
selection, scheduling and spilling was conducted to obtain
additional reductions in cycle counts.

Both approaches rely on vectorized instructions, but with
different parallelization approaches. For small messages, two
(for messages of up to 128-bytes) or four keystream blocks
are computed at a time, as there are enough 256-bit registers
available to enable the parallel computation of some steps
within the same block using a dedicated state representationf]
For long messages, this no longer pays off due to the need for
spills, and we rely on sixteen 256-bit registers, which permit
storing the states for 8 block computations using a direct
paralellisation approach that replicates a fast implementation
of a single block.

In the next section we give detailed performance bench-
marks for our code, and compare to existing implementations.
Next, we describe how, in addition to being the fastest, our
code is also proved functionally correct.

6. Four 256-bit registers are used to store two initial states for two
successive counters, which permits computing four lines of code in Qround
with only three vector instructions, simultaneously for the two states. The
round is completed by permuting the states, again using vector instructions,
and repeating the same technique to compute the last four lines in Qround.

Formal verification. The scalar and AVX2 versions have
(almost) the same specification, which corresponds to the
HACL* specification, with some differences we present
later. Similarly to what we did for Polyl1305, we define
an EasyCrypt imperative reference implementation and show
that it satisfies HACL* functional specification using Hoare
logic. Then, we prove the equivalence between this reference
implementation and both of our optimized implementations.

The main challenge when proving correctness of the
imperative specification lies in memory operations. The
imperative specification stores ciphertext blocks eagerly (512-
bits at a time), while the functional specification stores the
full ciphertext in one go at the end. Therefore, we need a
condition ensuring that stores do not erase the fragment of
the initial plaintext that remains to be encrypted. Formally,
we require that plain + len < output V output < plain.

Proving equivalence with the scalar optimized imple-
mentation is relatively straightforward. The main difficulties
come from optimizations of the memory operations. Indeed,
in the optimized version we use 64-bit accesses whenever
possible, instead of byte-level accesses as in the reference
implementation. This allows to save spilling and to reduce
the number of loads and stores by a factor of 8.

The proof of the AvX2 version is more intricate. There are
two different implementations for short messages and long
messages, but we adopt the same proof strategy in both. We
describe the long message case. First we change the control
flow of the main loop, so that each loop iteration computes
8 independent states. Then, we lay the groundwork for
vectorization: rather than manipulating 8 arrays of sixteen 32-
bit words, we now manipulate sixteen arrays of eight 32-bit
words (here we leverage EasyCrypt automation significantly).
Finally, we prove the we can use AVX?2 instructions to replace
multiple scalar instructions. Again, the main difficulty is to
deal with optimized memory access operations, which now
uses 256-bit loads and stores. At this point, the 8 states
are represented by a 16 x 8 matrix, which needs to be
transposed in order to be XOR-ed with the plaintext (using
256-bit operations) and stored in memory. For performance
reasons, this is done in two steps, each dealing with half
of the matrix. Because of this, we need a slightly stronger
restriction on the input and output pointers than in the scalar
version: they need to be either equal or to point to disjoint
memory regions.

6. Benchmarks

Methodology. The performance evaluation of the Jasmin
implementations of ChaCha20 and Poly1305 was carried out
using the benchmarking infrastructure offered by SUPERCOP,
version 20190110. All measurements were performed on
an Intel i7-6500U (Skylake) processor clocked at 2.5GHz,
with Turbo Boost disabled, running Ubuntu 16.04, kernel
release 4.15.0-46-generic. The available compilers for all
non-Jasmin code were GCC 8.1 and CompCert 3.4. Unless
explicitly stated otherwise, GCC was used.

2 T T T T T T T T
HACL* (GCC 8.1)

OpenSSL (Scalar)

HACL* (GCC 8.1 - AVX)

Jasmin (AVX)

Usuba (AVX2)

15 OpenSSL (AVX2) T

Jasmin (AVX2)

10

cycles per byte

0 | | | | | | | |

32 64 128 256 512 1024 2048 4096 8192 16384

message length in bytes

7 T T T T T T T T
HACL* (GCC 8.1)
OpenSSL (AVX2)

6 - Jasmin (AVX2) -

cycles per byte

32 64 128 256 512 1024 2048 4096 8192 16384

message length in bytes

Figure 12: Comparison to non-verified code: ChaCha20 (top),
Poly1305 (bottom).

Baselines. Our benchmarks compare the new Jasmin im-
plementations to the fastest implementations for the same
primitives and architecture in the following cryptographic
libraries: OpenSSL, HACL* and Usuba. We use OpenSSL
implementations as references for Vale implementations,
given that Vale is able to verify off-the-shelf assembly
programs. We integrated external libraries in SUPERCOP by
compiling them into static libraries and renaming symbols
to remove naming collisions; this is particularly important
for libraries which we compiled using different compilers
for comparison—for instance HACL* was compiled with
both GcC and CompCert. A small patch to the SUPERCOP
benchmarking scripts was also added to include these li-
braries in the set of evaluated implementations. Finally, we
created a binding to connect these implementations to the
API that SUPERCOP requires for evaluation. Concretely, we
implemented APIs crypto stream xor for ChaCha20 and
crypto_onetimeauth for Poly1305.

Results. Figure [T2] shows the benchmarking results of our
implementations of ChaCha20 and Poly1305 in comparison
to the prominent alternatives in terms of performance. We

emphasize that in this comparison our code is the only
one verified for functional correctness, safety and so-called
constant-time security (HACL* is compiled with non-verifed
GCC). The comparison with OpenSSL for small messages
should be taken with a grain of salt, as there is some overhead
due to binding with SUPERCOP using the C APL

For ChaCha20 the figure shows a clear difference be-
tween non-vectorized and vectorized code and our imple-
mentation essentially matches OpenSSL as messages grow
(we are measuring amortized cycles per byte). In particular
note that, for non-vectorized implementations, the C code
of HACL* is not much worse than OpenSSL’s assembly.
The efficiency boost of vectorization is significant, even for
relatively small messages. This gives relevance to our results,
as we support fully verified vectorized assembly implementa-
tions. Note that HACL* includes an AVX implementation of
ChaCha20, which we show in the diagram together with our
own for the same instruction set, as a representative example
of the intrinsic overhead of relying on a C compiler.

For Poly1305 we compare to HACL* and OpenSSL’s
best implementation, which has a structure similar to ours
and uses non-vectorized code for small messages. We can
see that our implementation is again the fastest and, more
importantly, that vectorized code is once more crucial to
make the most of the computational platform (visible for
large messages). Interestingly, the figure shows that OpenSSL
seems to switch from non-vectorized to vectorized code at
around 128-byte messages, whereas our implementation does
this at 256-bytes and this seems to be advantageous.

Figure [I3] shows a comparison to verified code, where
HACL* is now compiled with CompCert. For ChaCha20, we
show both our vectorized and non-vectorized implementa-
tions, so as to demonstrate that there is indeed a big advantage
in bypassing the compiler, even if not relying on vectorization.
Indeed, our non-vectorized code is still roughly x2 faster
than HACL*, while our vectorized code is about x 10 faster.

For Poly1305 we compare both to HACL* and to non-
vectorized OpenSSL code verified in the Vale framework [17]]
(here the comparison is assembly to assembly and so it
is precise). The fine-tuning of our implementation shows
in the comparison to the Vale-verified OpenSSL code (the
dashed line depicts non-vectorized Jasmin code even for large
messages for comparison). The difference to HACL* in this
case is huge, both for non-vectorized and vectorized code,
and it is due to the intensive use of algebraic operations.

As a final note, we emphasize that we do not claim
that ours is the only verification framework that permits
achieving such results: for example, the vectorized Poly1305
code from OpenSSL from Figure [12] could be verified
using Vale or some other framework and closely match our
code’s performance (one could also independently verify the
assembly code produced by the Jasmin compiler with such
tools). The intended take away message from this section is
rather that our methodology and framework permit achieving
this for new implementations, which can incorporate ideas for
speed optimization and functional correctness proofs from
cryptographers and further fine-tune them using Jasmin.

30 T T T T T T T T
HACL* (CompCert 3.4)
Jasmin (Scalar)

Jasmin (AVX2)

25 [~

20 —

15 -

cycles per byte

10 !

0 | | | | | | | |

32 64 128 256 512 1024 2048 4096 8192 16384

message length in bytes

256 T T T T T T T T
HACL* (CompCert 3.4)
Vale

Jasmin (Scalar) - ----
Jasmin (AVX2)

64

32 —

16 - —

cycles per byte

,,,,,,,,,,,,

05 | | | | | 1
32 64 128 256 512 1024 2048 4096 8192 16384

message length in bytes

Figure 13: Comparison to verified code: ChaCha20 (top),
Poly1305 (bottom).

7. Conclusion

We have developed a practical framework to build high-
assurance and high-speed assembly implementations. We
have shown the benefits of our approach by manually
optimizing and verifying functional correctness and security
against timing attacks of code for two primitives from the
TLS 1.3. ciphersuite.

There are several important directions for future work.
First, we intend to verify a richer set of cryptographic
primitives, including all the primitives used in TLS 1.3.
Second, we intend to develop a translation validation ap-
proach for automating equivalence proofs between reference
and vectorized implementations. Third, we intend to extend
Jasmin to support other architectures.

Acknowledgements. This work is partially supported by
project ONR N00014-19-1-2292. Manuel Barbosa was sup-
ported by grant SFRH/BSAB/143018/2018 awarded by FCT.
This work was partially funded by national funds via FCT
in the context of project PTDC/CCI-INF/31698/2017.

References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8l

[91

[10]

(1]

[12]

[13]

J. B. Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe,
Francois Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago
Oliveira, Alley Stoughton, and Pierre-Yves Strub. Machine-checked
proofs for cryptographic standards indifferentiability of sponge and
secure high-assurance implementations of sha-3. Manuscript.

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,
Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. Jasmin: High-assurance
and high-speed cryptography. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages
1807-1823. ACM Press, October / November 2017.

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Frangois Du-
pressoir, and Michael Emmi. Verifying constant-time implementations.
In Thorsten Holz and Stefan Savage, editors, 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016., pages 53—70. USENIX Association, 2016.

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Francois
Dupressoir, Benjamin Grégoire, Vincent Laporte, and Vitor Pereira.
A fast and verified software stack for secure function evaluation. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 1989-2006. ACM, 2017.

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On subnormal floating point and
abnormal timing. In 2015 IEEE Symposium on Security and Privacy,
pages 623-639. IEEE Computer Society Press, May 2015.

Andrew W. Appel. Program Logics - for Certified Compilers.
Cambridge University Press, 2014.

Andrew W. Appel. Verification of a cryptographic primitive: SHA-256.
ACM Trans. Program. Lang. Syst., 37(2):7:1-7:31, 2015.

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel
Luna, and David Pichardie. System-level non-interference for constant-
time cryptography. In Gail-Joon Ahn, Moti Yung, and Ninghui Li,
editors, ACM CCS 14, pages 1267-1279. ACM Press, November 2014.

Gilles Barthe, Juan Manuel Crespo, Yassine Lakhnech, and Benedikt
Schmidt. Mind the gap: Modular machine-checked proofs of one-
round key exchange protocols. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part 1I, volume 9057 of Lecture Notes in Computer
Science, pages 689-718. Springer, 2015.

Gilles Barthe, Francois Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial.
In Alessandro Aldini, Javier Lopez, and Fabio Martinelli, editors,
Foundations of Security Analysis and Design VII - FOSAD 2012/2013
Tutorial Lectures, volume 8604 of Lecture Notes in Computer Science,
pages 146-166. Springer, 2013.

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santi-
ago Zanella Béguelin. Computer-aided security proofs for the working
cryptographer. In Phillip Rogaway, editor, Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science, pages 71-90. Springer, 2011.

Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santi-
ago Zanella Béguelin. Beyond provable security verifiable IND-CCA
security of OAEP. In Aggelos Kiayias, editor, Topics in Cryptology -
CT-RSA 2011 - The Cryptographers’ Track at the RSA Conference
2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings,
volume 6558 of Lecture Notes in Computer Science, pages 180-196.
Springer, 2011.

Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Provably
secure compilation of side-channel countermeasures: the case of
constant-time cryptography. In Computer Security Foundations, 2018.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W.
Appel. Verified correctness and security of openssl HMAC. In Jaeyeon
Jung and Thorsten Holz, editors, 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015.,
pages 207-221. USENIX Association, 2015.

Daniel J. Bernstein. The poly1305-aes message-authentication code.
In Henri Gilbert and Helena Handschuh, editors, Fast Software
Encryption: 12th International Workshop, FSE 2005, Paris, France,
February 21-23, 2005, Revised Selected Papers, volume 3557 of
Lecture Notes in Computer Science, pages 32—49. Springer, 2005.

Daniel J. Bernstein, Stefan Kolbl, Stefan Lucks, Pedro Maat Costa
Massolino, Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter
Schwabe, Francois-Xavier Standaert, Yosuke Todo, and Benoit Viguier.
Gimli : A cross-platform permutation. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 299-320.
Springer, Heidelberg, September 2017.

Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath T. V. Setty, and
Laure Thompson. Vale: Verifying high-performance cryptographic
assembly code. In Engin Kirda and Thomas Ristenpart, editors, 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017., pages 917-934. USENIX Association,
2017.

Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer,
Yunlu Huang, Ranjit Jhala, and Deian Stefan. Fact: A flexible, constant-
time programming language. In IEEE Cybersecurity Development,
SecDev 2017, Cambridge, MA, USA, September 24-26, 2017, pages
69-76. IEEE Computer Society, 2017.

Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.
Verifying Curve25519 software. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 14, pages 299-309. ACM Press,
November 2014.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, pages 238-252. ACM, 1977.

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. Simple high-level code for cryptographic arithmetic - with
proofs, without compromises. In Proceedings of Security and Privacy
2019, 2019.

Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno,
Aseem Rastogi, and Nikhil Swamy. A verified, efficient embedding
of a verifiable assembly language. PACMPL, 3(POPL):63:1-63:30,
2019.

Martin Goll and Shay Gueron. Vectorization of ChaCha stream
cipher. Cryptology ePrint Archive, Report 2013/759, 2013. hittp]
/leprint.iacr.org/2013/759,

Martin Goll and Shay Gueron. Vectorization of poly1305 message
authentication code. 12th International Conference on Information
Technology - New Generations, pages 145-150, 2015.

Bertrand Jeannet and Antoine Miné. Apron: A library of numerical
abstract domains for static analysis. In CAV, volume 5643 of Lecture
Notes in Computer Science, pages 661-667. Springer, 2009.

Xavier Leroy. Formal certification of a compiler back-end, or: pro-
gramming a compiler with a proof assistant. In 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2006, pages 42-54. ACM, 2006.

Jay P. Lim and Santosh Nagarakatte. Automatic equivalence checking
for assembly implementations of cryptography libraries. In Mah-
mut Taylan Kandemir, Alexandra Jimborean, and Tipp Moseley,
editors, IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2019, Washington, DC, USA, February 16-20,
2019, pages 37-49. 1IEEE, 2019.

http://eprint.iacr.org/2013/759
http://eprint.iacr.org/2013/759

[28] David Molnar, Matt Piotrowski, David Schultz, and David A. Wagner.
The program counter security model: Automatic detection and removal
of control-flow side channel attacks. In Dongho Won and Seungjoo
Kim, editors, Information Security and Cryptology - ICISC 2005, Sth
International Conference, Seoul, Korea, December 1-2, 2005, Revised
Selected Papers, volume 3935 of Lecture Notes in Computer Science,
pages 156-168. Springer, 2005.

[29] Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang.
Verifying arithmetic assembly programs in cryptographic primitives
(invited talk). In Sven Schewe and Lijun Zhang, editors, 29th
International Conference on Concurrency Theory, CONCUR 2018,
September 4-7, 2018, Beijing, China, volume 118 of LIPIcs, pages
4:1-4:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[30] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella Béguelin, Antoine
Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric
Fournet, and Nikhil Swamy. Verified low-level programming embedded
in F. PACMPL, 1(ICFP):17:1-17:29, 2017.

[31] Bruno Rodrigues, Fernando Magno Quintido Pereira, and Diego F.
Aranha. Sparse representation of implicit flows with applications to
side-channel detection. In Ayal Zaks and Manuel V. Hermenegildo,
editors, Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, pages
110-120. ACM, 2016.

[32] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub,
Karthikeyan Bhargavan, and Jean Yang. Secure distributed program-
ming with value-dependent types. In Manuel M. T. Chakravarty,
Zhenjiang Hu, and Olivier Danvy, editors, Proceeding of the 16th
ACM SIGPLAN international conference on Functional Programming,
ICFP 2011, Tokyo, Japan, September 19-21, 2011, pages 266-278.
ACM, 2011.

[33] Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Certified verifi-
cation of algebraic properties on low-level mathematical constructs
in cryptographic programs. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages
1973-1987. ACM Press, October / November 2017.

[34] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang.
Eliminating timing side-channel leaks using program repair. CoRR,
abs/1806.02444, 2018.

[35] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart
Beringer, Adam Petcher, and Andrew W. Appel. Verified correctness
and security of mbedtls HMAC-DRBG. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, pages 2007-2020. ACM, 2017.

[36] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. Hacl*: A verified modern
cryptographic library. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages
1789-1806. ACM, 2017.

Appendix A.
More on Jasmin

This section gives an overview of the Jasmin language
and some unique features its compiler. Various language
constructs are illustrated though the example of Figure [T4]
implementing 256-bit integer addition.

Values and Storage Classes. Programs written in Jasmin
compute on words (machine integers) of various bit-width
(types u8, ul6, u32, ub4, ul28 and u256), boolean values

fn add(reg u64[4] a, reg u64[4] b) — reg u64[4] {
inline int i;
reg bool cf;
fori=0to 4 {
ifi==0{
cf, a[i] += ali];
}else {
cf, afi] += b[i] + cf;

}

return a;
}

export fn e _add(reg ub4 rp, reg ub4 ap, reg u64 bp) {
inline int i;
reg u64[4] a, b;
fori =0to 4 {
ali] = [ap + 8 *i];
b[i] = [bp + 8 * i];

a = add(a, b);
fori=0to 4 {
alil =[rp + 8 *1i];

Figure 14: Addition of 256-bit machine integers in Jasmin.

(type bool), integers (unbounded; type int), and arrays of one
of these types; the sizes of all arrays are statically known.

Each variable declaration specifies the storage class for
this variable: reg, stack, and inline. These annotations do not
alter the meaning of the program, but tell the compiler where
the values should be stored: either in machine registers or
in stack slots. Inline values should only appear in compile-
time computations and will not be stored during program
execution.

The example of Figure [14] shows the declaration of
arrays of four 64-bit words (a and b), inline integers i,
and a boolean cf. Such boolean values usually correspond
to arithmetic flags: here, this register holds the carry flag
returned by the addition instruction and taken as input by
the add-with-carry instruction.

Operators / Intrinsics. Many instructions of the target
architecture are accessible to the Jasmin programmer through
a convenient high-level syntax (e.g., add-with-carry in Fig-
ure @ However, instructions can also be referred to through
the intrinsics mechanism. For instance r = #x86_BSWAP(r)
calls on variable r the byte-swap instruction, for which there
is no high-level syntax.

This intrinsic notation is also useful to access to all
arithmetic flags modified by an instruction.

Control-Flow. In Jasmin there are 3 different types of
control-flow structures: while, for, and if. For loops will be
fully unrolled during compilation; the iterator variable must
be an inline int. On the contrary, while loops are preserved
by compilation; there are a generalization of the more usual
while and do-while loops: instructions may appear before
and after the loop condition. This is convenient in low-

level programs where a complex loop condition cannot be
expressed as a simple expression.

Conditional branches may be resolved at compile-time;
in the add function of Figure after full unrolling of the
for loop, the compiler can simplify the if statements to only
keep the then branch for the first iteration and the else branch
for the next three iterations. This permits adopting a common
coding pattern (e.g., using C macros), where parts of the
code can be included and excluded depending on constants
set at compile time, and it can be a quite powerful way of
making code more compact and readable when combined
with for loops.

Functions. There are two types of functions in Jasmin: the
ones that will be inlined (as add) and the ones that are
exposed and can be called from an external program (as
e _add). Functions of this second kind are annotated with
the export keyword and must comply with common calling
conventions: they can receive up to six arguments and return
one value; arguments and return value must have a word
type and the reg storage class.

On the other hand, inline functions stay within the
Jasmin world and can thus follow any calling convention.
For instance, they may have arrays as parameter or return
value (as the add function).

Global memory. Programs can also read from and write
to a global memory, shared with the external environment.
Pointers are usual u64 values; they must be held in a
register when used in memory accesses. The e _add function
illustrates a general pattern in Jasmin programming: the
Jasmin program performs its computations using arrays, but
exchanges data with its caller though the shared memory
(managed by the caller). It receives pointers to this memory
as arguments, copies the input data from the memory to local
arrays (first for loop), runs the computation on these arrays
(call to inline function add) and finally copies the result from
a local array to the shared memory (last for loop).

Unless explicitly noted, memory accesses exchange 64-
bit words; but they can be annotated to use different word
sizes. For instance the instruction ¢ = (u8)[in + j] will load
the 8-bit word at address in + j into register c.

Register Allocation. In an X64-86 CPU there are sixteen
64-bits registers and one of them, RSP, is used by Jasmin to
maintain stack variables, making fifteen registers available
to the programmer. The Jasmin compiler will try to find an
assignment from reg variables to registers; if it fails to do
so, then compilation will abort. In most cases this means
that there are more than fifteen reg variables in a live state
at some point in the code. The compiler will output an
error message containing the name of a variable that it is
not possible to allocate. The programmer must then change
the program by hand-spilling: choosing which reg variables
should be moved to the stack at which points in the code.
To ensure the success of this allocation, the programmer
must be also aware of some architectural constraints. Some
assembly instructions have special restrictions; for instance

the MULX instruction takes its first argument from the
RDX register. Moreover, the calling convention for exported
function requires that arguments come in registers RDI, RSI,
RDX, RCX, R8 and R9. All these requirements may be
conflicting, in which case the programmer must introduce
a copy (into a different register or into a stack variable) to
resolve the conflict.

Indices into register arrays should be statically known
to the compiler, as machine registers cannot be dynamically
addressed.

Arrays and Stack Variables. Arrays are regular values; in
particular, they can be used as function arguments or return
values. Such communications between functions have the
semantics of data copy but no such copy happens at run-time:
the compiler implements them through register renaming or
aliasing. This implies that an array cannot be used after
it has been given as argument to a function; unless this
function also returns this array to its caller (e.g, the array a
in Figure [T4).

The stack (storage class of some Jasmin variables) is
a dedicated region of the memory, private to the Jasmin
program. The addresses of stack variables cannot be taken
thus these variables cannot be accessed through pointers.
Nonetheless, stack arrays are implemented as contiguous
slices of this memory: they can thus be indexed by run-time
values. Moreover a stack array declared at some type (e.g.,
stack u64[2] s) can be reinterpreted at a different type (e.g.,
s[u8 (int) j] = c stores the 8-bit value c at offset j in the
array s, seen as array of sixteen u8 words). In the context
of cryptographic implementations, this feature can be quite
useful for implementing padding schemes or stream ciphers,
as illustrated by the load last function of Figure

As for registers, there are architectural constraints that
apply when using stack variables. Most instructions are
limited to at most one memory access. For instance, the
MOV instruction doesn’t support the source and destination
operand to be both memory addresses: reading from the
shared memory into a stack variable must go through an
intermediate register variable.

The Jasmin compiler attempts to minimize the size of
the stack memory used by a program: if two stack variables
have disjoint life spans, they may be allocated to the same
address.

Jasmin interpreter. Jasmin programs can be compiled to
assembly, assembled and linked to other programs. However,
the Jasmin compiler is partial: some valid programs may fail
to be compiled. For instance, for the sake of predictability, no
temporary variables are introduced to compile expressions;
also, register allocation does not introduce spilling and fails
if not enough registers are available. Moreover, the compiler
correctness proof does not provide guarantees for unsafe
programs so, even if a program does compile, running the
generated code is not a good means to obtain feedback on
the semantics of a source program.

To overcome these difficulties and be able to run spec-
ification programs during development—Jasmin programs

that should be easy to read but may fail to be compilable or
efficient—the Jasmin compiler also includes an interperter
i.e., an executable small-steps semantics, of Jasmin.

Examples of Jasmin code. The number and diversity of
examples of optimized implementations of cryptographic
algorithms using Jasmin is growing. The repository we refer
to in the introduction (github.com/tfaoliveira/libjc) currently
includes the examples in this paper, plus implementations of
the SHA3 hash function and Curve25519. New developments
will be appear here.

Appendix B.
Additional Case Study: Gimli

Algorithm overview. Gimli [16] is a permutation designed
to be used as a component in the construction of block-
ciphers, hash-functions, etc. It operates on 384-bits, and
is optimized to offer a good security/performance trade-
off across multiple platforms, including the deployment of
countermeasures against side-channel attacks. It applies a
sequence of 24 rounds to a 384-bit state, seen as a 3 x4 matrix
of 32-bit words. Each round consists of three operations:

1) a non-linear layer implemented as a 96-bit fixed per-
mutation, which is applied to each 3-word column and
comprises bit-wise operations and entry swaps;

2) a linear mixing layer using two different matrix entry
permutations, one applied every fourth round and one
every second round;

3) a constant addition, applied every fourth round.

What makes Gimli an interesting example is that its speci-
fication is actually given as imperative pseudocode, which
we can write in Jasmin at the same level of abstraction as
shown in Figure

Implementation and formal verification. Our implemen-
tation of Gimli demonstrates the use of another set of
instruction extensions. As suggested in Gimli’s proposal [16]],
we rely on SSE, which provides 128-bit registers and allows
for parallelization within a single block. In particular, we
process the four columns in parallel in the non-linear part
of each round. We chose this particular parallelization
approach because we are not optimizing Gimli for a specific
construction, but rather as a generic building block. Indeed,
when Gimli is used in specific constructions, parallelization
across several blocks can be achieved using more powerful
instruction extensions, supporting wider vectors.

The proof of the SSE version of Gimli is comparatively
simpler to our other examples. In the vectorized version,
the state is an array storing four 128-bit values, each
corresponding to a line in the matrix. The linear operations
that permute entries within lines can be implemented using

7. We note that for ChaCha20 and Poly1305 the original specifications
are also given as pseudocode; however we chose to present our reference
specifications as being the ones used in HACL* for the sake of interchange-
ability. We believe the fact we can adopt both styles of specification speaks
for the versatility of our approach.

inline fn gimli _body(stack u32[12] state) — stack u32[12] {
inline int round, column;
reg u32 x, vy, z;
for round = 0 downto 24 {
for column = 0to 4 {
x = state[column];
y = state[4 + column];
z = state[8 + column];
state[8 + column] = x "z << 1 "~ (y & z) << 2;
state[4 + column] =y ~ x ~ (x| z) << 1;
state[column] =z "~y * (x & y) << 3;

x = rotate(x, 24);
y = rotate(y, 9);

}

if round % 4 == 0 {
x = state[0]; y = state[1];
state[0] = y; state[l] = x;
x = state[2]; y = state[3];
state[2] = y; state[3] = x;

}

if round % 4 == 2{
x = state[0]; y = state[2];
state[0] = y; state[2] = x;
x = state[l]; y = state[3];
state[l] = y; state[3] = x;

if round % 4 == 0 {
state[0] = state[0] ~ 0x9e377900 ~32u round,;
}
}

return state;

¥

Figure 15: Gimli reference implementation in Jasmin.

shuffle instructions vpshufd 0xB1 and vpshufd Ox4E. Proving
the equivalence between the shuffle in 128-bits word and the
reference implementation is done by a simple reduction step,
as EasyCrypt’s semantics of x86 operations is computable.

A more intricate argument is needed to deal with the
implementation of an equivalent of a rol instruction for
vectors, which does not exist natively. This is based on a
24-bit rotation, which can be emulated by permuting bytes
using the vpshufb instruction. Proving the correctness of this
requires switching the way we view 128-bits words between
four 32-bits words and sixteen 8-bits words. Again, the proof
of this optimization is done by computation.

github.com/tfaoliveira/libjc

	Introduction
	Motivating example: Poly1305
	Enhancements to Jasmin
	Compiler design
	Jasmin language and memory model
	Compiler correctness and safety analysis

	Source-level verification
	Overview of EasyCrypt
	Design choices and issues
	Embedding Jasmin in EasyCrypt
	Verification of timing attack mitigations

	Case Study: ChaCha20
	Benchmarks
	Conclusion
	References
	Appendix A: More on Jasmin
	Appendix B: Additional Case Study: Gimli

